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Can small-scale turbulence approach a quasi-universal state?
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For the past 50 years or so, Kolmogorov’s (1962) correction (K62) to his 1941 hypothe-
ses (K41) has been embraced by an overwhelming majority of turbulence researchers.
However, we show in this paper that there are no valid reasons for abandoning K41,
a similarity framework known for its simplicity and elegance. In particular, analytical
considerations, based on the Navier-Stokes equations, which take into account the finite
Reynolds number (FRN) effect, together with all available experimental laboratory data,
confirm a tendency towards the universal predictions of K41 as the Reynolds number
continues to increase. This is especially true when the focus is on the energy spectrum
and velocity structure function in the dissipative range. Incorrectly accounting for the FRN
effect, which has been almost invariably mistaken for the intermittency effect, and the
inclusion of the atmospheric surface layer data are the major factors which have contributed
to the heretofore almost unrivalled acceptance of K62.
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I. INTRODUCTION

The significant attention that researchers have paid to the properties of small-scale turbulence in
different flows and over a range of Reynolds numbers is not surprising given that, from a theoretical
viewpoint, small scales are more amenable to being fully understood than the larger scales of the
flow. More particularly, the possibility that these properties may become universal, i.e., independent
of the Reynolds number as well as the flow, cannot be ruled out, at least for extremely large Reynolds
numbers and provided local isotropy is satisfied. In reality, the Reynolds number is usually finite
and local isotropy is hardly ever satisfied perfectly. Nonetheless, it is important that we continue
to scrutinize the way these properties vary as the Reynolds number increases with the objective of
determining whether one can identify regions in various different flows where the departure from
local isotropy is small and independent of the Reynolds number. The obvious expectation is that this
should be more feasible for dissipative range (DR) than inertial range (IR) properties. We tentatively
denote this state as “quasi-universal.”
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The theory of small-scale turbulence has benefited immensely from the contributions of Taylor
[1], who introduced the concept of isotropy and obtained a simplified expression for the mean energy

dissipation rate ε̄[=εiso = 15ν(∂u/∂x)2 if local isotropy is assumed, ν is the kinematic viscosity of
the fluid], and Karman and Howarth [2] who derived a transport equation (hereafter referred to as
the KH equation) for the two-point velocity correlation function in isotropic turbulence. Further
significant progress was made in 1941 when Kolmogorov [3] introduced two important hypotheses,
specifically the first and second similarity hypotheses dealing with turbulence scales in the DR and
IR at very large Reynolds numbers. In a separate paper, Kolmogorov [4] also derived, starting with

the KH equation rewritten in terms of δu, a simple expression for (δu)3/ε̄r, which is generally
interpreted as the energy flux or mean rate of transfer of energy down the cascade at a scale r within
the IR, viz.

− (δu)3

ε̄r
= 4

5
, (1)

where the increment δu ≡ u(x + r) − u(x) (u is the velocity fluctuation along x, the separation r is
along x, and averaging is denoted by an overbar). Equation (1) has become known as the “4/5th” law
and is incontrovertibly acknowledged as an exact result for stationary isotropic turbulence when the
Reynolds number becomes infinitely large. Further notable contributions in the 1940s were made
by Batchelor, mainly through his thorough appraisal of Kolmogorov’s theory [5], his monograph
on the theory of homogeneous turbulence [6], and his papers with Townsend [7,8] dealing with
the transport equation for ε̄ (or equivalently the mean enstrophy) in isotropic turbulence and the
intermittent nature of the fine-scale structure of turbulence.

Kolmogorov’s phenomenology [3], widely known as K41, paved the way to the exciting prospect
that small-scale turbulence could be universal, i.e., independent of the Reynolds number and the
flow, when the Reynolds number is very large. Kolmogorov postulated that ε̄ and the kinematic
viscosity ν are the governing parameters for small-scale turbulence. For example, for the velocity
structure function, the first similarity hypothesis of K41 predicts that

(δu∗)n = fn(r∗), (2)

where the asterisk denotes normalization by the Kolmogorov velocity and length scales, uK =
(νε)1/4 and η = (ν3/ε)1/4, respectively (or equivalently ε̄ and ν) and the function fn is universal. A
consequence of Eq. (2) when r → 0 is that the normalized velocity derivative moments should all
be constant, i.e., independent of the Taylor microscale Reynolds number Reλ[≡u′λ/ν, where λ is
the longitudinal Taylor microscale u′/(∂u/∂x)′ and a prime denotes a rms value], viz.

Sn = (∂u/∂x)n

(∂u/∂x)2
n/2 = const. (3)

Note that S3 and S4 are the skewness and flatness factor (or kurtosis) of ∂u/∂x. The second similarity
hypothesis of K41 states that, when Reλ is sufficiently large, the effect of viscosity can be ignored
in the IR (η � r � L; L is an integral length scale). This leads to the well-known result

(δu∗)n = Cunr∗n/3, (4)

where Cun are “universal” constants. The main outcomes of K41, Eqs. (2)–(4), were completely
undermined by the refined hypotheses [9,10] enunciated by Kolmogorov 20 years after K41,
hereafter denoted K62.

The refinement, which took into account the so-called spatiotemporal fluctuations in ε, assumed
a log-normal model for εr (the subscript r denotes averaging over a volume of linear dimen-
sion r), i.e., the probability distribution of ln εr is Gaussian. Two consequences of K62 are as
follows: (i) Sn is no longer constant. The magnitude of Sn for n � 3 now increases indefinitely
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with Reλ,

|Sn| ∼ Reβ(n)
λ (β > 0). (5)

(ii) Equation (4) now becomes

(δu∗)n ∼ r∗ζn , (6)

where the exponent ζn may depart from n/3, except when n = 3 [since the “exact” result, Eq. (1),
needs to be preserved]. The log-normal and a plethora of subsequent probabilistic models indicate
that the departure from n/3 increases as n increases, albeit at a rate which can differ between
different models. Predictions from physical models, based on generally simplistic proposals of
how ε is localized in space, have not always qualitatively agreed with Eq. (6) (see for example
Sreenivasan and Antonia [11], Wyngaard [12], Van Atta and Antonia [13]). It should be emphasized
that, like K41, K62 requires Reλ to be infinitely large since only in this case can Eq. (1)
hold.

It is fair to assert that experimental support for both Eqs. (5) and (6) has been nothing short
of considerable. We do not wish to embark on a detailed discussion here; we refer the reader to
Refs. [11–14]. Notwithstanding a few notable dissentions, objections, or doubts about K62 (e.g.,
Refs. [15–19]), the experimental evidence has strongly pointed to K41 having to be abandoned in
favor of K62. If we leave aside the results from the atmospheric surface layer (ASL) and recall
that perhaps the most “damning” evidence against K41, in the context of Eq. (6), came from the
laboratory investigation of Anselmet et al. [20], a major criticism that can be levelled at nearly all
the laboratory studies is the failure to properly recognize the influence of the Reynolds number on
the statistics of velocity derivatives as well as on the moments of δu in the IR, especially since
Reλ has seldom exceeded 1000. It is a fact that the IR has never been observed convincingly due
to Reλ being insufficiently large. For this reason alone, any assertion that the scaling exponent ζn

is anomalous, i.e., ζn �= n/3, is at the very least questionable, if not meaningless. The realization
that the FRN effect has to be taken into account came to the fore in the late 1990s [21–24]. The
essence of the approach was to revisit the KH equation (or the Karman-Lin equation [25] in the
case of Qian [22] who adopted a spectral approach) which includes the nonstationary term ignored
by Kolmogorov [4]. The retention of the nonstationarity permits an assessment of how the large
scale inhomogeneity can affect the small scales and hence an estimation of how large Reλ should be
before Eq. (1) is satisfied. Such an estimation was also carried out by Lundgren [26] and Antonia
and Burattini [27]. The latter authors showed that “4/5” is approached more rapidly for forced than
for decaying turbulence; for a substantial IR to exist, the results indicated that Reλ may need to
exceed 103 in the former case and 106 in the latter. These results, obtained via a scale-by-scale
energy budget, have since been confirmed by Tchoufag et al. [28] using the eddy-damped quasi-
normal Markovian (EDQNM) method. It seems reasonable to infer that the approach to 4/5 will
depend on the flow since the large scales may have different levels of inhomogeneity in different
flows.

The above considerations lead to only one conclusion: the previous evidence in support of
K62 needs to be critically reappraised in the context of the FRN effect which appears to have
been incorrectly mistaken for the intermittency effect. Note that intermittency was not explicitly
taken into account in the previously described work since it is intrinsic to the Navier-Stokes (NS)
equations. With the benefit of hindsight, the need to account for the intermittency effect in an ad
hoc fashion, as exemplified by K62, without recourse to the NS equations, seems ludicrous.

The main objective of this paper is to review recent advances in understanding the FRN effect on
small-scale quantities such as Sn and (δu∗)n. In particular, this effect is underpinned by the transport

equations for (δu)2 (or scale-by-scale energy budget) and (δu)3 (or scale-by-scale budget of local
energy-transfer rate), respectively. The limiting forms, at small r, of these budgets have provided
valuable insight into the Reynolds number dependence of S3 and S4.
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II. FRN EFFECT ON THE DR

For homogeneous isotropic turbulence at very large Reynolds number, the transport equation for

(δu)2 is given by

−(δu)3 + 6ν
∂

∂r
(δu)2 = 4

5
εr, (7)

which is derived directly from the NS equations. If we divide all terms in Eq. (7) by εr, the above

relation states, in essence, that the energy flux −(δu)3/εr remains constant in the IR [see Eq. (1)].
For small to moderate Reynolds numbers, this equation is usually not satisfied except at small r
since Eq. (7) does not contain a large-scale term. For example, Danaila et al. [23] showed that
Eq. (7) is satisfied only for r/η � 5 for grid turbulence at Reλ = 66, suggesting that the large-scale
term contributes to Eq. (7) for r/η > 5. After including such a term, Iu(r) say, Eq. (7) becomes

−(δu)3 + 6ν
∂

∂r
(δu)2 = 4

5
εr − Iu, (8)

where Iu may differ from flow to flow. Indeed, different expressions for Iu have been obtained in
decaying homogeneous isotropic turbulence (HIT) [23–29], along the axis in the far field of an
axisymmetric jet flow [29], and along the centerline of a fully developed channel flow [30]. Equation
(8) is of fundamental importance since it is an equilibrium relation between the second- and third-
order moments. When r → 0, Eq. (8) reduces to the transport equation for the mean enstrophy
or equivalently ε (in homogeneous turbulence). This equation can be written in the generic form
[29–33],

S3 + 2
G

Reλ

= C

Reλ

, (9)

where G (=u2 (∂2u/∂x2 )2

(∂u/∂x)2
2 ) is the enstrophy destruction coefficient and C is a constant which depends

on the flow and may vary across regions of the same flow. Equation (9) represents, in essence,
a constraint on how S3 varies with Reλ in different flows. Since the ratio G/Reλ approaches a
constant relatively rapidly with increasing Reλ [29–32] and the term on the right side of Eq. (9) must
eventually vanish, Eq. (9) implies that the magnitude of S3 should become constant at sufficiently
large Reλ. This expectation has been confirmed [29–32] and will be discussed briefly in the context
of Fig. 1.

Similarly, starting with the NS equations written at two separate and independent spatial points

x and x′ [or the transport equation for (δu)3 ] for HIT, Tang et al. [37] and Djenidi et al. [38] (see
also [39]) derived an expression for S4, which can be written in a form analogous to Eq. (9), i.e.,

S4 + γ = C1
S3

Reλ

, (10)

where γ [≡ γ1( ∂u∗
∂x∗ )

2
( ∂2 p∗

∂x∗2 )]; in this expression, p is the pressure fluctuation, γ1 and C1 are dimen-
sionless constants). Equation (10) shows that the magnitude of S4 is balanced by γ , the pressure
diffusion of energy term, and the large-scale term C1S3/Reλ; the latter will vanish when Reλ is
sufficiently large. Tang et al. [37] and Djenidi et al. [38] argued that γ has an upper bound, which
implies that S4 should also be bounded; this is further confirmed by Meldi et al. [40] through the
eddy-damped quasi-normal Markovian simulation of decaying HIT.

There has been strong support for K41 in the DR from second-order statistics. For example,
the Kolmogorov-normalized one-dimensional velocity spectra φ∗

u (k∗
1 ) collapse quite well in the

high wave-number region [41]. In contrast to the stipulations of K41 and K62, viz., Reλ must
be very large and local isotropy should hold, this collapse does not require Reλ to be large [42],
nor does it require local isotropy to be satisfied rigorously; it does however break down [42] when
Reλ is sufficiently small, typically when it falls below about 40. Pearson and Antonia [43] showed
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FIG. 1. (a) Sn (n = 3 and 4) in a plane jet (� [32]) and a circular jet (© [34]; � [35]; � [36]). The dashed
lines indicate values of S3 and S4 averaged over the range Reλ > 230. (b) (δu∗)n (n = 2, 3, 4) in a plane jet [32]
for Reλ = 550 (�), 696 (�), 826 (�), 914 (�), and 1067 (�) and a circular jet [35] for Reλ = 235 (�), 305
(�), 495 (�), and 545 (�); note that S3 and S4, as shown in (a), are constant in these two flows for Reλ > 230.
The blue dashed lines correspond to 15−n/2Snrn[Sn is the mean value shown in (a)]. Note that (δu∗)3 has been

divided by 10 to avoid interfering with the (δu∗)2 distributions.

that (δu∗)2 collapses reasonably well in the DR over a large range of Reλ (40 < Reλ < 1175);
Fig. 1(b) confirms this collapse with the use of our data. With reference to Eq. (9), simple analytical
expressions can be obtained for C in different flows or for specific regions of a given flow [29–33].
For example, in decaying grid turbulence, C = 90

7(1+2R) ( n+1
n ) with R = v2/u2, while along the axis in

the far field of a round jet, C = 90
7(2+R) . Since C differs from flow to flow, it is clear that C/Reλ will

approach zero along different paths. Since 2G/Reλ becomes constant (≈0.53) at Reλ = 70−100,
we have already shown [29–32] that S3 depends on both the type of flow and on Reλ, at small to
moderate values of the latter (Fig. 1 of Antonia et al. [32]); it will become constant when Reλ is
sufficiently large (in general, Reλ only needs to exceed about 300, allowing for the uncertainty in
measuring S3). As an example, Fig. 1(a) shows S3 in plane and circular jets. It can be seen that S3 is

constant when Reλ > 100 in these two flows. Consequently, (δu∗)3 also collapses reasonably well
at small r∗ [Fig. 1(b)]. For the fourth-order statistics, Fig. 1(a) shows that, in plane and circular jets,
S4 becomes constant beyond Reλ ≈ 300. This trend is supported by analytical considerations based
on the NS equations, as shown above.

However, almost all the previous studies on the evolution of S3 and S4 with Reλ have included
the ASL data, e.g., Figs. 5 and 6 of Sreenivasan and Antonia [11], which are reproduced in the
insets of Figs. 2(a) and 2(b). A “red” contour has been drawn around the ASL data to distinguish
these from the other (laboratory) data. The insets of Figs. 2(a) and 2(b) highlight the impact that
the ASL data has had on bolstering the validity of K62 and provide incisive insight into how
subsequent researchers may have been misled into accepting, if not wholeheartedly embracing,
K62. Admittedly with the benefit of hindsight, the methodology embodied in the insets of Figs. 2(a)
and 2(b) can now be criticized on at least three major levels. First, it ignores the FRN effect which
can affect the laboratory data in a significant way and, perhaps to a lesser extent, the ASL data.
Second, the FRN effect, through its very nature (it mainly reflects the inhomogeneity associated
with the large scale motion; the latter has been shown to depend on the flow), is expected to affect
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FIG. 2. Laboratory data for S3 and S4 reproduced from Figs. 5 and 6 of Sreenivasan and Antonia [11]
without identifying the data sources. The insets reproduce all (laboratory and ASL) data from Figs. 5 and 6
of Sreenivasan and Antonia [11]. Note that a “red” contour is drawn around the ASL data to distinguish these
from the laboratory data. The data for S3 and S4 shown in Fig. 1 are reproduced here (red symbols).

different flows differently. This expectation is completely ignored in the insets of Figs. 2(a) and
2(b), which do indeed show that the laboratory values exhibit “apparent” scatter [our recent work,
as discussed above, confirms that, for S3 and S4, there is a systematic dependence on Reλ which
can be explained analytically, via Eqs. (9) and (10)]. Clearly, one cannot afford to indiscriminately
use data obtained from various flows unless the Reynolds number is large enough to allow the
FRN effect in each of these flows to be negligible and provided local isotropy is satisfied to a
reasonable approximation [recall that Eqs. (7)−(10) rest on this assumption]. The need to achieve
a sufficiently high Reynolds number in any given laboratory flow so that the Kolmogorov equation,

[−(δu)3/ε̄r = 4/5] is satisfied approximately in the IR should, strictly speaking, be considered as a
sine qua non requirement before examining the consequences of K41 and K62. This seems to have
been mostly overlooked. Third, the inclusion of the ASL data when testing K41 and K62 needs, at
the very least, to be discussed or scrutinized more objectively than in the past since the ASL data
exhibit a strong departure from local homogeneity and local isotropy due to the fact that it is most
likely affected by wall-blockage effects and a high mean shear; this has been discussed by Djenidi
et al. [50] (see also Tang et al. [37] in the context of S4). It is worth recalling Kolmogorov’s (1941)
comment that “the hypothesis of local isotropy is realized with good approximation in sufficiently
small domains...not lying near the boundary of the flow.” More importantly, when we disregard the
ASL data, the laboratory data in Figs. 2(a) and 2(b) are consistent with the data in Fig. 1, i.e., S3

and S4 increase as Reλ increases and eventually become constant when Reλ is sufficiently large.
This is precisely in accordance with the NS equations, as expressed by Eqs. (9) and (10) but in
disagreement with Eq. (5).

III. FRN EFFECT ON THE IR

We now focus on the FRN effect on the scaling range behavior of various quantities such as the
energy spectrum φu(k1), the pressure spectrum φp(k1), and the velocity structure functions (δu)n.
The IR is expected to be approximately well developed only when Reλ exceeds a critical value of

Reλ which depends on the flow. Figure 3(a) shows the distributions of (δu∗)2 in various flows (axis
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FIG. 3. (a) (δu∗)2 in grid turbulence [44] (Reλ = 25−99), a circular cylinder wake [45] (Reλ = 160−280),
and a plane jet [46] (Reλ = 550−1067). The arrow indicates the direction of increasing Reλ. Also shown are

distributions of (δu∗)2r∗−2/3 for a plane jet [46] (Reλ = 550 and 1067, green curve and pink curve, respectively)
and a circular jet [47] (Reλ = 966, blue square symbols). The green and red dashed lines correspond to 2.35 and
r∗2/3, respectively. (b) Compensated one-dimensional (1D) and 3D energy spectra for DNS (box turbulence)
and plane jet data at high Reλ: pink and green curves correspond to the plane jet data reported in (a); the
corresponding exponent q is 1.66 (pink) and 1.61 (green). The blue [48] and red [49] curves correspond to
DNS data at Reλ = 2300 and 805, respectively. The black and green dashed horizontal lines correspond to
1.83 and 0.66, respectively.

of plane jet, centreline of a circular cylinder wake and grid turbulence) over a large range of Reλ

(=25–1067). Also shown in Fig. 3(a) are the distributions of (δu∗)2r∗−2/3 for plane jet at Reλ = 550
and 1067 respectively and circular jet [47] at Reλ = 966. We can observe that there is no obvious

plateau for (δu∗)2r∗−2/3 at Reλ = 550, 966, and 1067, respectively and thus the power-law fit in the
scaling range is at best a rough approximation. Clearly, in the light of these results, it should be
recognized that the concept of a scaling range, over which (δu)n exhibits an approximate power-law
dependence on n is strictly untenable. Nonetheless, we have estimated values of the exponents in
Eq. (6) using a selection of data, obtained at the University of Newcastle and elsewhere to illustrate
our claim that only when the FRN effect disappears can a power-law behavior begin to emerge. We

recall that the spectral density φ∗
u (k∗

1 ) is more likely to display a scaling range than (δu∗)2, i.e., the
correspondence between these two quantities is also affected by the FRN effect. Figure 3(b) shows
the compensated spectra k∗q

1 φ∗
u (k∗

1 ) along the axis of the plane jet at Reλ = 550 (q = 1.61) and 1067
(q = 1.66). Although the two distributions do not exhibit a clear plateau in the scaling range, the Reλ

dependence of q is evident. Also shown in Fig. 3(b) are the compensated 3D spectra k∗qE (k∗) for
box turbulence DNS data at Reλ = 805 and 2300, respectively. There is a restricted wave-number
range over which q � 5/3. The extent of the plateau increases as Reλ increases. The variations of ζ2

and q on Reλ reported in the literature and our experimental data are shown in Figs. 4(a) and 4(b),
respectively. The “2/3” and “−5/3” predictions of K41 are approached slowly as Reλ increases.

Antonia and Burattini [27] showed that −(δu)3/ε̄r approaches 4/5 slowly as Reλ increases, the
approach being relatively more rapid for forced than decaying turbulence [Fig. 4(c)]. Similar results
have been obtained [22,24,28] using different types of closures applied to either Eq. (8) or the
Karman-Lin spectral equation [25]. Note that only when Iu(r) becomes negligible over a sufficiently
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FIG. 4. FRN effect on the scaling range behavior of various quantities in different flows. The dashed
horizontal lines correspond to the predictions of K41. Reλ variation of (a) ζ2 along the axes of a plane jet
(� [46]) and circular jet (� [47]), and for forced turbulence (� [51]); (b) q[φu(k1) ∼ k−q

1 ] in grid turbulence
(� [52]) and along the axis of a plane jet (� [46]); black empirical curve, q = 5/3 − 8Re−3/4

λ [52]; (�), DNS

reported in Fig. 3(b); (c) p = max[−(δu)3/ε̄r] in forced turbulence (�, the black curve is a fit to the data) and
decaying turbulence (�, the red curve is the analytical prediction [27]; �, plane jet [46]); (d) m[φp(k1) ∼ k−m

1 ]
along the axis of a circular jet [53]; (e),(f) ζ4 and ζ6 [see Eq. (6)] along the axis of a plane jet (�) and circular
jet (©) [46].

large range of r can the scaling range be correctly identified with the IR [27]. As an example, we
report in Fig. 5 distributions of (δu∗)3/r∗ in forced turbulence, which approach 4/5 more rapidly than
for decaying turbulence [Fig. 4(c)]. Clearly, none of the distributions exhibit an obvious plateau,
underlining the absence of an inertial range even for this type of flow at Reλ ∼ 1000. Strictly, only
when Reλ is sufficiently large for Iu to be negligible over a sufficiently large range of r can Eq. (1)
be expected to be valid. One may then reasonably assume that an inertial range is established. We
recall that K62 predicts

(δu)2 ∼ (εr)2/3(L/r)−μ or (δu∗)2 ∼ r∗2/3(L/r)−μ, (11)

where L is an “external” length scale, loosely identified here with the integral length scale and
μ (denoted by κ in K62) is the intermittency exponent (>0) with a value of typically about 0.2.
Taking r = λ, which is expected to lie near the lower end of the inertial range [27,46,56], and

substituting the relation L/λ ∼ Reλ into (11) lead to (δu∗)2
r=λ ∼ λ∗2/3Re−μ

λ or (δu∗)2
r=λ/λ

∗2/3 ∼
Re−μ

λ . Similarly, from Eq. (1), we can obtain (δu∗)3
r=λ/λ

∗ = −4/5. Namely, K62 assumes that

(δu∗)3
r=λ/λ

∗ = −4/5 is valid and no longer depends on Reλ but predicts that (δu∗)2
r=λ/λ

∗2/3

continues to evolve with Reλ. This is inconsistent with the close relationship between (δu)2 and

(δu)3, as required by the NS equations and expressed by Eqs. (7) or (8). It can be inferred from

Fig. 3(a) that the magnitude of (δu∗)2 at r∗ = λ∗ can only increase with Reλ; the trend of the data

does not exclude the possibility of a collapse, consistent with (δu∗)2 ∼ r∗2/3; note that Eq. (11) is

strictly not relevant since the data for (δu∗)3 are not yet compliant with Eq. (1), as can be inferred

from Figs. 4(c) and 5. Several investigations [18,26,51,57] have now shown that (δu∗)2 ∼ r∗2/3
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FIG. 5. Distributions of (δu∗)3/r∗ in forced turbulence. flow between counter-rotating disks at Reλ = 1170:�
[54]; others are the DNS data (blue, black, and red curves corresponding to Reλ = 471, 732, and 1131

respectively [55]; green curve, Reλ = 805 [49]). Dashed horizontal line: 4/5.

is the only likely outcome as Reλ → ∞. This may be considered as a posteriori justification
for Kolmogorov’s [4] assumption that the skewness of δu is constant in the inertial range (when
Reλ → ∞); Kolmogorov used this assumption to validate the r2/3 law, which was derived in [3]
using dimensional analysis only.

Tsuji and Ishihara [53] measured the pressure spectrum φp(k1) on the centerline of a round jet
over a large range of Reλ (=200–1250). A −7/3 power-law scaling (K41) for φp(k1) is approached
as Reλ increases [Fig. 4(d)]. Using EDQNM, Meldi and Sagaut [58] confirmed the FRN effect on
the pressure spectrum in decaying homogeneous isotropic turbulence. They indicated that Reλ ∼
10 000 is needed before the pressure spectrum exhibits an IR with an extent of one decade. Tang
et al. [46] further assessed critically the FRN effect on the scaling range exponents of (δu)n, with
a maximum value of n equal to 8, using experimental and DNS data. In each case, the magnitude
of ζn increases as Reλ increases, the rate of increase depending on n. We should emphasize that
a power-law variation of (δu)n, such as given by Eq. (6), is strictly tenable for very large Reλ;
the value of ζn is used here only for expedience since the local slope of (δu)n does not exhibit a
significant plateau. For a fixed Reλ, the exponent ζn can vary from flow to flow and for a given flow,
the larger Reλ is, the closer the exponent is to the K41 value. As an example, Figs. 4(e) and 4(f)
show the variations with Reλ of ζ4, and ζ6 along the axes of both plane and circular jets. It is clear

from Fig. 4(e) that the 4/3 power-law scaling (K41) for (δu)4 appears to have been reached for
Reλ > 900, whereas at the highest Reλ (=1067), ζ6 is still noticeably smaller than the K41 value
of 2.

Finally, although there may be some differences between the behavior of the velocity field and
that of the passive scalar field, it is worth mentioning that there is also a FRN effect (if the Prandtl
number is close to 1, the FRN effect is equivalent to a finite Peclet number effect) on the small-scale

quantities associated with a passive scalar field such as the skewness ST (≡ (∂u/∂x)(∂θ/∂x)2

(∂u/∂x)2
1/2

(∂θ/∂x)2
) of the

mixed velocity derivative-temperature derivative (θ is the instantaneous temperature fluctuation),
and (δθ )n. Indeed, Tang et al. [59] derived an expression for ST similar to Eq. (9) for HIT from the
generalized Yaglom’s equation [23]. The available data for ST in HIT show that the magnitude of ST

approaches a constant as the Reynolds number increases. Further, since the FRN effect disappears
very slowly with increasing Reynolds number, we expect that if one assumes (δθ )n ∼ rαθn in the
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scaling range, then, like ζn, αθn is likely to be affected by the nonhomogeneity and anisotropy of the
large scales. For example, DNS results of box turbulence [60] at Reλ ∼ 400 show that the uniform
mean scalar gradient can affect αθn significantly. Experimental evidence [61,62] also show that αθn

strongly depends on the scalar injection mechanism, i.e., the initial conditions, in the wake of a
circular cylinder at Reλ = 370. Evidently, as for ζn, much higher values of Reλ are needed before
the FRN effect on αθn disappears.

IV. CONCLUDING DISCUSSION

K41 and K62 require Reλ to be large. But what exactly is “large”? The results in Secs. II and III
suggest that this threshold value of Reλ, (Reλ)th say, may differ from flow to flow and, for a given
flow, may depend on the initial conditions and the specific quantity investigated. For example, for
higher-order velocity structure functions in the scaling range, (Reλ)th � 105–106 whereas for S3

and S4, (Reλ)th � 103. In summary, the need to first account for the FRN effect is paramount; in
particular, intermittency, as measured for example by S4, evolves with Reλ until (Reλ)th is reached.
Since it does not change beyond this threshold, it cannot be responsible for any modifications to
K41. This strongly suggests that K62, at least in the way it has been generally interpreted in the
literature, is based on a false premise.

The present NS based analytical considerations, together with the experimental evidence
(Figs. 1–4), strongly imply that the intermittency model proposed by Kolmogorov (K62) and
subsequent intermittency models are, at best, ad hoc attempts to model the FRN effect. Further, they
seem to support an approach towards K41 as Reλ continues to increase. Evidently, more high quality
data, preferably for Reλ in excess of 1000, are needed to further confirm this tendency towards K41.
It would seem, as highlighted by the unmistakable trend of the data in Fig. 4, that our quest for a uni-
versal, or at least quasi-universal, state for small-scale turbulence may not be unreasonable after all.
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