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Elastohydrodynamics of swimming helices:
Effects of flexibility and confinement
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Motivated by bacterial transport through porous media, here we study the swimming
of an actuated, flexible helical filament in both three-dimensional free space and within a
cylindrical tube whose diameter is much smaller than the length of the helix. The filament,
at rest, has a native helical shape modeled after the geometry of a typical bacterial flagellar
bundle. The finite length filament is a free swimmer and is driven by an applied torque as
well as a countertorque (of equal strength and opposite direction) that represents a virtual
cell body. We use a regularized Stokeslet framework to examine the shape changes of the
flexible filament in response to the actuation as well as the swimming performance as a
function of the nondimensional Sperm number that characterizes the elastohydrodynamic
system. We also show that a modified Sperm number may be defined to characterize the
swimming progression within a tube. Finally, we demonstrate that a helical filament whose
axis is not aligned with the tube axis can exhibit centering behavior in the narrowest tubes.
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I. INTRODUCTION

At the microscale, bacterial motility is achieved through the action of rotating helices [1].
Monotrichous cells such as Pseudomonas aeruginosa are propelled by a single helical flagellum
driven by a rotary motor at its base. Peritrichous cells such as Escherichia coli are propelled by
many helical flagella that, when rotating in the same direction, form a coherent helical bundle. A
fascinating family of bacteria, spirochetes, have cell bodies that are themselves helical and appear to
move as a corkscrew through viscous fluids [2]. In addition to nature’s swimming helices, fabricated
helical micromachines present intriguing possibilities in biomedical applications such as drug
delivery [3,4]. While varying in their material properties, these helices (individual bacterial flagella,
flagellar bundles, spirochete cells, fabricated helices) are elastic structures that, when actuated in a
viscous fluid, could experience shape deformation in response to the flow.

It is also of interest, both for engineered helical microswimmers and natural bacterial cells, to
understand how motility is affected when moving through confined environments. Indeed, the use
of bacteria in bioremediation often relies on cells moving through porous media such as soil, where
the pore sizes are smaller than the flagellar length [5]. The effects of moving through such restrictive
geometries on the swimming performance of bacterial cells have been examined in both laboratory
experiments and mathematical models. Early experiments [6] of E. coli swimming in glass capillary
tubes of 3 μm diameter showed that the cells could not tumble and reorient in this confined space
and exhibited unidirectional motion. More recently, it was shown that such tumbling of E. coli
was also hindered when cells were swimming close to a planar surface. Microfluidic experiments
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showed that E. coli cells tend to swim in helical paths in narrow capillaries [5] and S. marcescens
experienced a sizable boost in swimming velocity in microchannels [7].

Models of microbial swimming in cylindrical capillary tubes study the performance of spherical
squirmers [8] and dipolar swimmers [9]. Using a boundary element method, Zhu et al. [8] show
that spherical squirmers with tangential deformations swim more slowly as confinement increases,
but swimmers with normal deformations swim more quickly with confinement. The reduced model
swimmers in Ref. [9] moving in the center of a rigid tube move faster with confinement. Two
models of a swimmer in a capillary tube that represent the detailed geometry of a rotating rigid
helix were presented by Liu et al. [10] and Li and Spagnolie [11]. In these models, both the tube
and the helix were infinitely long, but the radius of the tube was on the order of the helical radius.
Except for the tightest confinements, swimming speed increased with confinement when a fixed
torque was applied. A recent model of a finite helical swimmer propelling an ellipsoidal cell body
in a cylindrical tube uses the commercial software COMSOL to study its speed and efficiency when
the helix rotational speed and geometry are prescribed [12]. It was found that for thick flagellated
swimmers, there was an optimal radius of the tube that maximized speed and efficiency depending
upon the geometric parameters of the helix.

As in the model of Ref. [10], here we study the swimming of an actuated helical filament in a
capillary tube whose radius is close to the helix radius. However, the helical filament in this study
is flexible and of finite length. Using a regularized Stokeslet framework [13], we first examine the
swimmer in free space and show that its performance is well characterized by the Sperm number, a
nondimensional parameter that measures the ratio of viscous fluid forces to elastic forces. We then
examine the effects of confinement in a tube and suggest a modification of the Sperm number to
account for the effect of the tube surface. Finally, because the helical filament is of finite length, we
can study its dynamics when it is initialized at an angle to the centerline of the tube.

II. METHODOLOGY

A. Stokes equations

We model a flexible, helical filament that is actuated by applied torques in a viscous fluid, where
the length and timescales are small enough that inertial forces are negligible. The fluid motion is
therefore well modeled by the incompressible Stokes equations:

0 = −∇P̂ + μ�û + F̂ + 1
2∇ × L̂, 0 = ∇ · û, (1)

where P̂ is the pressure, û is the fluid velocity, μ is the fluid viscosity, F̂ is the force per volume
exerted by the elastic helical filament, and L̂ is the torque per volume applied to rotate the filament
and the virtual cell body in the opposite direction.

The forces and torques in Eq. (1) will be localized at the helical filament. These equations hold
in all of three-dimensional space. To nondimensionalize the problem, we assume characteristic
scales for length �̂, time T̂ , force F̂ , and torque L̂. By choosing F = μ�̂2/T̂ and L = μ�̂3/T̂ ,
the dimensionless Stokes equations are

0 = −∇p + �u + F + 1
2∇ × L.

Throughout this paper, we choose the characteristic scales to be �̂ = 4 μm, T̂ = 0.01 s, μ to be
the viscosity of water, and, hence, F = 1.6 × 10−12 N.

We use a regularized Stokeslet framework [13] to model the elastohydrodynamic system, where
the external force comes from a surface integral of regularized forces supported on the cylindrical
surface of the helical filament, while the regularized torques are applied only at two points y1 and
y2. The first torque will be applied at the tip of the helix, whereas the second, of equal strength but
opposite direction, will be applied slightly in front of the filament, as a proxy to a counter-rotating
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cell body. The expressions for force and torque are

F(x) =
∫

�

f(y)φε (x − y)dSy, L(x) =
2∑

k=1

gkφε (x − yk ).

The regularization (or blob) function is chosen to be

φε(x − y) = 15ε4

8π (r2 + ε2)7/2
, (2)

where r = ‖x − y‖. This leads to the velocities due to the regularized Stokeslets and rotlets as
follows:

ust (x) =
∫

�

Sε(x, y)f (y)dSy = 1

8π

∫
�

(r2 + 2ε2)f (y) + [f (y) · (x − y)](x − y)

(r2 + ε2)3/2
dSy. (3)

urt (x) =
2∑

k=1

Rε(x, yk )gk = 1

16π

2∑
k=1

2r2
k + 5ε2(

r2
k + ε2

)5/2
(gk × (x − yk )), (4)

where f (y) is force per unit area, � denotes the surface of the helical filament, gk is torque, r =
|x − y|, rk = |x − yk|, and ε is the regularization parameter. We note that these velocities are defined
everywhere in R3 and are everywhere incompressible.

B. Representation of helical filament and its actuation

The model elastic filament that we consider has a native helical equilibrium shape whose
centerline is given by

x(s) = α(s),

y(s) = −rh(s) cos

(
(2πnp)s

L

)
, 0 � s � L, (5)

z(s) = rh(s) sin

(
(2πnp)s

L

)
,

where L is the arc length of the helix, np is the number of turns in the helix, and the helical radius,
tapered from back to front, is given by

rh(s) = A

[
1

π
arctan

(
βs

L
− 1

)
+ 1

2

]
. (6)

As in Ref. [14], α(s) is chosen such that the tangent vector [x′(s), y′(s), z′(s)] has unit length, so that
s is an arclength parameter. We do not view the helical filament as a single bacterial flagellum but
rather as a representation of a bacterial flagellar bundle. In this work, we choose a fixed equilibrium
configuration of the helical filament in all simulations, whose associated geometric parameters are
given in Table I. These fall within the range of parameters for a typical, loosely packed helical
bundle [1,15,16].

We construct the discretization of the surface of the cylindrical helical filament by placing
hexagonal cross sections of radius R f along the helical centerline, perpendicular to the centerline.
As such, each cross section is discretized by Nc = 6 six points, and we take Nf cross sections along
the helical filament so that the spacing between neighboring cross sections is approximately equal
to the spacing between adjacent points on a cross section (see Fig. 1). Each of the N = Nc × Nf

discrete points on the surface of the filament is connected to a subset of the other surface points by
a Hookean spring, giving elasticity to the structure. We define the dimensionless elastic energy in
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TABLE I. Input parameters, computed quantities, and numerical parameters used in computations.

Dimensionless Corresponding
Input quantities value dimensional value

Helix arc length, L 5.42 21.7 μm
Helix projected length, l 3.93 15.7 μm
Number of pitches, np 2 2
Helix max amplitude, A 0.5 2 μm
Tapering parameter, β 6 6
Filament radius, Rf 0.08 0.32 μm
Rotlet strength σ (=0.5 torque) 1.0–7.0 (6.4–44.8) × 10−18 N-m
Spring stiffness, k 75–1200 1.2 × 10−10 to 1.92 × 10−9 N
EI 2.36–37.1 (6.0–96.5) × 10−23 N-m2

Counter rotlet separation, τ .50 2 μm

Computed quantities
Frequency, ω 0.024–0.67 2.4–67 Hz
Swimming speed, U 0.0057–0.14 2.28–55.5 μm/s
Distance per revolution 0.05–0.34 0.20–1.4 μm

Numerical parameters
Cross sections along helix, Nf 65 65
Points per helical cross section, Nc 6 6
Cross sections along tube, Nt 64 64
Points per tube cross section, Nθ 24–38 24–38
Spacing between helix nodes, �sh 0.08 0.32 μm
Helix blob size, εh 0.025 0.1 μm
Spacing between tube nodes, �st 0.16 0.64 μm
Tube blob size εt 0.05 0.2 μm
Time step, �t 2.5 × 10−6−1.0 × 10−5 2.5 × 10−8s–1.0 × 10−7s

the system as

E = 1

2

∑
j

k j l j

(∥∥x j1 − x j2

∥∥
l j

− 1

)2

, (7)

where k j is the stiffness of a spring with resting length l j that connects points j1 and j2. The sum is
over all springs. The force at x j1 is f j1 Aj1 , where Aj1 is the area of a patch of surface centered at x j1

FIG. 1. Computational helical filament consisting of a network of springs. The figure shows the equilibrium
configuration. The motion is generated by the activation of a torque at the center of the front cross section and
by the countertorque, which is placed a small distance in front of the first cross section where the cell body
might be.
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in the discretization. We have that

f j1 Aj1 = − ∂E
∂x j1

.

Similar constructs of semiflexible filaments using nodes with elastic linkages have been used to
model diatom chains [17] and bacterial flagella [14,18]. In all simulations shown here, we choose a
spring topology so that each point on a given cross section is connected to every other point on that
cross section, as well as to every other point on the two cross sections adjacent to it. This means
that each node is connected to 5 + 2 × 6 = 17 other nodes. In addition, in all simulations shown,
the stiffness constant k j = k in Eq. (7) is taken to be the same for all springs. The resting lengths
of the springs, l j , in Eq. (7) do vary with j and are computed during the construction of the helical
surface. The initialized helical filament configuration is in its equilibrium state [the total energy in
Eq. (7) is zero].

As in bacterial flagella that are driven by a rotary motor at their base, we actuate the helical
filament by a regularized torque that is placed at the centroid of the first cross section y1. We apply a
countertorque of the same strength and opposite direction in front of the first cross section, at a fixed
distance away. In practice, this is done by computing the outward normal to the first cross section n
and choosing y2 = y1 + τn, where τ is a positive parameter. Because of these applied torques, the
flexible filament will depart from its equilibrium shape as the network springs become stretched or
compressed, causing forces at the nodes to develop. The fluid velocity due to these elastic forces and
the applied torques is evaluated at each material point xi, i = 1, ..., N of the helical surface, using
Eq. (4) and a discrete version of Eq. (3):

u(xi ) =
2∑

k=1

Rε(xi, yk )gk +
N∑

j=1

Sε(xi, x j )f jA j .

For a swimmer in free space, this velocity is used to update the positions of the nodes of the flexible
filament, satisfying the no-slip boundary condition of Stokes flow. Note that since all forces arise
from springs and the torque driving the filament is balanced by a countertorque representing the
cell body, the sum of forces and torques are zero, and hence momentum and angular momentum are
conserved. The actuated flexible helix is a free swimmer.

C. Coupled helix-tube system

We wish to examine the swimming of the actuated helical filament described above in a rigid,
cylindrical tube whose radius R is smaller than the filament length but whose length is long enough
so that no end effects on the fluid dynamics are present. The surface of the tube is discretized by Nt

circular cross sections with Nθ points each, for a total of Ntube = Nt × Nθ points. Regularized forces
on these Ntube points zi will be computed so that the no-slip (zero velocity) condition is satisfied.
These forces, plus the elastic forces supported on the helical filament and the applied torques, will
determine the fluid velocity at any point in the tube, along with the filament’s swimming progression.
Here we describe the overall algorithm for evolving this coupled helix-tube system:

Given helix surface points and forces x j, f j, j = 1, ..., N and torques g1, g2:
(1) Compute the velocities on the Ntube tube surface points that are induced by these forces and

torques:

ũ(zi ) =
2∑

k=1

Rε(zi, yk )gk +
N∑

j=1

Sε(zi, x j )f jA j .
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(2) Compute forces hi that must be exerted on the tube points so that the velocity ũ is canceled
out there:

−ũ(zi ) =
Ntube∑
j=1

Sε(zi, z j )h j Â j .

This is a 3Ntube × 3Ntube linear system for the unknown forces h j . We note that the (dense)
coefficient matrix depends upon the relative distances between the discrete nodes on the tube’s
surface which do not change in time. This allows us to precompute its factorization once, even
though the system is solved at every time step.

(3) Finally, exploiting linearity of the Stokes equations, the velocities of the material points on
the helical filament are

u(xi ) =
2∑

k=1

Rε(xi, yk )gk +
N∑

j=1

Sε(xi, x j )f jA j +
Ntube∑
j=1

Sε(xi, z j )h j Â j .

A forward Euler method is used to evolve the positions of the helix. We note that more rigid helices
require smaller time steps than flexible ones in this explicit time-stepping procedure. The positions
of the two applied torques are also evolved relative to the helix. The numerical parameters used are
shown in Table I.

We remark that we also modify this algorithm to study the swimming of a rigid helix within a
tube, driven by the torque-coutertorque actuation described above. In this case, given the applied
torques, we need to solve for a distribution of forces at the discrete points of the tube surface and
those of the helix surface so that (a) the fluid velocity is zero at the tube nodes and (b) the velocity at
the helix nodes is that of a rigid translation U and rotation �. The six unknowns U, � are determined
by enforcing the conditions of free swimming (total forces and torques are zero on swimmer). We
note that this entails solving a large linear system of size 3(Ntube + N + 2) × 3(Ntube + N + 2).

D. Sperm number

As in other elastohydrodynamic systems where flexible fibers are coupled to a viscous, incom-
pressible fluid, the relative importance of flow forces to elastic forces is an important nondimen-
sional parameter that governs system performance (e.g., Refs. [19–21]). Following Ref. [19], we
define the Sperm number:

Sp4 = ξ⊥ωL4

EI
, (8)

where

ξ⊥ = 4π

log
(

L
R f

) + 1
. (9)

Here, L is the arc length of the helical filament, R f is its cross-sectional radius, EI is its bending
rigidity, and ω is the rotational frequency achieved for the input torques. The perpendicular drag on
the filament in free space is approximated by ξ⊥ in Eq. (9).

Within this setup, the macroscopic bending rigidity EI of the node-spring structure depends
upon the individual spring constants k j and the topology of the spring network. As first described in
Ref. [18] and used in Ref. [17], we can precompute the EI for the node-spring structure as follows:
We construct a straight cylindrical fiber with the same node-spring topology and same individual
spring constants, and then bend it into a circular arc with a prescribed radius of curvature κ . We then
compute the resulting energy in the node-spring system using Eq. (7), arriving at

EI = 2E
κ2L

. (10)
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σ = 0 σ = 1 σ = 2 σ = 3 σ = 4 σ = 5 σ = 6 σ = 7 Envelope σ = 0 (right);
σ = 7 (left)

FIG. 2. Achieved shapes of the helical filament for a fixed stiffness constant k = 300 and varying torque
magnitudes (from left to right, first eight panels). Each of these panels shows the filament at two different
phases for visualization purposes. The leftmost image corresponds to the equilibrium configuration without
the dynamics (σ = 0). Subsequence images correspond to increasing the regularized rotlet magnitude by one
dimensionless unit. The rightmost two panels show the envelope formed by the centerline of the filament as
it rotates through one revolution for both the equilibrium (rigid) configuration and for the flexible case with
σ = 7.

While the flexible helical filaments, we study are motivated by bacterial flagellar bundles, we remark
that the range of bending rigidities that we examine here are at the low range of bending rigidities
of single bacterial flagella (EI ≈ 10−24–10−21 N m2) [3,22].

III. RESULTS AND DISCUSSION

A. Flexible swimmer in free space

We first consider the dynamics of the actuated model helical filament in free space. In all of the
simulations presented in this paper, the equilibrium helical shape is fixed, as is the placement of the
torque-countertorque actuation (Table I). We will, however, vary two input parameters: the stiffness
of the springs comprising the filament k and the strength of the rotlet σ that drive the rotation. We
choose first to vary these separately and then analyze results in terms of the nondimensional Sperm
number.

Figure 2 shows snapshots of the emergent shapes of the same helical filament with stiffness
constant k = 300 actuated with increasing rotlet strengths (from left to right, first eight panels).
These snapshots are taken at times after the elastic structure has settled into a steady shape. For
each rotlet strength σ = 0, 1, ..., 7, two projected images of the helix are shown. Note that the case
of rotlet strength, zero is the equilibrium configuration of the helix. Of course, if the helix were rigid
(k = ∞), it would maintain its equilibrium shape for each rotlet strength. However, for this flexible
filament (k = 300), we see that stronger actuation gives rise to smaller amplitude and larger wave
numbers (more turns in the helix). Such changes in pitch and helical radius for rotating flexible
helices were also noted in the resistive force theory calculations of Takano et al. [23].

The case σ = 0 indicates no rotation, and hence no deviation from equilibrium shape, which is
analagous to the shape that would be realized in the rotation of a rigid helical filament. The rightmost
two panels of Fig. 2 show the envelope formed by the centerline of the filament as it rotates through
one revolution for the equilibrium (rigid) configuration (σ = 0) and the flexible helix with σ = 7.
Although the envelope of the rigid rotation shows that the helix radius increases monotonically from
base to tip as specified, the envelope in the flexible case shows a shape deformation with multiple
local maxima of helical radius. These results are reminiscent of the experiments in Ref. [24] where
a flexible, natively straight filament was rotated in a viscous fluid. Here, a wrapping transition to
helicity was demonstrated, with smaller amplitude and larger wave numbers emerging for larger
rotation speeds.
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FIG. 3. Achieved shapes of the helical flagellum for a fixed rotlet magnitude of 5 dimensionless units and
varying spring stiffness constants. All images are shown at the same time of simulation.

Figure 3 shows snapshots of five helical filaments with different stiffnesses actuated by the same
rotlet strength σ = 5, along with the equilibrium configuration (k = ∞, in black). As in Fig. 2,
swimming progression is not shown because the images are repositioned so that their front sections
coincide. This qualitative comparison of emerging shapes demonstrates that the more flexible
filaments actuated at the same strength exhibit larger wave numbers.

Figures 4(a) and 4(b) show the swimming speed and the rotational frequency for each helical
filament as a function of rotlet strength. For the rigid filament, both speed and rotational frequency
increase linearly with rotlet strength, as expected. For a fixed rotlet strength, however, we see that
swimming speed decreases with flexibility while rotational frequency increases, i.e., for the same
input torque, flexible helices spin faster but swim more slowly. Figure 4(c) shows the distance

FIG. 4. (a)–(c) Swimming speed, rotational frequency, and average swimming distance per revolution as a
function of regularized rotlet magnitude. The different curves correspond to different spring stiffness constants.
(d) The same data as in (c) plotted as a function of sperm number. Different colors correspond to different spring
stiffness constants and the data points of a given color correspond to different rotlet magnitudes.
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FIG. 5. [(a)–(d)] Snapshots from a simulation with applied rotlet strength of 7 dimensionless units
and relatively low stiffness constant k = 75. (e) Buckling observed experimentally (Reprinted figure with
permission from M. K. Jawed et al., Phys. Rev. Lett. 115, 168101 (2015). Copyright (2015) by the American
Physical Society).

per revolution (translational distance per one spin of the helix) as a function of rotlet strength.
For the rigid helical filament, this is constant. As flexibility increases, the distance per revolution
decreases. Although the helical filament is not perfectly inextensible, because of the many cross
linkages between nodes the variation of its total arc length during the course of a simulation is very
small. Even for the simulations of the most flexible helices (k = 75) described in Figs. 4(a) and 4(b),
the arc length varies by less than 1% from the equilibrium arc length.

While the stiffness of the helical filament and the strength of the applied torque are two things
that can be controlled separately in laboratory experiments (and in computational experiments), we
see that increasing applied torque for a filament of a given stiffness is akin to decreasing filament
stiffness for a given applied torque. Of course, this is evident in the definition of the Sperm number
Sp [Eq. (8)], which is a multiple of the ratio of rotational frequency to filament bending rigidity.
We remark that while we do input torque, the rotational frequency is an output of the coupled
fluid-filament system, so we do not know Sp a priori. Figure 4(d) shows the distance per revolution
measured for each of the computational simulations (six filaments of different stiffness actuated
at seven rotlet strengths) plotted as a function of the nondimensional Sperm number. The data in
Fig. 4(c) collapse nicely onto one curve. For the smallest Sperm numbers, the distance per revolution
is nearly constant, but then decreases linearly for Sp > 2.5.

Note that in Figs. 4(a)–4(c) no swimming data are reported for the most flexible filament (k = 75)
actuated at the largest rotlet strengths of σ = 6, 7. While all of the filaments in the other simulations
relaxed into a steady shape, resulting in periodic swimming motion, the most flexible filament that
was actuated too quickly exhibited the buckling behavior shown in Figs. 5(a)–5(d). These snapshots
show the time evolution of body shape, with the last frame Fig. 5(d) demonstrating the total loss of
a straight, helical axis.

Figure 5(e) shows results of recent laboratory experiments of a rotating flexible helix in a viscous
fluid, exhibiting this type of buckling [25]. This work quantified the dynamics of the underlying
mechanical instability and used both experiments and slender-body theory calculations to determine
a critical rotational velocity ωb for a given helix at which buckling would occur. For each applied
rotation ω, a resulting propulsive force F̂p, nondimensionalized as Fp = F̂pL2/EI was measured. Up
until the critical rotational velocity ωb, Fp would increase as a function of ω, but then the propulsive
force would drop dramatically as the helix buckled. While the experiments using a tethered helix
measure the dropoff in propulsive force to monitor buckling, our free-swimmer calculations show
the analogous dropoff in forward swimming progression when buckling occurs. Computational
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FIG. 6. Swimming speed, rotational frequency, and swimming distance per revolution computed as a
function of tube radius for the case of a rigid helical flagellum whose axis is aligned with the tube axis.
The tube radius is scaled by the maximum flagellum amplitude. The computed quantities are scaled by their
corresponding value in the absence of tube.

experiments have also demonstrated this buckling, called a “whirling instability,” in Refs. [18,26].
We remark that buckling instabilities in the flagellar hook have been implicated as a mechanism for
reorienting bacterial swimming trajectories [1,27].

B. Flexible swimmer in tube: aligned with tube axis

We next place our model filament inside a straight, cylindrical tube so that the straight axis of
the helix coincides with the centerline of the tube (as in Fig. 1). Liu et al. [10] considered a related
system, where a rigid, infinitely long helix was driven, either by fixed torque or fixed rotational
velocity, to swim inside a capillary tube. They found that for a fixed applied torque, in all but the
narrowest tubes, swimming velocity increased with confinement, until the radius of the tube was
about 40% more than that at which the helix would touch the walls of the tube. We first perform
a series of simulations for a rigid, finite helical filament with the same geometric parameters as
in Table I, varying the radius of the tube R. Note that the minimum value of this radius in our
simulations would be R = A + R f . Figure 6(a) shows, for a fixed torque, the velocity of the helix in
a tube of radius R normalized by its velocity in free space as a function of the scaled tube radius R/A.
Here we see the same nonmonotonic behavior in swimming speed as a function of tube radius for the
finite helical swimmer as reported in Ref. [10]. Figure 6(b), however, shows that for a fixed applied
torque, the rotational frequency of the helical filament decreases monotonically with confinement,
dropping off dramatically as the helix almost touches the tube walls. Figure 6(c) shows that the
distance per revolution increases monotonically with confinement—for a tightly fitting helix, the
translational distance per turn is greatest in the tightest fits but that turn takes a much longer time to
complete.

We now examine the swimming dynamics of the flexible helical filaments in tubes of varying
radii, again initialized with their axis coinciding with tube axis. Figure 7(a) shows the swimming
speed of the flexible helical filament with k = 300 as a function of rotational frequency ω in tubes
of radii R = 0.7, 0.8, 1.0, 1.2 as well as in free space R = ∞. Note that these simulations were
performed by varying the input rotlet strength and the rotational frequency is an output of the
calculation. As expected, Fig. 7(a) indicates that for each tube radius, the swimming speed increases
with rotational frequency. We also see that the emergent rotational frequency for a fixed torque
decreases as the tube diameter decreases. Finally, for all tube radii presented in Fig. 7(a), we see
that swimming speed increases with confinement for this flexible helix. Here we have not included
simulations in the narrowest tubes, as in Fig. 6(a), which would show a dropoff in speed as radius
decreases.

Figure 7(b) shows the distance per revolution achieved by actuated helical filaments in a series
of simulations that varied the stiffness of the springs comprising the filament k, the applied rotlet
strength σ , and the tube radius R as a function of Sp. Note that the curve for R = ∞ corresponds
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FIG. 7. (a) Swimming speed plotted as a function of frequency for k = 300 (other values of k are similar).
Each curve corresponds to a different tube radius and the points on each curve were computed by applying
different torque magnitudes. (b) Swimming distance per revolution plotted as a function of the Sperm number.
The colors indicate the varying spring stiffnesses, k, and each curve corresponds to a different tube radius. The
points of a given color along a curve were computed by varying the rotlet strength. (c) Same data as in panel
(b) but plotted as a function of the modified Sperm number in a tube given in Eq. (16)

to Fig. 4(d). However, we see that the data collapse to different curves, depending upon the tube
radius. We have already seen that the presence of the tube affects its swimming speed and rotational
velocity for an applied torque. It also affects the drag force on the helical filament. We estimate
this effect by assuming that the tube-helix system is equivalent to a helix swimming in free space
with an effective drag coefficient that depends upon the tube radius R. Let U (R) be the swimming
velocity of the helix in a tube of radius R and CD(R) be the drag coefficient. The drag force on the
helical filament in the presence of the tube is conceived as the same force resulting from motion in
free space (at velocity U ∞) with a modified drag coefficient:

FD = CD(R)U (R) = [CD(R) f (R)]U ∞.

Motivated by the work done in Ref. [28] for a sphere, we assume

f (R) = 1 + γ1

(
R f

R

)
+ γ2

(
R f

R

)2

+ γ3

(
R f

R

)3

, (11)

so that as R → ∞, we get FD = C∞
D U ∞ = ξ⊥U ∞.
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FIG. 8. Initial orientation of a flagellum angled 0.1 rad away from the central axis of a tube. The centerline
of the tube is indicated by the blue line and the black line is the centerline of the targeted configuration of the
filament.

Note that the drag can also be interpreted as

FD = CD(R)U (R) = CD(R)[U ∞ f (R)],

which says that the presence of the tube modifies the swimming speed by the same function f (R).
In addition, we assume that the presence of the tube modifies the angular velocity of the helical

filament through a modified rotational drag coefficient: QD(R)w(R) = QD(R)[w∞/g(R)] where

g(R) = 1 + α1

(
R f

R

)
+ α2

(
R f

R

)2

+ α3

(
R f

R

)3

. (12)

In order to estimate the coefficients in Eqs. (11) and (12), we perform a least squares fit to our
velocity and angular velocity data from simulations only in the case of the rigid helical filament:

γ1 = 0.3371, γ2 = −1.7293, γ3 = 1.2798, (13)

and

α1 = −0.0172, α2 = 0.0092, α3 = 0.5261. (14)

The distance per rotation of the helical filament is

U (R)

w(R)
= [ f (R)g(R)]U ∞

w∞ , (15)

and we thus define a scaled distance per revolution by dividing by the values plotted in Fig. 7(b) by
f (R)g(R).

Similarly, the modified Sperm number is

Sp(R)4 = CD(R)w(R)L4

EI
= C∞

D w∞L4

f (R)g(R)EI
= Sp4

∞
f (R)g(R)

. (16)

Figure 7(c) shows the scaled distance per revolution as a function of the modified sperm number
Sp(R) for all of the data points shown in Fig. 7(b). We see that all the data collapse onto the free
space curve, indicating that the two scalings we have introduced appropriately capture much of the
dynamics due to the tube. We also emphasize that the evaluation of the coefficients in the expansion
of the functions f (R), g(R) used only the simulation data for the rigid helical filaments in tubes of
varying radii. The collapse of all data, including data from the simulations of the flexible helical
filaments, is a good indication that the influence of the tube appears mostly in the form of draglike
forces and not as a consequence of deformations of the filaments. However, we see that there is
greater variation in the scaled distance per revolution associated with larger Sp, because the changes
in shape as a result of the confinement are more pronounced for the more flexible swimmers.

C. Flexible swimmer in tube: Not aligned with tube axis

In the simulations presented above, where the swimmer was initially launched so that its axis
coincided with the axis of the tube, the actuated swimmer continued to remain centered. Here
we examine how the swimming trajectory would change if the initial position of the helix were
not aligned with the tube axis as in Fig. 8. Would the swimmer eventually hit the wall? Would it
straighten out its path to swim down the center of the tube? Moreover, how does this depend upon
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FIG. 9. Side view of the flagellum in three tubes of different radii. Each column shows five snapshots
corresponding to a particular tube radius. Each filament was initially angled 0.1 rad away from the central axis
of a tube.

the radius of the tube? Here we present three simulations for a flexible swimmer with k = 300
driven by a rotlet strength of σ = 5 inside of tubes of radii R = 0.675, 0.725, 0.775.

Figure 9 shows a sequence of snapshots in time of the swimmer in tubes of increasing radii,
where the initial orientation of the helical filament formed a nonzero angle with the tube centerlines
as in Fig. 8. The forward progression is suppressed in these projected images. In each of the three
simulations, we see that the helical shape achieved is basically the same for all three radii. However,
we see that in the largest tube R = 0.75 [Fig. 9(c)] the angle between the horizontal tube axis and
the helix axis has the greatest variation, while this angle in the smallest tube R = 0.675 appears to
be approaching zero [Fig. 9(a)].

We present another view of the swimming progression in these three simulations in Fig. 10.
For each tube radius, there are two columns from the perspective of looking directly down the
tube axis. In the right-hand-side column, we see the projection of the helical swimmer coming
toward the reader. In the left-hand-side column, we see the projected trajectory of the position of the
countertorque, at time zero indicated by a star. Note that if the swimmer were aligned with the tube
axis, this projected trajectory would be a single point. Figures 10(d)–10(f) give three-dimensional
views of the trajectories of the swimmers, this time looking down the tube as the swimmer moves
away from the reader. We see that in the smallest tube (R = 0.675), the swimmer exhibits centering
behavior, with a helical trajectory whose radius is getting smaller with time. In the largest tube (R =
0.775), the swimmer’s helical trajectory carries it toward the tube walls, and, in fact, because we are
not including repulsion in this model, the simulation is suspended when the swimmer hits the wall.
Intriguing behavior is seen in the middle-sized tube (R = 0.725), where the swimmer settles upon
a limit cycle such that it rolls around the tube in a periodic manner, as can be seen by the projected
circular trajectory of the counter-rotlet in Fig. 10(b), and the three-dimensional helical trajectory in
Fig. 10(e).

The above examples show that when the initial orientation of the swimmer is perturbed slightly
from alignment with the axis of the tube, three classes of swimming trajectories emerge. These
classes of swimming trajectories are consistent with the swimming trajectories computed by Shum
and Gaffney [29] for bacterial cells swimming between two planar boundaries. For large plate gaps,
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Time (a)R = 0.675 (b)R = 0.725 (c)R = 0.775

(d)R = 0.675 (e)R = 0.725 (f)R = 0.775

FIG. 10. Axial view of the snapshots in Fig. 9. Each flagellum was initially angled 0.1 rad away from
the central axis of a tube. (a) Flagellum and trajectory of the centerpoint of the front cross section for a tube
radius of R = 0.675. (b) Flagellum and trajectory of the centerpoint of the front cross section for a tube radius
of R = 0.725. (c) Flagellum and trajectory of the centerpoint of the front cross section for a tube radius of
R = 0.775. [(d)–(f)] Perspective views of the trajectory of the front point as the flagellum swims down the
tube.

cells with sufficiently long helical flagella were attracted to the wall, while for very narrow gaps,
the swimmer relaxed to a trajectory midway between the walls. At some intermediate spacing, the
swimmer “bounced” repeatedly from wall to wall.

IV. CONCLUSIONS

In summary, we have considered the swimming of a flexible helix both in free space and in
a capillary tube. When driven by a fixed torque-countertorque system, the swimming velocity of
the helical filament decreases with flexibility but its rotational velocity increases. We find that the
swimming performance, when measured by distance traveled per revolution, is well described by
the Sperm number. We have also demonstrated that buckling of the filament occurs for the most
flexible helices actuated with large rotlet strengths (Sp > 4.7).

For the same flexible helices driven by a fixed torque-countertorque swimming along the
centerline of a tube, we find that the swimming speed increases with confinement, as does
the distance traveled per revolution. This enhanced swimming performance decreases with helix
flexibility. Using a modified Sperm number that accounts for the surface of the tube’s effect on drag
coefficients, we again find that swimming performance in the tube can be well described by this
nondimensional parameter.

033102-14



ELASTOHYDRODYNAMICS OF SWIMMING HELICES: …

When the alignment of the swimmer is perturbed from the tube axis, we find that for larger tubes,
the swimmer will eventually hit the boundary of the tube. However, for tubes of smaller diameter, the
helical swimmer actually centers itself to align with the tube axis. This finding, along with similar
results for swimmers between planar boundaries [29], suggests the provocative idea that bacterial
cells may have an easier time breaking through a tightly packed porous medium with small pores.
Bacteria moving through large pores are likely to adhere to the matrix.

The model swimmer considered above consists of an elastic helical filament driven by an applied
torque and a virtual cell body represented only by an applied countertorque. The drag forces due to
a finite-sized cell body are not included. Previous work has shown that the details of cell body
shape affect swimming trajectories near planar boundaries [29,30]. We expect that our current
model results would be consistent with those of a swimmer propelling a small, spherical cell body.
An extension of this model that explicitly represents body shape will examine whether changes in
swimming dynamics are observed.

Data are publicly available through the Gulf of Mexico Research Initiative Information and Data
Cooperative (GRIIDC) at Ref. [31].
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