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Wall slip regimes in jammed suspensions of soft microgels
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We characterize microfluidic flows of jammed suspensions of soft microgels (Carbopol)
behaving as yield-stress fluids. We quantify the wall slip friction, i.e., the slip velocity V
versus the tangential stress at the wall σw . We demonstrate a transition in slip regimes,
from a nonlinear behavior (V ∝ σ 2

w) to a linear one, as the stress at the wall is increased, as
expected from scaling arguments. Using fluorescent imaging to characterize the microgel
size, we rationalize the two friction regimes for various samples by estimating viscous and
elastic forces at the scale of the microgel particle. Only local arguments are thus necessary
to predict wall slip friction, in contrast to other complex flow features such as fluidity or
shear banding where bulk and surface properties appear to be strongly related.
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I. INTRODUCTION

Foams, emulsions, or microgel suspensions are soft glasses, consisting of a jammed assembly
of soft objects in a liquid matrix—bubbles, droplets, or polymer blobs. Macroscopically, they all
behave as yield stress fluids: they are elastic-like at low stresses σ , but they flow at stresses larger
than the yield stress σY [1–3]. Beyond their complex bulk rheology [3], the flow of these materials
is known to be affected by the presence of solid walls, through local fluidization, for instance [4,5].
In particular, it is widely observed that the classical no-slip boundary condition at the solid-liquid
interface (continuity of tangential velocities) is broken, a phenomenon referred to as wall slip [6,7].
It is quantified by the relation between the velocity discontinuity at the wall (slip velocity V ) and the
stress tangential to the boundary σw. Microscopically, this phenomenon originates from the presence
of a layer of interstitial liquid between the soft objects and the wall, which is preferentially sheared
[6]. Strategies to avoid wall slip then consist of trapping the soft objects at the wall, either with
a physical roughness comparable to the size of soft particles [8] or by suppressing the interstitial
solvent layer with a strong attraction between the soft objects and the wall [7]. Otherwise, wall slip
is ubiquitous in flows of yield-stress fluids.

In steady state, the slip velocity V is found to increase with the wall stress σw. In dilute emulsions
or microgel suspensions, the velocity increases linearly with the stress, as can be expected from a
classical Stokes viscous friction [9,10]. The picture is more complicated in concentrated materials
exhibiting a yield stress, above the jamming point. First, some experiments have evidenced a wall
yield stress [7,10] below which no slip occurs. Whether this apparent wall yield stress is intrinsic
[11] or an experimental artefact remains an open question [12], which we do not address in this
study. Above the apparent wall yield stress σY

w , the slip velocity generally varies as a power law
V ∝ σ

p
w or (σw − σY

w )p where the exponent p varies from 1 to 2, depending on the complex fluids
and the experimental conditions.
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FIG. 1. Different configurations depending on the jamming degree (x axis) and on the wall stress or velocity
(y axis). Blue: dissipation in the film (elastohydrodynamic friction), red: dissipation in the liquid junction
(Stokes friction).

In foams, p is found to be ≈2, 3/2, or 1, depending on the liquid fraction and the physico-
chemistry of the foaming solutions [13–16]. The nonlinear behaviors then arise from the coupling
between surface tension and viscous effects in the liquid. In emulsions and microgel suspensions,
either a linear [8,12,17] or a square dependency of V upon σw [5,9,10,18–20] is evidenced,
depending on the stress and the chemical nature of the solid substrate, with respect to the one of
the soft spheres. In addition, it has been suggested that the friction exponent switches from p = 2
to 1 as the wall stress σw becomes higher than the bulk yield stress σY [17], but other measurements
have evidenced a nonlinear scaling above the yield stress [5,10,21]. In this context, the aim of this
article is first to quantify the influence of both the wall stress and the velocity on the value of the
exponent p by exploring many decades, and second to rationalize the friction regimes in terms of
local dissipation mechanisms (Fig. 1).

II. MODELS OF WALL FRICTION OF SOFT SPHERE SUSPENSIONS

The nonlinear square behavior was first explained by Meeker et al. [18] as follows. The soft
particles are squeezed against the solid wall by the osmotic or confinement pressure � of the
suspension. This pressure quantifies the “degree of jamming” of the suspension; in particular, it
vanishes when the polymer concentration c is decreased down to the jamming point c∗ [22–27].
This squeezing results in the formation of a thin liquid film of extension r given by the Hertz law:
r ∼ R(�/GP )1/3 where R and GP are the radius and the elastic modulus of the soft particle (Fig. 1).
In this model, viscous dissipation is assumed to be dominated by shear flow in the thin film (blue
region in Fig. 1). The average wall stress σw is finally related to the viscous shear stress in the film
ηV/δ, where η is the dynamic viscosity of the interstitial liquid, and scales as σw ∼ (r/R)2ηV/δ.

A crucial parameter here is the thickness δ of the thin liquid film: at very low velocity, it is fixed
by the balance between elastic forces and surface ones (predicted by Derjaguin-Landau-Verwey-
Overbeek theory) [28,29], resulting in a constant thickness δ and a linear friction regime, as recently
observed on smooth silicon-silica surfaces [12]. However, at large enough velocities, viscous forces
overcome surface ones. The thickness δ then depends on the slip velocity and derives from the
balance between hydrodynamic and elastic forces [18]: δ2 ∼ ηRV/GP, at the origin of the nonlinear
friction regime. Indeed the wall stress reads σw ∼ σEHD ∼ (ηV/R)1/2G1/2

P (�/GP )2/3.
As the microgel concentration is decreased on the way to unjamming, corresponding to a left

shift in the diagram of Fig. 1 [from case (1) to case (2)], the ratio �/GP vanishes, so that both
the extension of the thin films r and the elastohydrodynamic friction stress σEHD tend to zero. For
unjammed systems, one then expects that dissipation at the wall is determined by the shear in the
liquid junctions of the microgel packing (red color in Fig. 1). The typical length scale for liquid
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shear is then given by the particle radius R only, which yields a wall stress analog to a Stokes
law σw ∼ σSt ∼ ηV/R. This change of scaling law was indeed observed by Divoux et al. [10] for
thermo-responsive microgels across the jamming transition, and a similar transition in flow was also
observed in wet (close to unjamming) foams [16].

Comparing both elastohydrodynamic and Stokes terms shows that the linear regime should
dominate when σSt � σEHD, that is, for

σw � GP

(
�

GP

)4/3

or V � RGP

η

(
�

GP

)4/3

. (1)

Unjamming a microgel suspension means decreasing the normalized confinement pressure �/GP,
hence lowering the right-hand side of Eq. (1), which favors the Stokes-like regime (at a given wall
stress or velocity). But for a given jammed fluid, i.e., a given pressure �, Eq. (1) also predicts
that the friction regime should also change with increasing slip velocity V : As δ increases with V ,
dissipation in the film (blue zone in Fig. 1) increases slower than the one in the liquid junctions
(red zone). Equation (1) thus predicts a transition from an elastohydrodynamic regime to a Stokes
regime with increasing velocity.

III. WALL SLIP MEASUREMENTS

To investigate the existence of a regime transition at higher velocity [from case (1) to case (3)
of Fig. 1] and quantify the linear regime, we thus performed wall slip measurements of Carbopol
suspensions to investigate over several decades the influence of the velocity on the value of the
exponent p. Carbopol (Lubrizol) microgel suspensions consist in cross-linked polyacrylic acid
blobs dispersed in water or water-glycerol mixtures. Once neutralized with sodium hydroxide, the
polymer chains are negatively charged and repel each other, so that the polymer blobs swell and
jam, which results in macroscopic yield stress σY and elastic modulus G. In this study, we use
different Carbopol types [ETD 2050, Ultrez 10 (U10) and 980], corresponding to small changes
in the formulation and cross-linking degree, following a preparation protocol described elsewhere
[5,30]. The Carbopol weight concentration c ranges from 0.1 to 1 wt%. Note that, unless specified,
all samples have been strongly mixed during 24 h with a mixer (IKA, RW20). All samples behave
as yield-stress fluids, whose rheology is well described by Herschel-Bulkley law which relates the
shear stress σ to the shear rate γ̇ : σ = σY + K γ̇ n, where σY is the yield stress, K the consistency,
and n the exponent. All rheological parameters are summarized in Table I. To measure wall slip,
we take advantage of the transparency of the microgel suspensions which are seeded by 1 μm
fluorescent particles (Invitrogen) at volume concentration 10−5 and characterize their flow in smooth
glass capillary channels through a micro-particle image velocimetry (μPIV) setup similar to the
one used in [5]. The inner roughness of the microchannel has been measured by atomic force
microscopy (AFM) and is characterized by a rms value of 0.2 nm, much smaller than other length
scales relevant here. The flow geometry is sketched in Fig. 2(a): a pressure difference �P in the
range 5 × 102–1.8 × 105 Pa is applied by a pressure controller (Elveflow) and drives the Carbopol
suspension through a rectangular glass capillary (VitroCom) of length L = 50 mm, width W =
3 mm, and height h = 0.3 mm. The W/h = 10 aspect ratio ensures that the flow can be considered
as two dimensional along the y direction. The stress across the channel is then known as σ (z) =
σxz(z) = �P(h/2 − z)/L [taking the origin z = 0 at the lower wall defined in Fig. 2(a)]. Finally, for
different z positions, images of the fluorescent particles are recorded. We use image correlation to
detect their displacement from which the fluid velocity v(z) is deduced. With our LaVision Imager
Pro camera, 20× magnification and laser lighting, we measure velocities from 10 μm/s up to 1
m/s. A typical velocity profile v(z) for a half channel is shown in Fig. 2(b) and could be used to
probe the local rheology of the fluid [4,5,8,31–33]. We observe that the velocity does not vanish at
the wall but tends to a constant V , which is precisely the slip velocity. We determine it by linear
extrapolation of v(z). The error on V (∼10%–20%) is due to the measurement dispersion and the
error on the wall position, taken equal to the diameter of the fluorescent markers 1 μm.
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TABLE I. Properties of all Carbopol samples: Carbopol type, preparation protocol (strong or weak stirring),
glycerol weight concentration, jamming concentration c∗, solvent viscosity η, polymer weight concentrations
c, bulk rheology parameters, and particle radius R.

Type stirring glycerol c∗ (%) η (mPa s) c σY (Pa) K (Pa sn) n G′ (Pa) R (μm)

ETD2050 strong 0% 0.07 ± 0.01 1 1% 15 5.0 0.58 60 0.72 ± 0.15
0.5% 4.1 4.4 0.52 26 0.84 ± 0.08

0.25% 2.0 2.5 0.51 15 1.01 ± 0.17
0.1% 0.8 1.6 0.51 7 1.66 ± 0.20

ETD2050 weak (WS) 0% 0.06 ± 0.01 1 0.5% 12.5 7.3 0.49 65 1.82 ± 0.36

U10 strong 0% 0.09 ± 0.01 1 0.1% 0.9 1.3 0.50 15 1.45 ± 0.27

980 strong 0% 0.08 ± 0.02 1 0.3% 62 20 0.37 370 0.85 ± 0.08
0.25% 46 17.6 0.37 322 0.75 ± 0.10
0.2% 26 11 0.38 150 0.64 ± 0.09
0.15% 6 3.3 0.42 61 0.65 ± 0.15
0.13% 7.3 3.8 0.41 78 0.71 ± 0.04
0.1% 4.2 2.7 0.42 40 0.69 ± 0.04
0.08% 0.4 0.6 0.49 5.5 0.69 ± 0.04

980 strong 60% 0.08 ± 0.02 10 0.25% 17 17.2 0.63 174 0.42 ± 0.06
0.1% 1.7 4.3 0.54 19 0.66 ± 0.05

IV. RESULTS AND DISCUSSION

Figure 3(a) shows measurements of the wall slip friction, that is, the slip velocity V as a function
of the wall stress σw = �Ph/(2L), for Carbopol 980 at different concentrations c. We observe
that the slip velocity increases with the wall stress, as intuitively expected, and decreases with the
polymer concentration. Besides, in these log-log plots, we find that V (σw ) behaves as two straight
lines of slopes ≈2 and 1 at, respectively, low and large velocities. As expected from Eq. (1), we
observe a transition from an elastohydrodynamic to a Stokes-like regime. This transition is also
seen for other types of Carbopol, as shown in Fig. 3(b). Last, we find that the transition stress σ ∗ at
which the two lines meet increases with the concentration, which is also consistent with Eq. (1).

Note that all measurements are performed for wall stresses above the yield stresses σY , while
previous measurements by Seth et al. [17] suggested a transition in slip regimes at σw ≈ σY . In this
stress range, we also detect no measurable wall yield stress, contrary to measurements from the
recent literature [10,17,21].
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FIG. 2. (a) Experimental setup. The fluid velocities are measured from below with a micro-PIV setup [5].
(b) Typical flow profile v(z) across one half of the capillary (Carbopol ETD 2050 0.25%, σY = 1.6 Pa). The
systematic error on v is ∼0.02 mm/s, much smaller than the symbol size.
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1

2

FIG. 3. Wall friction: slip velocity V vs the wall stress σw for (a) Carbopol 980 at different concentrations
and (b) Carbopol ETD and U10 types. The straight lines correspond to V ∝ σw (solid lines) and V ∝ σ 2

w

(dashed lines). Error bars are shown for Carbopol 980 at c = 0.08% and c = 0.3% (smaller than symbol size).

To go one step further, we now compare quantitatively our data to the predictions of Meeker et al.
[18] (elastohydrodynamic friction σEHD) and to Stokes friction σSt. Following [16], we assume that
the total friction is the sum of both contributions σw = σEHD + σSt which can be recast as

σw =
√

σE
ηV

R
+ α

ηV

R
, (2)

where σE is an elastic stress characterizing the nonlinear friction regime, while α is a dimensionless
coefficient. To determine and compare both quantities, the radius R of the polymer blob (particle)
first needs to be determined.

Images of the microstructure are obtained via confocal microscopy. We incorporate in the
microgel suspension Rhodamine 6G at final concentration ∼2 μM. The fluorescent cationic dye is
attracted by the anionic polymer, which allows us to image the heterogeneous structure of Carbopol
at the micron scale [Fig. 4(a)]. From the images, we calculate the normalized azimuthal average
g(r) of the spatial autocorrelation function of intensity fluctuations and determine the characteristic
radius R of the polymer particles, defined such that g(r = R) = 1/2 [Fig. 4(b)]. A similar procedure
was used in [30]. Our measurements are summarized in Table I. They show that R, in the range
0.4–2 μm, decreases with the concentration c as the particles become more compressed and also
that R depends on the Carbopol type and the preparation protocol [30].
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FIG. 4. (a) Fluorescent image of Carbopol 980 at c = 0.15% obtained via confocal microscopy with
Rhodamine 6G (scale 10 μm). (b) Normalized azimuthal average g(r) of the spatial autocorrelation function of
intensity fluctuations 〈I (X)I (X + x)〉 − 〈I (X)〉2, where 〈...〉 denotes the average over X. g is normalized such
that lim

r→0
g(r) = 1.

Once the radius of particles is known, we fit each data set (corresponding to a different sample)
with Eq. (2), and extract σE and α as fit parameters. To show how our data compare to Eq. (2), we
use the fit parameter σE to plot in Fig. 5 the dimensionless viscous stress ηV/(RσE ) as a function of
the dimensionless wall stress σw/σE . This representation allows us to collapse all our experimental
results on a master curve, spanning 4 (resp. 7) orders of magnitude in dimensionless wall (resp.
viscous) stress. Besides, we observe a very good agreement with the prediction of Eq. (2), gathering
data obtained with various Carbopol types, polymer concentrations c, preparation protocols, and
solvent viscosities η.

FIG. 5. Dimensionless viscous stress ηV/(RσE ) as a function of the normalized wall stress σw/σE for the
15 Carbopol samples characterized in this study. σE is extracted as a fit parameter from Eq. (2). The black line
corresponds to Eq. (2) with α = αth = 4.8, the blue line to the elastohydrodynamic regime σ 2 = σE (ηV/R)
and the red line to the pure Stokes friction σ = αth(ηV/R).
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The master curve also highlights that the transition between both regimes is observed for σw =
σ ∗ ≈ 0.2σE . Besides, we observe that the transition is very soft, spanning two orders of magnitude
in both stresses and velocities. This explains why in other experiments, data in the intermediate
regimes have been fitted as power laws with intermediate exponents [10]. This also highlights the
importance of studying these friction regimes on many decades.

A. Linear regime

More quantitatively, we first estimate the expected friction coefficient αth in the linear regime.
If the force on each polymer sphere is Stokes-like F = 6πηV R, the average stress at the wall
reads as σw = ϕF/(πR2) = (6ϕ)(ηV/R), with ϕ the surface fraction of particles at the wall. This
corresponds to α = 6ϕ. If we assume that particles are at the random close packing at the wall
(ϕ ≈ 0.8), we find αth = 4.8. This value is comparable to our fitted values of α, whose average is
4.4 with a standard deviation of 1.2 for samples where the linear regime is present (σ > 0.2σE ).
The theoretical value αth has been used to plot the solid line shown in Fig. 5 which compares well
to experimental data.

A more precise prediction of α is difficult due to the two following reasons. First, different
cross-linking degrees depending on Carbopol type may result in a more or less porous microgel,
hence different friction coefficients [34]. Second, the friction coefficient of the sphere should also
depend on the distance of the sphere to the wall, as previously calculated by Chaoui and Feuillebois
[35]. The fact that we find coefficients close to a simple Stokes friction suggests that the particle-wall
distance δ is then comparable to R, which is indeed confirmed by estimations from the elastohy-
drodynamic theory [18]: they predict δ/R ∼ √

ηV/(RGp). Approximating Gp with the bulk elastic
modulus of the suspension, we find δ/R ∼ 0.3–1 at the transition between the two slip regimes.

Nonetheless, it is striking that the simple Stokes argument allows us to predict the high stress wall
friction of our Carbopol systems, whose microstructure is much more complex than monodisperse
spheres. In particular, this highlights that the structural radius R estimated from our microscopy
measurements is comparable to the hydrodynamic radius in these jammed systems.

B. Nonlinear regime: Elastic stress

We now discuss the values of the elastic stress σE characterizing the elastohydrodynamic regime
at smaller velocities and stresses. In Fig. 6(a), we show σE as a function of Carbopol mass
concentration c for the different samples used in this study. For each Carbopol type, we observe
that the elastic stress σE increases with c as expected. We also report measurements from Meeker
et al. [36] obtained for another type of microgel. They show a behavior similar to the Carbopol gels,
yet at polymer concentrations c larger by more than one order of magnitude.

More quantitatively, one expects from the model of Meeker et al. that σE ∼ GP(�/GP )4/3. This
derivation is valid if the compressibility of the soft spheres is negligible, i.e., close to the jamming
point, for c∗ � c. In this limit, GP can be considered as roughly constant. Besides, the confinement
pressure and the shear elastic modulus of a disordered packing of incompressible soft spheres as
a function of the particle concentration have been numerically computed by Seth et al. [26]; their
data can be empirically fitted as �/GP ∼ (c/c∗ − 1)k , with k ≈ 1.75, and G/GP ∼ (c/c∗ − 1). This
yields

σE ∼ G(c/c∗ − 1)4k/3−1 ∼ G(c/c∗ − 1)1.33. (3)

To test our data against this prediction, we therefore plot in Fig. 6(b) σE/G as a function of c/c∗.
The jamming concentration c∗ is here determined by linear extrapolation of c(G) data at low G. We
find that this representation allows us to collapse our data with that obtained with other microgels
[36]. The data are in reasonable agreement with Eq. (3), even at concentrations well above jamming,
up to c ≈ 10 c∗, where the compression of microgels should not be negligible anymore.

Well above the jamming point (c � c∗), we indeed expect the particles to be highly compressed:
the film radius is then r ∼ R, while the elastic pressure that sets the film thickness is simply
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FIG. 6. (a) Elastic stress σE characterizing the elastohydrodynamic regime as a function of concentration
c for microgel samples exhibiting the nonlinear elastohydrodynamic regime. σE is extracted as a fit parameter
from Eq. (2). Data from [36] are also reported (black symbols). (b) Normalized elastic stress σE/G as a function
of the normalized concentration c/c∗. The solid line is a fit of Eq. (3) [σE = 11(c/c∗ − 1)1.33].

the osmotic pressure �, so that the characteristic elastic stress should be σE ∼ �. This osmotic
pressure is predicted by the Flory-Rehner theory [27], yielding � ∝ c9/4. In the same limit, the
suspension shear modulus is given by that of the gel particles [27], hence proportional to the
cross-link density G ∝ c. This predicts σE/G ∝ c5/4. It should, however, be noted that the 5/4
exponent is close to the one expected in the low concentration regime (1.33 for c � c∗) so that
both limiting behaviors may be difficult to delineate in practice. Being more quantitative would
require independent characterizations of Carbopol spheres elastic modulus and osmotic pressure,
beyond the scope of this study.

V. CONCLUSION

To conclude, we have demonstrated that the slip friction of jammed microgel suspensions
exhibits a robust transition from a nonlinear regime to a linear one at large wall stresses and
slip velocities. We thereby reconcile seemingly contradictory measurements from the literature
regarding slip laws of yield stress fluids above the yield stress [5,8,17,21].

Combining microfluidic slip measurements to fluorescent imaging of the microgel structure, we
are able to link both slip regimes to microscopic mechanisms. The linear friction is simply related
to the Stokes flow past the particle, which dominates the dissipation at large velocities. We quantify
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the elastic stress which characterizes the nonlinear elastohydrodynamic regime and relate it to the
distance to jamming c/c∗ − 1.

While several studies have underlined that wall and bulk properties of yield stress fluids are
intimately linked [4,5,8,17,37], our results highlight that local arguments—at the particle scale—are
sufficient to rationalize the friction law at the wall, where much insight can be gained on local
dissipation mechanisms in yield stress fluids. Understanding the coupling between the dynamics of
particles at the wall and in the bulk will prove necessary in the future to reconcile both points of view
on soft glasses. At the microscopic level, our results also call for further studies of the poroelastic
properties of individual microgel particles. Finally, existing models have never been tested at the
microscale. This could be achieved by measuring the thickness of sheared films in the vicinity of
the wall, which could be done with techniques using evanescent waves and total internal reflection
fluorescence [38–40].
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