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Flow structures govern particle collisions in turbulence
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The role of the spatial structure of a turbulent flow in enhancing particle collision rates
in suspensions is an open question. We show and quantify, as a function of particle inertia,
the correlation between the multiscale structures of turbulence and particle collisions:
Straining zones contribute predominantly to rapid head-on collisions compared to vortical
regions. We also discover the importance of vortex-strain worm-rolls, which goes beyond
ideas of preferential concentration and may explain the rapid growth of aggregates in
natural processes, such as the initiation of rain in warm clouds.
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Turbulence is riddled with a hierarchy of interacting vortical and straining structures (Fig. 1),
which are closely related to its characteristic intermittent and non-Gaussian statistics [1–6]. The
most intense structures typically occur near each other, in the form of vortex tubes surrounded
by straining sheets, as shown in Fig. 1. This organization—a sort of vortex-strain worm-rolls—is
characteristic of turbulent flows [7–10], and its origin and dynamical implications continue to be
investigated [11–16]. These structures distinguish fully developed turbulence from purely random
flow fields, and must play an important role in many aspects of turbulent transport. The most
important of these—because it remains central to our understanding of phenomena as diverse as the
formation of planets in circumstellar disks [17] or the initiation of rain in warm clouds [18,19]—is
the growth of macroscopic aggregates, due to collisions and coalescences, from nuclei-particles
(dust or aerosols) suspended in a turbulent flow. The role of the underlying turbulent carrier flow
is critical: Estimates of, e.g., the growth rate of these aggregates in the absence of such flows
do not agree with that seen in nature [20]. Indeed, the explanation of such rapid growth through
coalescence, demonstrated [21–23] and quantified in terms of flow statistics [20,24,25], is rooted in
the ability of turbulent flows to enhance the rate of collisions between nuclei seed particles.

A critical discovery, made by Bec, et al. [22], was the precise connection between the intermittent
(multiscaling) nature of the carrier turbulent flow and the accelerated growth of aggregates. And yet
the implied correlation between the structure of the flow and droplet collisions and coalescences
remains unknown. Indeed, there is evidence to suggest that flow structures matter. But the question
is how and when.

In this paper we answer this question comprehensively, based on direct numerical simulations
(DNSs), and show how straining regions are intrinsically more effective at generating collisions
than vortical ones even for uniformly distributed inertia-less particles. Particle inertia widens this
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FIG. 1. Representative snapshot of three-dimensional contours of Q showing intense vortex tubes (opaque
red: +5.6

√
〈Q2〉) enveloped by dissipative, straining sheets (transparent blue: −2

√
〈Q2〉).

discrepancy, not simply by preferential concentration, but also by selectively increasing the collision
velocities in straining zones. This is because straining regions have a larger proportion of head-on
or rear-end collisions, as opposed to side-on collisions, which are predominant in vortical regions.
Consequently, a larger fraction of the velocity gradient in straining zones is translated into the
particle approach velocity. Finally, and most strikingly, we show how intense vorticity and strain,
cohabiting as vortex-strain worm-rolls, conspire to generate rapid, violent collisions.

We therefore consider an incompressible (∇ · u = 0) turbulent flow whose velocity u is a solution
to the Navier-Stokes equation

∂t u + (u · ∇)u = −∇p + ν∇2u + f , (1)

where ν is the kinematic viscosity. We perform DNSs on a triperiodic domain with N3 = 5123

grid points, by using a standard de-aliased pseudospectral solver [26] and a second-order Adams-
Bashford scheme for time integration. A statistically stationary, homogeneous, and isotropic flow
is maintained by the time-dependent large-scale forcing f , which injects a constant amount of
energy, and hence dissipation ε, into the first two wave-number shells. The Kolmogorov length
η = (ν3/ε)1/4 satisfies ηkmax ≈ 1.7 (where kmax = √

2N/3 is the maximum resolved wave number).
The Taylor-Reynolds number Reλ = 2E

√
5/(3νε) = 196, where E is the total kinetic energy. The

compensated energy spectrum from such a simulation shows an inertial range which is certainly less
than a decade but still resolved [see, e.g., Fig. 1(a) for N = 512 and D = 3.00 in Ref. [5]].

To identify vortical and straining structures in the flow, we use the second invariant of the velocity
gradient tensor Q = (R2 − S2)/2 [27–29], defined through the velocity gradient tensor A = τη∇u
[normalized by the Kolmogorov time τη = (ν/ε)1/2] which yields the symmetric strain rate tensor
S = (A + AT)/2 and the antisymmetric rotation rate tensor R = (A − AT)/2. Regions where Q >

0 (Q < 0) are dominated by vorticity (irrotational strain) [25]. Figure 1 presents contours of large
positive and negative values of Q, which reveal characteristic vortex-strain worm-rolls.

032601-2



FLOW STRUCTURES GOVERN PARTICLE COLLISIONS IN …

We introduce into the flow 106 identical particles, each having a sub-Kolmogorov radius a =
η/3 and a density ρp much larger than that of the carrier fluid ρ f . The particles occupy a small
volume fraction of O(10−4) and their influence on the flow is negligible. Since the Reynolds number
associated with their slip velocities is small, and ρp � ρ f , the evolution of particle trajectories X p(t )
is determined by the simplified Maxey-Riley equations [30–33]:

dX p

dt
= V p,

dV p

dt
= − 1

τp
[V p − u(X p, t )], (2)

where τp = 2a2ρp/(9νρ f ), the particle relaxation time, yields the Stokes number (St = τp/τη ),
which provides a nondimensional measure of the particle’s inertia. We consider several families
of particles, with Stokes numbers ranging from 0 to 16.75 and use an exponential integration
scheme [34]. The case of tracers St = 0 is handled separately by using a second-order Runge-Kutta
time stepper. The fluid velocity at the particle position is obtained via fourth-order B-spline
interpolation [35].

It is important to note that the particle radius influences particle transport in two distinct ways: It
sets the value of St, while also determining the separation between particle centers at collision. Since
we are considering heavy particles (ρp/ρ f � 1), the radius must be very small for small values of St.
This makes the gathering of collision statistics in this dilute suspension increasingly impractical as
St → 0, unless we consider an artificially enlarged collision radius. Indeed, for tracers, by definition,
any choice of radius is arbitrary. Our choice of η/3 is physically consistent for particles with St >

0.1. However, for smaller St, this particle radius would imply ρp/ρ f < 1 which contradicts our
heavy-particle assumption. Indeed, to accurately describe particle motion, the simplified Maxey-
Riley equations (2) require ρp/ρ f > O(102) [31–33]. Nevertheless, it is convenient to consider this
enlarged collision radius, solely for the purpose of detecting collisions. As a check, we actually
performed simulations with particle radius η/10 (where the problem is mitigated) and found our
results unchanged. This can be rationalized by noting that particles move ballistically in the small
distance which separates the η/3 and the more realistic η/10 radii and hence make our collision
results insensitive to the precise choice of the radius. Nevertheless, we do report results for the
larger radius because the collision statistics are much poorer with the smaller radius.

After the randomly seeded particles have settled into a statistically stationary distribution, we
begin detecting collisions using an algorithm similar to that in Ref. [21]. After a collision is detected,
the two particles are allowed to move past each other without any modification to their trajectories.
This ghost collision approach is a standard approximation that, by ignoring coalescence, allows
one to measure collision rates while the particle distribution remains in a statistically stationary
state. This feature allows us to identify and compare the regions of the flow where most of the
collisions occur to those regions where most of the particles reside. Of course, because particles
never coalesce, the collision rates are overpredicted (this issue is less severe for dilute systems, such
as the one we consider here). We do not expect this to impact our conclusions, however, as our study
is based on identifying where collisions occur, which depends on the relative values of the collision
rate in different regions of the flow and not on the absolute values.

The rate of collisions depends, of course, on the relative velocity of particles at contact [36–39].
For tracers (St = 0) or nearly tracer particles (St � 0), this is determined by fluid velocity gradients
(∝τ−1

η ), which increase in magnitude as the flow becomes more turbulent. This picture, underlying
the work of Saffman and Turner [40], is blind to flow structures: It disregards whether the local
velocity gradient arises from rotation or strain.

Inertial particles (St > 0), e.g., droplets in air, preferentially concentrate, thereby increasing
their local number density [21]. They can also attain relative velocities much larger than that of
the underlying flow. Dubbed the sling effect [41], these events correspond to the formation of
singularities or caustics in the particle velocity field [42,43]. Although clustering and caustics have
been tied to the centrifugal ejection of heavy particles out of vortices, they also occur in smooth
random flows that are devoid of structure [44–48]. Consequently, the presence of these effects does
not necessarily imply that collisions sense the structures of turbulence.
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FIG. 2. Bi-probability distribution functions P(R2, S2) for inertia-less (tracer) particles, corresponding to
the values of R2 and S2 sampled by (a) particles and (b) collision locations, which show the disproportionate
bias toward collisions in strain-dominated regions.

To unambiguously determine the influence of the local flow field, we must begin with tracers
which remain uniformly distributed in space. To allow for collisions, the radii of these particles
are kept (artificially) finite, while their inertia is ignored. According to the Saffman-Turner theory
[40], collisions should occur uniformly between any two regions that possess the same velocity
gradient magnitude, regardless of whether these regions are vortical or straining. We now examine
this hypothesis, bearing in mind that a discrepancy will implicate flow structures that are intrinsically
more effective at causing collisions.

Toward this end, we calculate the values of R2 and S2 along particle trajectories, as well as at col-
lision locations. The results for inertia-less particles are presented as joint probability distributions
functions P(R2, S2) in Figs. 2(a) and 2(b), respectively. It is immediately clear that collisions under
sample vortical regions (R2 > S2) and over sample straining regions (S2 > R2), relative to where
particles reside. This is also seen in Fig. 3(a), which overlays contours of P(R2, S2) = 0.1 and 0.02,
for particles (dashed) and collisions (solid). The strain (vorticity) dominated portion of this plot is
shaded in blue (red), and corresponds to Q < −0.3 (Q > +0.3).
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FIG. 3. (a) Contours corresponding to P(R2, S2) = 0.02, 0.1, sampled by inertia-less particles (dashed)
and their collisions (solid). The blue and red shaded portions correspond to Q < −0.3 and Q > +0.3, and
indicate regions dominated by strain and vorticity, respectively. Conditional probability distributions of (b) the
cosine of the angle of collision θ , for data corresponding to the shaded portions of panel (a), and (c) the
approach velocity at collision 
v||, normalized by the Kolmogorov velocity vη. These panels clearly illustrate
why straining regions are more effective at generating collisions.
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FIG. 4. (a) Average Q, sampled by particles (red-dashed) and collisions (black-solid), as a function of St.
(b) Average particle number density in vortical and straining regions (positive and negative Q), plotted as a
function of St, and normalized by the domain-average number density n̄. (c) Average approach velocity for
collisions in vortical and straining regions, normalized by vη.

This surprising result is an outcome of the distinct flow topologies of these regions which cause
particles to approach each other differently. Figure 3(b) presents the distribution of the cosine of the
collision angle θ , for straining (blue) and vortical (red) regions. θ is defined as the angle between
the relative velocity vector (Vp1 − Vp2) and the separation vector (Xp1 − Xp2) at collision. Particles in
straining regions tend to collide in a head-on or rear-end manner (θ ≈ 0 or π ). In either case, a large
fraction of the velocity difference between particles contributes to their rate of approach or collision
velocity (
v||). On the other hand, particles in vortices undergo collisions that are closer to being
side-on, in which case the separation vector is nearly perpendicular to the relative velocity. This
results in lower approach velocities in vortical regions, as shown in Fig. 3(c). Consequently, over
a given time interval, fewer particles will collide in vortical regions compared to straining regions
with the same magnitude of the velocity gradient and particle number density.

How does particle inertia affect this picture? Figure 4(a) presents the average value of Q sampled
by particles (dashed-red) and their collision locations (solid-black) as a function of Stokes number.
At St = 0, 〈Q〉 is 0 for particles and −0.04 for collisions. Remarkably, this offset is strongly
amplified by inertia and reaches a maximum around St ≈ 0.3, beyond which particles begin to
decorrelate from the underlying flow and eventually collide uniformly. The preference of inertial
particles (St > 0) to collide in straining regions has been reported previously by Perrin and Jonker
[49,50]. Our results demonstrate that this effect is not fundamentally tied to particle inertia, but
rather is an amplification of a difference that exists even for inertia-less tracers, raising the question:
How does particle inertia selectively enhance collisions in straining regions?

One possible explanation is provided by preferential concentration: Heavy particles are cen-
trifuged out of rotational regions, and thus tend to accumulate in straining zones just outside vortices
[43]. This causes the number density to increase in straining regions, at the expense of vortical zones,
as shown in Fig. 4(b). Here, n is a coarse-grained number density, obtained by dividing the domain
into bins of size 20η. The average Q in each bin is used to distinguish between vortical (Q > 0)
and straining regions (Q < 0) and obtain the conditionally averaged number density. All else being
equal, higher number densities imply larger collision rates [20]. However, we see that the maximum
difference in number densities occurs near St ≈ 1, which is not where the maximum difference in
〈Q〉 is seen [Fig. 4(a)]. Hence another mechanism must be involved.

Inertia is also known to increase the relative velocity between neighboring particles [36–38],
which should result in higher collision velocities. On examining this effect in straining and vortical
regions separately, we find that it is stronger in straining regions and, in fact, has no impact on
vortical regions for small St. This is demonstrated in Fig. 4(c), which presents the average values of

v||, conditioned on Q. It appears that head-on (or rear-end) collisions, which prevail in straining
zones, are more amenable to being sped up by inertia than side-on collisions. Notably, the maximum
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FIG. 5. Representative plots of (a) the maximum value of Q sampled by the particle inside the vortical
region; (b) the average value of Q at collision; and (c) the corresponding approach velocity at collisions
obtained from Lagrangian tracking of particles that collide in straining regions (Q < 0) after leaving a vortical
region and conditionally averaged on the time taken to collide after entering the straining region (tstrain). These
plots clearly illustrate the singular importance of vortex-strain worm-rolls as discussed in the text.

difference between collision velocities occurs near St ≈ 0.3, which matches well with the maximum
difference in 〈Q〉 [Fig. 4(a)]. Thus, larger approach rates, rather than number densities, appear to be
the primary reason for the effectiveness of straining regions in creating collisions.

Thus far, we have considered vortical and straining regions individually. Particle inertia, however,
permits structures within a distance of τpVp to influence a collision. This raises the possibility of
vortical and straining regions conspiring to enhance collisions, especially for moderately large St.
For example, the geometry of vortex-strain worm-rolls (Fig. 1) will cause particles in intense vortex
tubes to be rapidly ejected into strong straining sheets, where they are very likely to collide.

We search for evidence of this effect by tracing, backward in time, all particles that collide in
straining regions. For the subset that do have at least one particle originating from a vortical region
(Q > 0), we record (i) the time taken to collide after leaving the vortical region and entering the
straining zone (tstrain), as indicated by Q changing sign; (ii) the strength of the vortex, measured
in terms of the maximum positive value of Q sampled inside the vortical region (Qvortex); (iii) the
intensity of straining at the collision location (Qcol); and (iv) the collision velocity. While measuring
the vortex strength, we only backtrack for a time of 3τη within the vortical region, to ensure that the
Q values obtained are relevant to the subsequent collision. The conclusions are insensitive to the
exact value of this threshold. To facilitate backtracking, we store the values of Q along all particle
trajectories, at time intervals of τη/6, for the entire duration of the simulations. This avoids having
to store the velocity field at each time step, for integrating the particle motion backward in time (as
done in [51]), which, given the rarity of collisions and the consequent long simulation time, would
require prohibitively large amounts of computer storage.

Figure 5 presents the results of this backward-in-time Lagrangian calculation, conditionally
averaged on the time taken to collide after leaving a vortical region, tstrain, for St = 1, 0.6 and 0.1.
The data for moderately large St (1 and 0.6), reveal the impact of vortex-strain worm-rolls. Particles
that collide quickly (small tstrain) are found to originate from more intense vortical regions [Fig. 5(a)]
and to collide in stronger straining regions [Fig. 5(b)]. This signature weakens considerably for less
inertial (St = 0.1) particles which are mildly ejected and relax faster to the local straining flow.

The collision velocities for small tstrain are also systematically larger [Fig. 5(c)]. The standard
deviation about each data point (not shown for clarity) is of the order of the average value. Thus,
several small tstrain collisions have very large collision velocities, indicative of caustics or sling
events, which are known to dominate the collision rate for St > 0.5 [20,24]. Traditionally, these
have been linked to rapid ejection from vortices [41]. Our results indicate that this is only half the
story: Straining sheets which envelope strong vortices also contribute to generating violent collisions
and enhancing collision rates.
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All this leads one to ask how collisions are affected when structures change. The influence of
Reλ is particularly important to consider, as the estimated values for natural flows are orders of
magnitude larger than what can be attained in simulations [17,18]. Increasing Reλ results in higher
intermittency, which translates into more intense structures (see, e.g., Ref. [52] for a similar study of
a model stretched vortex), but which occupy smaller volumes. These competing effects are known
to produce a nonmonotonic variation of particle clustering [53]. For collisions in particular, we have
checked explicitly through simulation that as we increase the Reynolds numbers from Reλ = 69
to 196, unsurprisingly, the differences between vortical and straining regions magnify; therefore
our conclusions, substantiated in this paper from simulations with Reλ = 196 hold. Nevertheless,
we should keep in mind that Reλ = 196 is still a reasonably modest Reynolds number and far
from those seen in atmospheric conditions. Therefore, it remains to be seen in a systematic way
how this phenomenon is affected in a higher Reynolds number flow. However, given our present
understanding of the effect of increasing Reynolds numbers on turbulent structures, we expect that
the central results of our work will remain unchanged and the effect that we elucidate will only show
up more clearly.

Flow structures can also be significantly modified by new physical interactions, for example,
condensation of water vapor on cloud droplets, which releases latent heat and energizes small-
scale motions [54], and elastic feedback from polymers that suppresses small-scale motions [55,56].
Studying collisions in these complex flows is left for future work. Furthermore, in order to clearly
examine the effect reported in this work, we have neglected the role of gravity. We know that in the
limit of small Froude numbers (ratio of turbulent to gravitational acceleration) [57], heavy droplets
settle in a way where the fluid structures are sampled differently from the case when Froude numbers
are large. In such low Froude number flows, it remains to be seen how the mechanism described in
this paper is modified.

Before we conclude, it is essential to place our work in the context of turbulent transport
problems—a canonical example being that of rain initiation in warm clouds—which have applica-
tion across the areas of nonequilibrium statistical physics, geophysics, oceanography, astrophysics,
and atmospheric sciences. Understanding these problems demands not only an appreciation of how
fast droplets sediment, collide, and coalesce (in which tremendous advances have been made in
recent years) but also knowledge of where such processes are most likely to occur. This paper,
therefore, contributes to a fuller understanding of this question.
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and Bagha. S.S.R. acknowledges DST (India) project ECR/2015/000361 and the Indo-French
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