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No return to reflection symmetry in freely decaying homogeneous turbulence
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We consider the large-scale structure of freely decaying incompressible homogeneous
anisotropic helical turbulence, whose energy spectrum E (k) is given by E (k) = Ck2 +
o(k2) at k → 0. Here k = |k|, k is the wave vector, and C is a dynamical invariant.
The helicity spectrum H (k) is given by H (k) = Chk3 + o(k3) at k → 0, where Ch is in
general nonzero in helical turbulence. By generalizing Saffman’s argument for nonhelical
turbulence [Saffman, J. Fluid Mech. 27, 581 (1967)] to helical turbulence, it is shown that
Ch is another dynamical invariant. We present a theoretical analysis based on the time
independence of the O(k0) term of the velocity correlation spectral tensor at k → 0 and a
self-similarity assumption of flow evolution at large scales including the energy containing
range scales. The analysis suggests that if the O(k0 ) term is reflection asymmetric at an
initial instant, the turbulence does not relax to any reflection symmetric state at the large
scales. A simple dimensional analysis yields the decay rates of the helicity and kinetic
energy in the fully developed turbulence state. The theoretical results agree with results
obtained by direct numerical simulation of incompressible helical turbulence in a periodic
box.
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I. INTRODUCTION

Saffman [1] considered the large-scale structure of freely decaying incompressible homogeneous
turbulence where the velocity correlation spectral tensor R̂i j (k), at an initial instant t = t0, is given
by

R̂i j (k) = PiαPjβMαβ + o(1) at k → 0. (1)

Here Pi j = δi j − kik j/k2, k = (k1, k2, k3) is the wave vector, k = |k|, Mαβ is a k-independent
constant, δi j is Kronecker’s delta, and the summation convention is used for repeated Greek sub-
scripts. The tensor R̂i j (k) is given by the Fourier transform of the second-order two-point velocity
correlation tensor Ri j (r) = 〈ui(x)u j (x + r)〉, where a circumflex denotes the Fourier transform, u(x)
is the velocity, 〈· · · 〉 denotes the ensemble average, x is the position, and r is the separation vector.
Equation (1) implies that the energy spectrum defined by E (k) = 1

2

∫ |û(q)|2dSk is given by

E (k) = Ck2 + o(k2) at k → 0, (2)

where
∫ · · · dSk denotes the integral of · · · over the spherical surface with the radius |q| = k and

center at q = 0. The O(k0) term in Eq. (1) has reflection symmetry, i.e., mirror symmetry. Saffman
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showed that this term is time independent so that R̂i j (k) and E (k) keep Eqs. (1) and (2), respectively,
at any time t (�t0). This implies that Mαβ and C are time independent. This kind of turbulence with
Eq. (1) is called here Saffman turbulence. The decay rate of the kinetic energy and the growth rate
of an integral length scale for fully developed Saffman turbulence were derived by the use of the
time independence and a self-similarity assumption [2].

Recently Saffman’s argument has been generalized to include turbulence with the velocity
correlation tensor where the leading order term is O(k0), as in Eq. (1); however, this term may
have arbitrary dependence on the direction vector k/k and may not be limited to the form of
Eq. (1) [3]. The energy spectrum keeps Eq. (2) at any time t (�t0). Here we call this kind of
turbulence generalized Saffman turbulence. The generalization showed that there are an infinite
number of invariants, not limited to Saffman’s invariants Mαβ . The large-scale structure need not
have reflection symmetry. A self-similarity assumption of flow evolution at large scales including
the energy containing range scales suggests that anisotropy in the large-scale statistics of generalized
Saffman turbulence is persistent, i.e., the statistics do not return to isotropy, if R̂i j (k) is anisotropic at
k → 0 and t = t0. For axisymmetric Saffman turbulence, this persistence of large-scale anisotropy
is consistent with dimensional analysis and direct numerical simulation (DNS) [4] and large-
eddy simulation [5]. The persistence was observed also in eddy-damped quasinormal Markovian
(EDQNM) simulations [6,7]. Note that it is widely accepted that the statistics at sufficiently
small scales in sufficiently high Reynolds number turbulence are homogeneous and isotropic. The
persistence provides a counterexample of the traditional view, a return to isotropy even in the energy
containing range for freely decaying homogeneous turbulence.

We then pose the following question: Do fully developed generalized Saffman turbulence
statistics remain reflection asymmetric at large scales including the energy containing range scales,
if R̂i j (k) is reflection asymmetric at k → 0 and at t = t0? We consider here reflection asymmetry
due to the existence of the helicity defined by 〈u · ω〉/2, where ω is the vorticity. The helicity,
which is conserved for inviscid flow, is a typical statistical quantity characterizing reflection
asymmetry and a measure of topological properties such as the degree of knottedness of vorticity
(see, e.g., [8,9]). Kit et al. [10] pioneered the direct measurement of helicity density in laboratory
experiments of turbulence. In DNSs [11,12], numerical simulation using hyperviscosity [13],
and EDQNM simulations [14] of helical turbulent flows, the helicity spectrum H (k), defined as
H (k) = 1

2

∫
û(−q) · ω̂(q)dSk , and the energy spectrum E (k) scale like k−5/3 in the inertial subrange.

This is in accordance with the prediction in Ref. [15] in the case of simultaneous energy and helicity
cascades. Small-scale reflection asymmetry of the helical flows becomes weaker and the small-scale
fields approach reflection symmetric states as scales becomes smaller [12–14].

The helicity spectrum satisfies |H (k)| � kE (k) [16]. This inequality gives

H (k) = Chk3 + o(k3) at k → 0 (3)

if E (k) is given by Eq. (2), where Ch is not sign definite. We call here incompressible homogeneous
turbulence whose energy and helicity spectra are given by Eqs. (2) and (3), where C �= 0 and Ch �= 0
as helical Saffman turbulence. Equation (1) implies Ch = 0, i.e., H (k) = o(k3). However, the leading
O(k0) term of R̂i j (k) at k → 0 for generalized Saffman turbulence allows the k3 helicity spectrum.
Briard and Gomez [17] predicted the decay rates of kinetic energy and helicity in fully developed
homogeneous isotropic helical Saffman turbulence, by using an EDQNM closure and dimensional
analysis based on the analysis by Comte-Bellot and Corrsin [18]. The prediction implies that the
kinetic energy decay rate is the same as the rate predicted by Ref. [2], and the helicity decays more
rapidly than kinetic energy. The helicity decay rate different from the prediction was obtained in
Ref. [19], which used the invariance of Saffman’s integral and the invariance of an integral based on
the helicity correlation. A discussion about the different helicity decay rates was given in Ref. [17],
which stressed the importance of the inequality |H (k)| � kE (k).

This paper is organized as follows. In Sec. II we present the theory [3] for the time independence
of the O(k0) term of R̂i j (k) at k → 0, by using the so-called E-Z-H decomposition exploited by
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Cambon and Jacquin [20]. This decomposition well characterizes the antireflection symmetric part
of R̂i j (k). Using quantities based on E (k) and H(k), we will introduce a quantity to characterize the
degree of reflection asymmetry in the energy containing range. It is shown that Ch is a dynamical
invariant. Then, by using the time independence and a self-similarity assumption of large-scale
flow evolution, it will be shown that large-scale reflection asymmetry due to helicity is persistent
in fully developed anisotropic helical Saffman turbulence. Decay laws are derived by the use of a
simple dimensional analysis. In Sec. III these theoretical results and the large-scale self-similarity
are examined by DNS of incompressible helical turbulence in a periodic box. A summary is given
in Sec. IV.

II. HELICAL SAFFMAN TURBULENCE

A. Helical mode decomposition and statistics of helical turbulence

We consider the freely decaying motion of an incompressible fluid whose density and kinematic
viscosity are denoted by ρ and ν, respectively. The velocity field u(x, t ) is governed by the Navier-
Stokes equation

∂u
∂t

+ (u · ∇)u = − 1

ρ
∇p + ν∇2u (4)

and the divergence-free condition ∇ · u = 0, where p(x, t ) is the pressure and ∇ =
(∂/∂x1, ∂/∂x2, ∂/∂x3). Arguments such as x and t are omitted at will.

Let us define the Fourier transform of u by û(k, t ) = (2π )−3
∫
R3 u(x, t ) exp(−ik · x)dx. Then

û(k, t ) may be decomposed into two fields û±(k, t ), such as

û(k, t ) = û+(k, t ) + û−(k, t ), û±(k, t ) = ξ±(k, t )N(±k̃), (5)

in k space, by the use of the helical mode N(k̃) [20], where k̃ = k/k and the double signs in û±(k, t )
correspond to the double signs in ξ±(k, t ) and N(±k̃). The mode N(k̃) is defined by

N(k̃) = e(2)(k̃) − ie(1)(k̃), (6)

where e(1) and e(2) are the solenoidal unit vectors of the Craya-Herring basis,

e(1) = k̃ × i3

|k̃ × i3|
, e(2) = k̃ × e(1)

|k̃ × e(1)| , (7)

in which i3 is taken as i3 = (0, 0, 1). Here e(1)(k̃), e(2)(k̃), and N(k̃) satisfy e(1)(−k̃) = −e(1)(k̃),
e(2)(−k̃) = e(2)(k̃), |N| = 21/2, N(−k̃) = N∗(k̃), and ik × N = kN, where an asterisk denotes the
complex conjugate. Readers interested in the helical mode and the decomposition are referred to
Ref. [21].

The velocity correlation spectral tensor R̂i j (k) satisfies 〈ûi(k
′)û j (k)〉 = R̂i j (k)δ(k + k′). We

define the spectral correlation tensors of û±
i (k), which are denoted by R̂±

i j (k), as 〈û±
i (k′)û±

j (k)〉 =
R̂±

i j (k)δ(k + k′). Then R̂αα (k) = R̂+
αα (k) + R̂−

αα (k).
Let E (k) and H(k) be defined, respectively, by

E (k) = 1
2 {R̂+

αα (k) + R̂−
αα (k)}, H(k) = 1

2 {R̂+
αα (k) − R̂−

αα (k)}. (8)

The velocity-vorticity spectral correlation 〈û(k′) · ω̂(k)〉 is given by 2kH(k)δ(k + k′), because
ω̂(k) = k{û+(k) − û−(k)}. Applying the Fourier transform to the second-order two-point velocity-
vorticity correlation 〈u(x) · ω(x + r)〉 that was introduced in Ref. [22], one obtains

kH(k) = 1

2(2π )3

∫
R3

〈u(x) · ω(x + r)〉 exp(−ik · r)dr (9)

(see e.g., [17]). The fields û+(k) and û−(k) have non-negative helicity (k/2)|û+(k)|2 and nonposi-
tive helicity −(k/2)|û−(k)|2, respectively, since û±(−k) · ω̂±(k) = ±k|û±(k)|2.
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The energy spectrum E (k) and helicity spectrum H (k) are written as

E (k) =
∫

E (q)dSk, H (k) = k
∫

H(q)dSk, (10)

where
∫ · · · dSk denotes the integral of · · · over the spherical surface with the radius |q| = k and

center at q = 0. The fields u±(x) were used to examine the roles of u± in the energy and helicity
fluxes [23,24]. Note that 〈|u|2〉 = 〈|u+|2〉 + 〈|u−|2〉 and 〈u+ · u−〉 = 0.

Equation (8) gives 〈|u|2〉/2 and (〈|u+|2〉 − 〈|u−|2〉)/2 as

〈|u|2〉
2

=
∫
R3

E (k)dk,
〈|u+|2〉 − 〈|u−|2〉

2
=

∫
R3

H(k)dk. (11)

Because of Eq. (9), the total helicity 〈u · ω〉/2 is given by

1

2
〈u · ω〉 =

∫
R3

kH(k)dk. (12)

The difference R̂+
αα (k) − R̂−

αα (k) or H(k) expresses the degree of reflection asymmetry due to
helicity. The degree of the reflection asymmetry due to helicity can be characterized by the relative
helicity 〈u · ω〉/

√
〈|u|2〉〈|ω|2〉, where 〈|ω|2〉 in the denominator is a representative quantity in the

dissipation range. We use here a quantity defined by

〈|u+|2〉 − 〈|u−|2〉
〈|u|2〉 (13)

to characterize the degree of the asymmetry in the energy containing range by using 〈|u±|2〉 that
are representative quantities in the energy containing range like 〈|u|2〉. The quantity (13) is zero if
turbulence has reflection symmetry, i.e., 〈|u+|2〉 = 〈|u−|2〉. The absolute value of (13) satisfies

|〈|u+|2〉 − 〈|u−|2〉|
〈|u|2〉 � 1. (14)

B. Velocity correlation spectral tensor

The velocity correlation spectral tensor R̂i j (k, t ) may be written as

R̂i j (k, t ) = E (k, t )Pi j + Re[Z (k, t )Ni(k̃)Nj (k̃)] + iH(k, t )εi jα k̃α, (15)

where Pi j = δi j − k̃ik̃ j , εi jα is the alternating third-order tensor, and Z (k) is complex with Z (−k) =
Z∗(k) [20,21]. Then Eqs. (5) and (15) give

R̂±
i j (k) = 1

2 {E (k) ± H(k)}Ni(−k̃)Nj (k̃). (16)

For generalized Saffman turbulence, it was shown that

R̂i j (k) = E0(k̃)Pi j + Re[Z0(k̃)Ni(k̃)Nj (k̃)] + iH0(k̃)εi jα k̃α + o(1) (17)

at k → 0, where E0(k̃) �= 0 at an initial time t = t0, and E0(k̃), Z0(k̃), and H0(k̃) are O(k0) and
depend on k only through the direction k̃ [3]. From Eq. (17) we obtain

R̂±
i j (k) = 1

2 {E0(k̃) ± H0(k̃)}Ni(−k̃)Nj (k̃) + o(1). (18)

Similar to R̂i j given by Eq. (1), R̂i j given by Eq. (17) is also discontinuous at k = 0. Equation (17)
is not reflection symmetric in general, whereas Eq. (1) is reflection symmetric. Saffman [1] obtained
Eq. (1) under the conditions that, at an initial instant t = t0, the vorticity spectral correlation tensor
(2π )−3

∫
R3〈ωi(x)ω j (x + r)〉 exp(−ik · r)dr is reflection symmetric and is analytic in k at k = 0.
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In isotropic helical Saffman turbulence, E0(k̃) and H0(k̃) must be k̃ independent and Z0(k̃) = 0.
Equations (17) and (18) may be reduced to

R̂i j (k) = E (I )
0 Pi j + iH(I )

0 εi jα k̃α + o(1), (19)

R̂±
i j (k) = 1

2

(
E (I )

0 ± H(I )
0

)
Ni(−k̃)Nj (k̃) + o(1), (20)

where E (I )
0 and H(I )

0 are k̃-independent constants. Generally, Eq. (18) implies that 〈u±(x) · u±(x +
r)〉 = O(r−3) at r → ∞. For isotropic helical Saffman turbulence with Eq. (20), 〈u±(x) · u±(x +
r)〉 = o(r−3) at r → ∞.

For incompressible homogeneous turbulence obeying the Navier-Stokes equation (4), it was
shown in Ref. [3] that

∂

∂t
R̂i j (k, t ) = O(k) for any t � t0, (21)

so that the O(k0) term in Eq. (17) is time independent for any t (�t0). Then we obtain that

E0(k̃),H0(k̃),Z0(k̃) are time independent. (22)

Equations (8), (10), and (22) mean that the energy spectrum E (k) and helicity spectrum H (k)
have the form

E (k) = Ck2 + o(k2), H (k) = Chk3 + o(k3) at k → 0, (23)

where C (>0) and Ch are dynamical invariants. The O(k2) term in E (k) and the O(k3) term in H (k)
are time independent.

C. Self-similarity

In Ref. [3] it was assumed that the velocity correlation spectral tensor R̂i j (k, t ) for any i and j
evolves at large scales including the energy containing range scales in accordance with the self-
similar form

R̂i j (k, t ) = ci j (t ) fi j (k1�1, k2�2, k3�3) = ci j (t ) fi j (ζ) (24)

in a certain “appropriate” time range and domain of the wave-vector space k including a small
enough k range, where ζ is a self-similar variable defined as ζ = (k1�1, k2�2, k3�3), ci j (t ) is
independent of k, fi j (ζ) is a dimensionless function, and �m(t ) is a length scale in the mth Cartesian
direction. The time dependence of �m(t ) was also assumed to be independent of components i and j
of R̂i j (k). A detailed description of appropriate in the large-scale self-similarity assumption (24) is
given in the paragraph following Eq. (43). Then a simple analysis, which is based on the assumption
(24) and the invariance of R̂i j (k, t ) at k → 0, showed that

ci j = const, (25)

� j

�i
= const, (26)

and 〈
u2

j

〉
〈
u2

i

〉 
 const (27)

for any i and j [3]. Equations (26) and (27) imply the persistence of large-scale anisotropy in fully
developed states and we can thus set �m = dm�, which implies that ζ can be taken as

ζ = k�, (28)

where dm is time independent and � is an appropriate length scale.
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Equation (15) implies that R̂i j (k) is completely determined by the three scalars E (k), Z (k),
and H(k): E (k) = 1

2 R̂αα (k), Z (k) = 1
2 R̂αβ (k)Nα (−k̃)Nβ (−k̃), and H(k) = − i

2 k̃αεαβγ R̂βγ (k) (e.g.,
Ref. [21]). In order to make the role of H(k, t ) transparent, we may rewrite Eq. (24) as

S (k, t ) = cS f S (ζ), (29)

where S = E , Z , or H; cS is time independent because of Eq. (25); and f S (ζ) is a dimensionless
function. These scalars evolve in accordance with the self-similar form (29) in the same time range
and the k domain as the range and the domain where Eq. (24) holds. Without loss of generality, we
may assume that f S is normalized such that∫

R3
f S (ζ)dζ = 1, (30)

provided the integral of f S over the entire domain of k is nonzero and finite. The time-independent
constant cS must have the dimensions (velocity)2 × (length)3. Equation (29) implies that the
spectrum S (k, t ) depends on time t only through �(t ). By definition, the function f S (ζ) is time
independent at any fixed ζ.

Consider the characteristic quantity associated with the field S (k, t ), which has the dimension
(velocity)2 and is defined by ∫

R3
S (k)dk. (31)

By substituting Eq. (29) into the integral (31) and using Eqs. (28) and (30), we obtain∫
R3

cS f S (ζ)dk = cS

�3

∫
R3

f S (ζ)dζ = cS

�3
. (32)

Since cS is time independent, Eq. (32) means∫
R3

S (k)dk �3 
 const. (33)

As regards 〈|u|2〉 and 〈|u+|2〉 − 〈|u−|2〉, Eqs. (11) and (32) give

〈|u|2〉�3 
 cE , (〈|u+|2〉 − 〈|u−|2〉)�3 
 cH. (34)

Since cE and cH are time independent, Eq. (34) gives

〈|u|2〉�3 
 const, (〈|u+|2〉 − 〈|u−|2〉)�3 
 const, (35)

from which we obtain

〈|u±|2〉�3 
 const. (36)

The time-independent values of Eqs. (35) and (36) may depend on 〈|u±|2〉. Equation (35) implies
the time independence of the degree of reflection asymmetry, i.e.,

〈|u+|2〉 − 〈|u−|2〉
〈|u|2〉 
 const. (37)

Because of Eqs. (17), (24), (28), and (29),

cS f S (ζ) = cS f S0 (ζ/|ζ|) + o(1) (38)

as k → 0, or equivalently ζ → 0, where f S0 may depend on the direction ζ/|ζ| of ζ but is
independent of the magnitude |ζ|. Equation (22) implies the invariance of R̂i j (k) at k → 0 for
t � t0. The time independence of cH in the self-similar states and the invariance H0(k̃) imply that if
H0(k̃) �= 0 at an initial time instant t = t0, then cH �= 0 at any t in the self-similar states because of
Eqs. (29) and (38). Hence, Eqs. (34) and (37) mean the persistence of the reflection asymmetry at the
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large scales including the energy containing range scales, i.e., no return to reflection symmetry at the
large scales for any anisotropic helical Saffman turbulence, if the large-scale structure is reflection
asymmetric at t = t0.

One might think that this large-scale persistence leads to the persistence of small-scale reflection
asymmetry for homogeneous turbulence even at sufficiently high Reynolds number. However, this
is not the case. The DNS [12] and the numerical simulation [13] showed that reflection symmetry
is recovered at small scales, even if there is reflection asymmetry in the energy containing range
owing to the injection of helicity.

The total helicity 〈u · ω〉/2 is given by the substitution of Eqs. (28) and (29) into Eq. (12):

1

2
〈u · ω〉 
 cH

∫
R3

k f H(ζ)dk = cH

�4

∫
R3

|ζ| f H(ζ)dζ. (39)

Since cH and f H(ζ) are time independent, this means that

〈u · ω〉�4 
 const. (40)

Equations (35) and (40) show that

〈u · ω〉�
〈|u|2〉 
 const. (41)

This ratio 〈u · ω〉�/〈|u|2〉 could be a quantity to measure the degree of reflection asymmetry of
helical turbulent flows. However, the ratio is not so appropriate to estimate the degree, because the
maximum value of |〈u · ω〉|�/〈|u|2〉 depends on flow conditions such as the Reynolds number. The
value cannot be determined a priori, in contrast to (13), whose maximum value is unity, as seen in
the inequality (14).

For the comparison of the theory with experiments, it is convenient to introduce the integral
length scale Lj defined as

Lj =
∫ ∞

0 〈u j (x, t )uj (x + ri j, t )〉dr

〈u j (x, t )2〉 , (42)

where the summation convention is not applied to the repeated roman subscripts. After simple
algebra, it is shown that Eqs. (24) and (28) give

Lj 
 const × �. (43)

It should be noted that we do not assume that the self-similar forms (24) and (29) are applicable
to the entire time range and wave-vector domain. In fact, it is unlikely that they hold in premature
states of turbulence or in the wave-vector domain of small scales in turbulence, e.g., the inertial
subrange and the dissipation range. What is assumed in the derivation of Eqs. (34), (39), and (43)
from Eqs. (11), (12), and (42), respectively, is that the integrals in Eqs. (11), (12), and (42) are
dominated by the contributions from the wave-vector domain where S (k, t ) is well approximated
by the self-similar form (29) in a certain time range of a mature or fully developed turbulence state.
In the derivation of the time independence of ci j , it is assumed that the wave-vector domain includes
a sufficiently small k range. The time range and wave-vector domain are referred to as appropriate
in the paragraph including Eq. (24).

D. Decay of energy and helicity

One may consider the decay rates of energy and helicity for anisotropic helical Saffman
turbulence by a straightforward generalization of the discussion in Ref. [3]. Because of Eqs. (26)
and (27), it is sufficient to consider one typical velocity v and one typical integral length scale L. We
assume that the flux of energy to small scales is controlled by the energy containing eddies where
the self-similar form (29) is a good approximation. It is then natural to assume that the decay rate
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of 〈|u±|2〉 may be expressed, as a first step approximation, by an appropriate functional of R̂i j (k, t ),
or equivalently by S (k, t ), so that

1

2

d

dt
〈|u|2〉 = −AE v3

L
,

1

2

d

dt
(〈|u+|2〉 − 〈|u−|2〉) = −AH v3

L
, (44)

where AS is an appropriate dimensionless functional of S and depends on �. Here we can set v2 ∝
〈|u|2〉.

Dimensional analysis and Eq. (29) suggest that the dimensionless coefficient AS must be a
functional of the dimensionless quantities cS/v2L3 and f S in the fully developed states. Since cS ,
v2L3, and f S are time independent as shown in Sec. II C, the coefficients AE and AH must be time
independent. The integration of Eq. (44) under Eqs. (35) and (37) gives

〈|u|2〉 ∝ t−6/5, (45)

L ∝ t2/5, (46)

and

〈|u+|2〉 − 〈|u−|2〉 ∝ t−6/5 (47)

at sufficiently large t . Equations (36), (40), and (46) give

〈|u±|2〉 ∝ t−6/5, (48)

〈u · ω〉 ∝ t−8/5. (49)

The laws (45) and (46) are in accordance with Saffman’s prediction [2] and are insensitive to the
presence of helicity. This insensitivity may be expected from the independence of R̂ββ (k) from H(k)
at k → 0, which is obtained by the contraction of i and j in Eq. (15).

Briard and Gomez [17] considered incompressible homogeneous helical isotropic turbulence
whose energy spectrum E (k) and helicity spectrum H (k) at k → 0 are given, respectively, by
E (k) = Bkσ + o(kσ ) and H (k) = BH kσ+1 + o(kσ+1) for 1 � σ � 4, where B and BH are k-
independent constants. They obtained the decay laws of the turbulence, using an EDQNM closure,
dimensional analysis based on the analysis by Ref. [18], and the relation 〈u · ω〉 ∼ 〈|u|2〉/LH , where
LH is a helical integral length scale. It was assumed that the kinetic integral length scale of isotropic
turbulence and LH decay similarly. For isotropic helical Saffman turbulence (σ = 2), the decay laws
(45), (46), and (49) are the same as the laws they obtained, and the relation (41) is in accordance
with the relation 〈u · ω〉 ∼ 〈|u|2〉/LH .

III. DIRECT NUMERICAL SIMULATION

A. Numerical methods and DNS parameters

We performed DNS of freely decaying turbulence in a periodic cubic box of side length 2π .
Here, in order to focus on the influence of the invariance H0(k̃) on generalized Saffman turbulence,
we confine ourselves to quasi-isotropic turbulence. The flows obey Eq. (4) and the divergence-free
condition. A Fourier spectral method and a fourth-order Runge-Kutta method are used. The aliasing
errors are removed by a phase shift method. The Fourier modes satisfying k <

√
2ng/3 are retained,

where ng is the number of grid points in each direction of the Cartesian coordinates. We use
quasi-isotropic initial random fields whose energy spectra are given by E (k) ∝ k2 exp(−k2/k2

p)
and 〈|u(x, 0)|2〉 = 1. Here kp is a peak wave number and the initial time t0 is set to 0. Helicity
is introduced into a quasinonhelical and quasi-isotropic random field (the Appendix). The initial
helicity spectra H (k) are given by H (k) ∝ k3 exp(−k2/k2

p). We here focus on DNSs with n3
g

(=10243) grid points and kp = 40 among the DNSs we performed. The kinematic viscosity
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TABLE I. DNS statistics at the initial time t = 0.

Run Re 〈u · ω〉/2 〈u · ω〉/
√

〈|u|2〉〈|ω|2〉
1 159 10.5 0.43
2 159 17.0 0.69
3 161 0.0 0.0

ν = 2.4 × 10−4, the time increment is 6.25 × 10−4, and the initial kmaxη = 1.1, where kmax is the
maximum wave number and η is the Kolmogorov microscale. Table I presents other statistics at the
initial time t = 0. Runs 1 and 2 represent the DNSs of helical turbulence, whereas run 3 represents
the DNS of quasinonhelical turbulence as a reference. Figure 1 shows the evolution of the Reynolds
number defined as Re = vL/ν, where v and L are given by

v =
√

〈|u(x, t )|2〉
3

, L = L1 + L2 + L3

3
. (50)

The time t is normalized by the initial large-eddy turnover time T , which is defined as T =
1/kp〈|u(x, 0)|2〉1/2 and here T = 1/kp. The Reynolds number in the DNSs is moderate but high
enough so as to simulate fully developed freely decaying turbulence (see Ref. [4]). In the DNS with
10243 grid points and kp = 80, which uses the same initial relative helicity as that of run 1, it was
confirmed that the large-scale resolution of run 1 is sufficient to examine the decay of the helical
Saffman turbulence (figure omitted).

B. DNS results

We examine whether the invariance and the decay laws in Sec. II hold well or not, using DNS.
The flows in all runs become mature or fully developed after the early transient time period, i.e.,
for t/T � 60 in run 1, t/T � 100 in run 2, and t/T � 40 in run 3 (DNS of the quasinonhelical
flow). It can be seen in Figs. 2(a) and 2(b) that for fully developed helical turbulence, 〈|u|2〉/2
decays approximately as t−6/5 and the length scale L grows approximately as t2/5. Figures 2(c) and
2(d), which are replots of 〈|u|2〉/2 and L in compensated forms, show that t6/5〈|u|2〉/2 and t−2/5L
are nearly time independent in the fully developed turbulence. This confirms that the power laws
(45) and (46), i.e., 〈|u|2〉 ∝ t−6/5 and L ∝ t2/5, are good approximations to the evolution of 〈|u|2〉/2
and L in the fully developed states. Thus, the decay of 〈|u|2〉/2 and the growth of L are insensitive
to the presence of helicity. It was confirmed that the flows in all runs remain quasi-isotropic in the
sense that 〈u2

1〉 ≈ 〈u2
2〉 ≈ 〈u2

3〉 and L1 ≈ L2 ≈ L3 (figure omitted). The results for run 3 are consistent

 40

 60

 80

 100

 120

 140

 160

 0  20  40  60  80  100  120  140  160

run 1
run 2
run 3

t/T

R
e

FIG. 1. Plot of Re with normalized time t/T .
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FIG. 2. Evolution of (a) kinetic energy 〈|u|2〉/2, (b) integral length scale L, (c) compensated kinetic energy
t6/5〈|u|2〉/2, and (d) compensated integral length scale t−2/5L.

with the DNS results [4] for quasi-isotropic nonhelical Saffman turbulence. The length of the early
period of the premature states increases as the initial helicity (in Table I) becomes stronger. This
agrees with the EDQNM prediction [14] and DNS results [25] showing that helicity slows down the
development of small scales in the early period.

Figure 3 shows the evolution of (〈|u+|2〉 − 〈|u−|2〉)/2 for runs 1 and 2. It can be seen in
Fig. 3(a) that (〈|u+|2〉 − 〈|u−|2〉)/2 decays approximately as t−6/5 in the fully developed states. The
power-law-like behavior is confirmed by the plots of the compensated form t6/5(〈|u+|2〉 −
〈|u−|2〉)/2 in Fig. 3(b). For run 3, whose initial helicity is almost zero, 〈|u+|2〉 − 〈|u−|2〉 ≈ 0, as
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FIG. 3. Evolution of (a) (〈|u+|2〉 − 〈|u−|2〉)/2 and (b) t6/5(〈|u+|2〉 − 〈|u−|2〉)/2.
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FIG. 4. Evolution of (a) helicity 〈u · ω〉/2 and (b) t8/5〈u · ω〉/2.

shown in Fig. 3(b). The flow in run 3 is quasinonhelical. Figure 4 shows that the helicity 〈u · ω〉/2
decays approximately as t−8/5 in the fully developed states for runs 1 and 2. The compensated
helicity t8/5〈u · ω〉/2 remains constant in these states. Therefore, the results shown in Figs. 3 and 4
support the decay laws (47) and (49). These results suggest that 〈u · ω〉/2 ∝ v2/L and the timescale
of the helicity decay is L/v, where v is defined by Eq. (50). It is shown in Fig. 4(b) that 〈u · ω〉 ≈ 0
for the quasinonhelical turbulence in run 3. Figure 5 shows the time developments of AE and AH in
Eq. (44). After the time periods corresponding to the premature states, AE and AH are approximately
constant in all runs. In Figs. 2–4 it can be seen that the evolution of 〈|u|2〉, L, 〈|u±|2〉, and 〈u · ω〉
does not obey the decay laws in the strict sense. Hence AE and AH are not strictly constant as shown
in Fig. 5. However, it should be noted that the decay laws are consistent with the DNS.

Figure 6 shows the evolution of the degree of reflection asymmetry (13) based on 〈|u±|2〉, which
are representative quantities in the energy containing range. For the fully developed turbulence, the
value of the degree is nearly time independent in each run. In other words, Eq. (37) holds well.
This means the persistence of reflection asymmetry in the energy containing range for runs 1 and 2.
The degree in the fully developed states becomes stronger with the initial magnitude of the helicity.
The value of the degree remains nearly zero for run 3. Thus, the flow in run 3 is quasireflection
symmetric.

Figures 7(a) and 7(b) show, respectively, the time development of the spherically averaged energy
spectra Eave(k) = E (k)/4πk2 and normalized spherically averaged helicity spectra Have(k)/k =
H (k)/4πk3 for run 1. At low wave numbers, these spectra remain nearly flat and are almost
time independent. These observations at low wave numbers provide confirmation of the dynamical
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FIG. 5. Plot of AE and AH vs t/T .
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FIG. 6. Plot of (〈|u+|2〉 − 〈|u−|2〉)/〈|u|2〉 vs t/T .

invariance of C and Ch in Eq. (23). Therefore, the turbulence in run 1 can be regarded as helical
Saffman turbulence.

Figures 8(a) and 8(b) show, respectively, the kL dependence of normalized spectra Eave(k)/v2L3

and Have(k)/kv2L3 for run 1 at different time instants. As suggested by Fig. 2, v2L3 is nearly constant
in the fully developed states. It can be observed in Fig. 8(a) that the spectra Eave(k)/v2L3 in the fully
developed state, i.e., for t/T � 60, collapse well. This collapse shows the self-similarity of the fully
developed turbulence at least approximately. Good collapse of Have(k)/kv2L3 can also be seen in
Fig. 8(b). The collapse suggests that the growth rate of � is independent of the existence of nonzero
H(k), which is consistent with the assumption in Eq. (24). The spectra E (k) for runs 2 and 3 and also
the helicity spectrum H (k) for run 2 are omitted, because the results are similar to those presented
here.

The normalized spectra look as if they collapse well in all wave-number ranges including the
dissipation range. One might think that the velocity correlation spectral tensor R̂i j (k, t ) is self-
similar in the wave-number range and that all statistics are governed by L, v, and the timescale L/v.
The large-scale self-similarity assumption is not imposed on small scales such as the dissipation
range scales, as mentioned in Sec. II C. If R̂i j (k, t ) was completely self-similar over the entire
k range, then the enstrophy decay of the flow would be predicted as follows. If Eqs. (28) and
(29) were applied to 〈|ω|2〉 = ∫

R3 k2|û(k)|2dk, then we had that 〈|ω|2〉�5 is time independent
and 〈|ω|2〉/2 ∝ t−2, because � ∝ L and L ∝ t2/5. However, this is not the case. Figure 9 shows

FIG. 7. Spectra for run 1 at t/T = 0, 20, 40, 60, 80, 100, 120, 140, and 160: (a) Eave(k) = E (k)/4πk2 vs
k/kp and (b) Have(k)/k = H (k)/4πk3 vs k/kp.
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FIG. 8. Normalized spectra for run 1 at t/T = 0, 20, 40, 60, 80, 100, 120, 140, and 160: (a) Eave(k)/v2L3

vs kL and (b) Have(k)/kv2L3 vs kL.

that the enstrophy decays approximately as t−2−s, with s being approximately 0.3 in the DNSs.
The enstrophy is dominated by contributions from the dissipation range. This is in accordance
with Ref. [26], showing that complete self-similarity in the decay of incompressible homogeneous
isotropic flow was found only for E (k) given by C1k + o(k) at k → 0, with C1 being a k-independent
constant. For runs 2 and 3, the enstrophy decays like 〈|ω|2〉/2 ∝ t−2.3 in the fully developed states
and thus we omitted these results in Fig. 9(b).

Figure 10 shows the time development of the relative helicity 〈u · ω〉/
√

〈|u|2〉〈|ω|2〉, which also
characterizes the degree of reflection asymmetry. It can be seen that for fully developed helical
Saffman turbulence, the time dependence of the relative helicity is weak. The dependence is given
by 〈u · ω〉/

√
〈|u|2〉〈|ω|2〉 ∝ t s/2 (s ≈ 0.3), which is obtained by 〈|u|2〉 ∝ t−6/5, 〈u · ω〉 ∝ t−8/5, and

〈|ω|2〉 ∝ t−2.3. Therefore, the relative helicity is an appropriate alternative to the measure (13) show-
ing the persistence of large-scale reflection asymmetry, as long as the exponent s/2 is sufficiently
small in the fully developed states. In order to reduce the contribution from the dissipation range
to the relative helicity, one may use low-pass filtering of velocity and vorticity fields. The relative
filtered helicity can better represent the degree of large-scale reflection asymmetry than the relative
helicity 〈u · ω〉/

√
〈|u|2〉〈|ω|2〉.
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FIG. 9. (a) Enstrophy 〈|ω|2〉/2 vs t/T for all runs and (b) t2〈|ω|2〉/2 and t2.3〈|ω|2〉/2 vs t/T for run 1.
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IV. CONCLUSION

We considered the large-scale structure of freely decaying incompressible homogeneous
anisotropic turbulence in the presence of helicity, in which the energy spectrum E (k) and the
helicity spectrum H (k) are given by E (k) = Ck2 + o(k2) and H (k) = Chk3 + o(k3), respectively,
at k → 0. Here C and Ch are k independent and C is a dynamical invariant. Saffman’s argument
[1] for nonhelical turbulence was generalized to helical turbulence. The generalized turbulence is
called here helical Saffman turbulence. Generally, the leading O(k0) term of the velocity correlation
spectral tensor R̂i j (k) at k → 0 is reflection asymmetric and time independent. Following Ref. [3],
we showed that Ch is another dynamical invariant.

The measure characterizing the degree of reflection asymmetry at the large scales including
the energy containing range scales was introduced by the use of u+(x) and u−(x) whose Fourier
transforms û+(k) and û−(k) have non-negative and nonpositive helicity, respectively. These two
fields are obtained by the helical decomposition of û(k). A theoretical analysis based on the
invariance of the O(k0) term of R̂i j (k) at k → 0 and the self-similarity assumption of the large-
scale evolution shows the persistence of the large-scale reflection asymmetry for fully developed
anisotropic helical Saffman turbulence if the O(k0) term is reflection asymmetric at an initial instant.
This persistence means no return to reflection symmetry at the large scales. Dimensional analysis
then yields the decay laws for fully developed anisotropic helical Saffman turbulence.

We performed DNSs of incompressible turbulence in a periodic box with 10243 grid points, using
a Fourier spectral method. It was shown that the self-similarity holds well for the fully developed
states. The DNS results are in accordance with the theoretical results at least approximately. Strictly
speaking, the DNS results show a small departure from the decay laws. It can also be seen in Fig. 7
that the spectra Eave(k) and Have(k)/k at low wave numbers are not strictly time independent. The
small discrepancy from the theoretical results may be due to the influence of Re, the box size,
small-scale resolution kmaxη, and the number of the realizations in taking the ensemble average
of the DNS results. Direct numerical simulation is free from any error arising from turbulent
modeling or closure assumptions. Therefore, a DNS convergence study about the influence might
be interesting. However, this is beyond the scope of this work. Such a DNS study would have a very
high computational cost.
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APPENDIX: IINITIAL VELOCITY FIELDS WITH HELICITY

In our DNS, the initial velocity fields were generated as û(k, 0) = G(k){ai(k) + �ah(k)}, where
G(k) ∝ k2 exp(−k2/k2

p), 〈|u(x, 0)|2〉 = 1, and � is real. For the helical flows in runs 1 and 2, � =
4, while � = 0 for the nonhelical flow in run 3. Both fields ai(k) and ah(k) are solenoidal and
statistically isotropic. The field ai(k) has statistically reflection symmetry, whereas, as described in
the next paragraph, ah(k) has statistically antireflection symmetry owing to the helicity. [A field of
the form b(k) × ik/k was used as the initial field in run 13 of Ref. [4]. However, b(k) is a nonhelical
velocity field in Ref. [4] and thus b(k) × ik/k is nonhelical.]

The solenoidal field aκ (k) is written as aκ (k) = φκ
1 (k)e(1)(k) + φκ

2 (k)e(2)(k) (κ = i, h), by the
use of the Craya-Herring decomposition. Here {φκ

1 (k)}∗ = −φκ
1 (−k), {φκ

2 (k)}∗ = φκ
2 (−k), and

〈|φκ
1 (k)|2〉 = 〈|φκ

2 (k)|2〉. The complex functions φκ
1 (k) and φκ

2 (k) are produced by eight sets of real
normal random numbers Xj (k) ( j = 1, 2, . . . , 8) satisfying 〈Xj (k)〉 = 0 and 〈Xj (k)Xl (k)〉 = δ jl . For
the field ah(k) with helicity, we set φh

1 (k) = X1(k) + iX2(k) and φh
2 (k) = Y1(k) + iY2(k). Here Yj (k)

( j = 1, 2) are defined by

Y1(k) = −λX2(k) +
√

1 − λ2X3(k), (A1)

Y2(k) = λX1(k) +
√

1 − λ2X4(k), (A2)

where λ is a constant satisfying |λ| � 1, 〈X2(k)Y1(k)〉 = −λ, and 〈X1(k)Y2(k)〉 = λ. Since
〈{φh

1 (k)}∗φh
2 (k)〉 = 2iλ, we have H(k) = 2λ. We set λ = 0.5 for run 1 and λ = 0.8 for run 2. For the

field ai(k) with reflection symmetry, we set φi
1(k) = X5(k) + iX6(k) and φi

2(k) = X7(k) + iX8(k).
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