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The asymptotic scaling structure of the total scalar variance equation is investigated
for fully developed turbulent channel flow subjected to uniform scalar generation. The
total scalar variance balance has a four-layer structure similar to that of the total kinetic
energy balance, as previously investigated by Zhou and Klewicki [Phys. Rev. Fluids 1,
044408 (2016)]. Direct numerical simulation data are used to quantify the leading balance
structure. These data cover the friction Reynolds number up to δ+ = 4088 and Prandtl
number ranging between Pr = 0.2 and 1.0. Of the layers empirically characterized, the
inner-normalized width of the third layer is analytically verified to be δ+ − √

δ+/Pr.
This result agrees closely with the empirical observations. Consistent with previous
observations, the Kármán constant, kθ , for the mean scalar profile for Pr = 1 is shown to be
greater than the Kármán constant, k, for the mean velocity profile. Unlike previous studies,
the present problem formation yields identical mean equations and boundary conditions
for the scalar and velocity, and this allows unambiguous comparisons regarding the noted
differences between k and kθ . Results from the mean transport equations and streamwise
velocity and scalar variance budget equations, as well as the relevant correlation coefficient
profiles, are used to clarify the source of the differences between k and kθ . Through the
present theory, the results reported herein connect the statistical structure of the scalar and
velocity fields to the mean profile slopes.
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I. INTRODUCTION

Multiple-scale analysis approaches are often used to better understand wall turbulence at high
Reynolds number. Among these, the notion of an overlap layer is prevalent [1,2]. Application
of the overlap concept generically involves respective functions of inner and outer normalized
distance from the wall, and that these inner and outer descriptions have simultaneous validity
over some interior domain. For many laminar flows, the underlying machinery associated with the
development of matched asymptotic expansions has a well-founded analytical basis. On the other
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hand, for turbulent wall-bounded flows the application of the overlap framework requires a number
of assumptions owing to the unclosed nature of the time-averaged equation(s). Given this proviso,
however, the overlap layer approach is perhaps the most extensively employed to rationalize, for
example, the existence of the logarithmic mean velocity profile, or in the case of passive scalar
transport, the logarithmic mean scalar profile [3,4].

In contrast, direct examination of the mean momentum or mean scalar transport equations reveals
the leading balance structure, and that this structure is associated with a layer arrangement distinct
from that used in the overlap layer formulations [5–8]. The ensuing analyses that leverage this
structure are mathematically characterized by considering the actual magnitude ordering of terms
in the relevant mean equation as opposed to those formally implied by, for example, inner or outer
normalization. Among the results found by employing this framework is that the second and third
layers from the wall (for pipes and channels) have a width characterized by an intermediate length
scale, i.e.,

√
νδ/uτ , and that in the last layer from the wall (layer IV) the molecular diffusion

terms (mean viscous force or conductive heat flux) lose leading order significance. Here the mean
momentum or mean scalar transport occurs predominantly by turbulent inertia or stirring. This
domain is associated with a linearly varying hierarchy of scaling layers that underlies a self-similar
structure formally admitted by the relevant mean equation (i.e., for scalar or momentum). Direct
integration of this self-similar form of the mean equation leads to a logarithmic mean profile
equation. Notably, this approach does not require invoking a closure hypothesis or other similar
assumptions [8–11]. Consistently, a number statistical measures of self-similarity have been shown
to coincide with the inertial portion of the layer hierarchy domain [12–15]. Here it is important to
note that the existence of, and region where, distance-from-the-wall scaling holds is an analytical
finding of this approach. This is significant since the assumption of distance-from-the-wall scaling
is central to many turbulence modeling approaches, underlying, for example, Townsend’s attached
eddy hypothesis [16].

Following the general approach used for the mean momentum equation, Zhou et al. [17] explored
the mean, turbulence, and total kinetic energy balance equations in the canonical turbulent channel,
pipe, and boundary layer flows. The leading order balance structure of the mean kinetic energy
equation was empirically characterized and mathematically verified to have a structure identical to
that of the mean momentum equation. Zhou’s analyses also showed that there exists a four-layer
structure to the total kinetic energy budget equation, with the property that in each of these layers
the leading balance occurs between a subset of the relevant grouped terms in that equation. This
four-layer structure is, however, distinct from that of the mean momentum equation. For example,
the third layer for the total kinetic energy balance is located in the inertial domain (as identified
by the mean momentum equation) and has a layer thickness that grows at a rate proportional to
δ − √

νδ/uτ .
The present study extends the previous methodology to the total scalar variance equation for

fully developed turbulent channel with uniform scalar generation. The ratio of the sum of the
molecular transport term and the dissipation term to the gradient production/turbulent diffusion
term is considered and reveals a four-layer structure for the total scalar variance equation. Both
the Reynolds number- and Prandtl number-dependent properties of these layer thicknesses are
then empirically quantified with DNS data, and some are analytically verified through a rescaling
analysis. In the case where Pr = 1, the mean scalar equation is identical to that for the mean
momentum and has the same boundary conditions. The scalar Kármán constant, kθ , is, however,
empirically found to be greater than the Kármán constant, k, for the momentum field. A comparison
between the streamwise velocity variance and scalar variance budget equations is investigated to
show the different balance of terms across the corresponding inertial and nondiffusive domains.
Owing to the analytical connection between the Kármán constant and the Reynolds stress (turbulent
heat flux) elucidated by the present theoretical framework, the correlation coefficient profiles
for both Reynolds shear stress and turbulent heat flux are also examined and interpreted on the
self-similar inertial domain.
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II. SCALAR VARIANCE EQUATION ANALYSIS

A. Basic equations

In the following, x denotes the streamwise direction, with the wall-normal direction given by y.
Uppercase letters or angle brackets denote the averaged quantities, and lowercase letters indicate
fluctuations about the mean. The x, y, and z velocity components are given by variants of u, v, and
w, respectively, and δ is used to denote the half channel height.

In a Cartesian system, the time-averaged mean scalar variance and turbulence scalar variance
equations are, respectively, given by

∂
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Here � is the mean scalar and θ is the fluctuating scalar (and similarly for the velocity components),
α is the thermal diffusivity, and Q is the scalar generation per unit volume.

Statistically stationary and fully developed turbulent flow in a planar channel with uniform scalar
generation is considered. Since this flow is both planar and fully developed, derivatives of averaged
quantities with respect to x and z are zero, and mean quantities are solely a function of y. Under
these conditions, the simplified form of the mean scalar variance equation for turbulent channel
flow becomes
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+ �Q = 0, (3)

and similarly, the resulting simplified form of the turbulence scalar variance equation is given by
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Inner normalization is applied to each term in Eqs. (3) and (4) with the friction scalar θτ =
α
uτ

d�
dy |wall, friction velocity uτ = √

τwall/ρ, and ν,
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ν
, δ+ = δuτ

ν
. (5)

Under inner normalization Eq. (3) is

1
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where T +
θ = −〈v+θ+〉. We identify these four terms, respectively, as mean molecular diffusion

(MMD), production gradient of turbulent transport flux (PGT), mean dissipation (MD), and scalar
generation (SG). Similarly, the inner-normalized Eq. (4) is
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These four terms are, respectively, referred to as turbulent diffusion (TD), turbulent molecular
transport (TMT), gradient production (GP), and turbulent dissipation (TD). Combination of Eqs. (6)
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FIG. 1. (a) Ratio of the sum of the molecular transport (MT) and dissipation (D) terms to the gradient
production/turbulent diffusion term (GPTD). Inset: Four-layer structure specifically presented by �, δ+ =
995, Pr = 0.20, δ+/Pr = 4975. Vertical dashed-dotted line denotes the external bound of layer i. Vertical
dashed line denotes the external bound of layer ii. Vertical solid line denotes the external bound of layer iii. (b)
Ratio of the sum of the molecular transport (MT) and dissipation (D) terms to the gradient production/turbulent
diffusion term (GPTD) versus y+√

Prδ+. DNS data are from Pirozzoli et al. [18]:
�

, δ+ = 548, Pr = 1,

δ+/Pr = 548;
�

, δ+ = 548, Pr = 0.71, δ+/Pr = 772; �, δ+ = 995, Pr = 1, δ+/Pr = 995; �, δ+ = 995, Pr =
0.71, δ+/Pr = 1401; ×, δ+ = 2017, Pr = 1, δ+/Pr = 2017; ·, δ+ = 548, Pr = 0.20, δ+/Pr = 2740; �,

δ+ = 2017, Pr = 0.71, δ+/Pr = 2841; ◦, δ+ = 4088, Pr = 1, δ+/Pr = 4088; �, δ+ = 995, Pr = 0.20,

δ+/Pr = 4975; , δ+ = 4088, Pr = 0.71, δ+/Pr = 5758; +, δ+ = 2017, Pr = 0.20, δ+/Pr = 10085; ,
δ+ = 4088, Pr = 0.20, δ+/Pr = 20 440.

and (7) gives the inner-normalized total scalar variance equation
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The four grouped terms are respectively referred to as molecular transport (MT), gradient produc-
tion/turbulent diffusion (GPTD), dissipation (D), and product scalar generation (PG).

B. Four-layer structure

As guided by our previous study of the total kinetic energy budget equation [17], the ratio of the
sum of the molecular transport term and the dissipation term to the gradient production/turbulent
diffusion term (MT+D)/GPTD is used to characterize the layer structure of the total scalar variance
equation. As can be seen, the data organize into four clear layers, which we label layers i–iv.
Consistent with the criterion used in the previous analysis, the ending position of layer i is where
this ratio becomes greater than −2. The external bound of layer ii is determined where the ratio
is less than −2, while the outer boundary of layer iii is based on where the ratio decreases below
0.5. The ratio profiles are shown in Fig. 1(a). Layer i lies close to the wall, y+ � 1. In this domain,
the leading balance is between the molecular transport term and the dissipation term. Consistent
with the first layer associated with the mean scalar equation structure, the thermal inner length
scale,

√
ν2α/u3

τ δ, also scales the first layer (layer i) of Eq. (8). The scaling with this length is
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δ+ − δ+/Pr

(a)

δ+ − δ+/Pr

(b)

δ+ − δ+/Pr

(c)

FIG. 2. (a) Inner-normalized width of layer iii for Pr = 0.20. ·, δ+ = 548, Pr = 0.20, δ+/Pr = 2740;
�, δ+ = 995, Pr = 0.20, δ+/Pr = 4975; +, δ+ = 2017, Pr = 0.20, δ+/Pr = 10 085; , δ+ = 4088, Pr =
0.20, δ+/Pr = 20 440. Curve fit is given by 0.29(δ+ − √

δ+/Pr). (b) Inner-normalized width of layer
iii for Pr = 0.71.

�
, δ+ = 548, Pr = 0.71, δ+/Pr = 772; �, δ+ = 995, Pr = 0.71, δ+/Pr = 1401; �, δ+ =

2017, Pr = 0.71, δ+/Pr = 2841; , δ+ = 4088, Pr = 0.71, δ+/Pr = 5758. Curve fit is given by 0.25(δ+ −√
δ+/Pr). (c) Inner-normalized width of layer iii for Pr = 1.

�
, δ+ = 548, Pr = 1, δ+/Pr = 548;

�, δ+ = 995, Pr = 1, δ+/Pr = 995; ×, δ+ = 2017, Pr = 1, δ+/Pr = 2017; ◦, δ+ = 4088, Pr = 1, δ+/Pr =
4088. Curve fit is given by 0.21(δ+ − √

δ+/Pr).

convincingly reflected in Fig. 1(b). A curve fit indicates that y+
iend varies like 12.58 Pe

− 1
2

τ , where
Peτ = Prδ+ is the friction Péclet number. Outside layer i, the ratio of Fig. 1 is very close to −1, and
even more so at the highest δ+. Across this region (layer ii), the molecular transport, dissipation,
and the gradient production/turbulent diffusion terms constitute the leading balance. Commensurate
with the gradient production/turbulent diffusion term changing its sign, there is a leading balance
exchange across layer iii. Detailed examination (not shown) indicates that, except for the molecular
diffusion term, the other three terms are leading order. With greater distance from the wall, the
magnitude of the dissipation term becomes much smaller, and its loss of leading order marks the
onset of layer iv. This last layer is where the gradient production/turbulent diffusion term is balanced
by the scalar generation term.

C. Width of layer iii

As demonstrated in Fig. 1, layer iii is where the leading balance transitions from one in which
molecular effects are important to one where these effects become subdominant. As such this layer
width is expected to exhibit sensitivity to both Reynolds and Prandtl number. The Reynolds and
Prandtl number dependencies of the inner-normalized width of layer iii are shown in Figs. 2(a)–2(c)
for Pr = 0.20, 0.71, and 1, respectively. Consistent with the scaling analysis in Sec. II E below,
here the inner-normalized width of layer iii is plotted for fixed Pr and versus δ+ − √

δ+/Pr. This
is reasoned to effectively account for the finite Reynolds number effect on the outer normalization.
For fixed Pr, the inner-normalized width of layer iii increases according to a linear trend in δ+ −√

δ+/Pr. We note, however, that the leading coefficients in these linear relations are different for
each Pr.

D. Balances in layers iii and iv

Close examination indicates that across layers iii and iv, the contribution to Eq. (8) from
turbulent diffusion is much smaller than the contribution from gradient production. This observation
is exemplified by the δ+ = 4088, Pr = 0.2 results of Fig. 3(a). It is surmised that in layers iii
and iv the turbulent diffusion term is subdominant and the dissipation term is dominated by its
turbulence contribution. This is demonstrated in Fig. 3(b), which shows the ratio of the mean to
turbulent dissipation (MD/TD). In these figures, the data curves consistently segregate into three
Prandtl number-dependent groups. The vertical dashed-dotted, dashed, and solid lines, respectively,
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(a) (b)

FIG. 3. (a) Ratio of the turbulent diffusion to the gradient production part at δ+ = 4088, Pr =
0.20, δ+/Pr = 20440. The vertical dashed-dotted line denotes the external bound of layer ii. The vertical solid
line denotes the external bound of layer iii. (b) Ratio of the mean dissipation (MD) to the turbulent dissipation
(TD). The vertical dashed-dotted line denotes the external bound of layer ii at δ+ = 548, Pr = 1, δ+/Pr =
548. The vertical dashed line denotes the external bound of layer ii at δ+ = 548, Pr = 0.71, δ+/Pr = 772.
The vertical solid line denotes the external bound of layer ii at δ+ = 548, Pr = 0.20, δ+/Pr = 2740.

represent the end of layer ii for δ+ = 548, Pr = 1 (δ+/Pr = 548), δ+ = 548, Pr = 0.71 (δ+/Pr =
772) and δ+ = 548, Pr = 0.20 (δ+/Pr = 2740). Beyond the start of layer iii the mean dissipation is
at least six times smaller than the turbulent dissipation, and its effect over layer iii diminishes with
increasing δ+. As a result, the layer iii balance simplifies to being composed of PGT, GP, TD, and
SG. Figure 4(a) shows profiles of these four terms across layers iii and iv at δ+ = 4088. Beyond
layer iii, GP and TD lose leading order, becoming negligible compared to PGT and SG. Figure 4(b)
shows the profile of PGT/SG and the ratio of GP/TD.

As might be expected from the classical production equals turbulence dissipation argument,
although both the GP and TD terms are much smaller than the other two terms (and thus are not
leading order), their ratio is nearly −1. This ratio then approaches zero near the outer edge of layer
iv. Beyond layer ii, the GP term, is balanced by the TD term with the gradient production term

(a) (b)

FIG. 4. (a) Profiles of terms PGT (
�

), GP (
�

), TD (�), and SG (�) across layers iii and iv at δ+ =
4088, Pr = 1, δ+/Pr = 4088. The vertical dashed-dotted line denotes the external bound of layer ii. The
vertical solid line denotes the external bound of layer iii. (b) Ratios of terms PGT/SG (�) and GP/TD at
δ+ = 4088, Pr = 1, δ+/Pr = 4088. The vertical dashed-dotted line denotes the external bound of layer ii. The
vertical solid line denotes the external bound of layer iii.
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approaching 0 more rapidly as y+ → δ+. The ratio of the PGT to the SG term is also approximately
−1 throughout layer iv. It is concluded that beyond layer ii, the PGT term nominally balances the
SG term. The two separate combinations of terms just described respectively reflect the approximate
balances associated with the mean and turbulence scalar variance equations. Here we note that while
the predominant focus of research has been on the turbulence equations, it is in fact the mean terms
that dominate on layer iv.

E. Analytical estimate of the characteristic length of layer iii

This section presents an analysis revealing that (δ+ − √
δ+/Pr) is the appropriate length for

scaling the width of layer iii. We firstly note that layer iii is located in the nondiffusive domain
associated with the similarity solution of the mean scalar transport equation. Zhou et al. [8] showed
that on this domain the mean scalar equation can be written in an invariant form that without further
simplifications or assumptions can be twice integrated. Over this domain, these integrations yield
the logarithmic mean scalar profile equation

�+ = φ2
θc ln(y+ − C1) + C2y+ + C3. (9)

For δ+ → ∞, Zhou et al. [8] demonstrate that Eq. (9) reduces to the classical approximation,
�+ = 1

kθ
ln y+ + C3, where kθ = φ−2

θc . For the present purpose, we now work backwards to obtain
a relation for dT +

θ /dy+. Two differentiations yield

1

Pr

d2�+

dy+2
= − 1

Pr

φ2
θc

(y+ − C1)2
. (10)

Inserting this relation into the mean scalar equation [8] allows one to write
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θ

dy+ = − 1

Pr
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dy+2
− ε2 = 1

Pr

φ2
θc

(y+ − C1)2
− ε2, (11)

where ε2 = 1/δ+. We now employ the condition that T +
θ attains its maximum at y+

θm, i.e., in the
center part of the third layer associated with the mean scalar equation. Here dT +

θ /dy+ = 0. This

condition leads to ε2 = 1
Pr

φ2
θc

(y+
θm−C1 )2 , and Eq. (11) becomes

dT +
θ

dy+ = 1

Pr

φ2
θc

(y+ − C1)2
− 1

Pr

φ2
θc

(y+
θm − C1)2

. (12)

Integration of Eq. (12) leads to

T +
θ = C4 − 1

Pr

φ2
θc

y+ − C1
− 1

Pr

φ2
θcy+

(y+
θm − C1)2

. (13)

Noting that C1 becomes negligible as δ+ → ∞ and using y+
θm = H

√
δ+/Pr [where H is an O(1)

constant, 	1.48 [8]] give

dT +
θ

dy+ = 1

Pr

φ2
θc

y+2
− φ2

θc

H2δ+ (14)

and thus

T +
θ = C4 − 1

Pr

φ2
θc

y+ − φ2
θcy+

H2δ+ . (15)

Using T +
θ = 0 at y+ = δ+ as δ+ → ∞ for any fixed Pr allows evaluation of C4,

C4 = φ2
θc

H2
. (16)
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Similarly, using T +
θ = 1 at y+ = y+

θm = H
√

δ+/Pr as δ+ → ∞ for any Pr yields

1 = φ2
θc

H2
, (17)

and thus C4 → 1 as δ+ → ∞.
We now use these findings to characterize the scaling of the leading balance of Eq. (8) in layer

iii. Noting that �+(dT +
θ /dy+) ∼ ε2�+ in layer iii gives

dT +
θ

dy+ = 1

Pr

φ2
θc

y+2
− φ2

θc

H2δ+ = O(ε2). (18)

As δ+ → ∞, φ2
θc and φ2

θc/H2 both remain O(1), Eq. (26) is valid only when y+ � O(1/
√

Prε) =
O(

√
δ+/Pr). Thus, requiring y+ � O(1/

√
Prε) in Eq. (13) and noting that C4 is O(1) gives

T +
θ = O

(
1 − ε√

Pr

)
(19)

in layer iii. This order of magnitude is valid in the portion of layer iii that is beyond the peak of T +
θ ,

since T +
θm is 1 − O(ε/

√
Pr).

Within layer iii, Eq. (18) shows that

dT +
θ

dy+ = O(ε2). (20)

Thus, our task now is to find a rescaling that formally reflects both terms as leading order. The
rescaling process begins by setting

T + = RT̄ , y+ = y+
0 + Sȳ, (21)

where T̄ , ȳ are O(1) as δ+ → ∞, and y+
0 is the position where the gradient production/turbulent

diffusion term changes its sign in layer iii. Inserting Eqs. (21) into Eq. (20) gives

dT +
θ

dy+ = R

S

dT̄

dȳ
. (22)

As a result, rendering this expression O(1) requires that

S = 1

ε2
R. (23)

Note that R is the order of T +
θ in layer iii, that is 1 − ε/

√
Pr, and thus S is then found to be

S = 1

ε2

(
1 − ε√

Pr

)
. (24)

Using this in the y-scaling of Eq. (21) gives

y+ = y+
0 +

(
1

ε2
− 1

ε
√

Pr

)
ȳ = y+

0 +
(

δ+ −
√

δ+

Pr

)
ȳ. (25)

By definition, ȳ is O(1) in layer iii, and thus it follows that the inner-normalized width of layer iii is
O(δ+ − √

δ+/Pr) for any fixed Pr. This scaling is interpreted as a finite Reynolds number correction
to traditional outer scaling, since it is apparent that (δ+ − √

δ+/Pr) → δ+ for fixed Pr as δ+ → ∞.
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III. ON THE DIFFERENCE BETWEEN THE SCALAR AND MOMENTUM
KÁRMÁN CONSTANTS

The findings herein, along with our previous studies of the mean scalar equation, allow us to
extract results pertaining to the known difference between the logarithmic mean scalar and velocity
profiles. The present simulations provide a unique opportunity to examine this issue, as these
simulations are, to the authors’ knowledge, the first to show that even when the mean scalar and
velocity problems constitute an identical boundary value problem, a distinct difference between
k and kθ remains. The identical scalar and velocity boundary value problem leads one to naively
expect that the scalar Kármán constant should be numerically the same as that for the momentum
field. Notably, however, both the direct slope measurements by Pirozzoli et al. [18] and the mean
equation analysis by Zhou et al. [8] indicate that the scalar Kármán constant for Pr = 1 is kθ > 0.45,
while for the velocity k 	 0.39. For well-posed determinate systems, an identical equation with
identical boundary conditions will yield an identical solution. Here, of course, the indeterminacy of
the mean equations is operative.

The analytical framework employed herein provides a refined basis for elucidating the noted
difference between k and kθ . This approach explicitly describes how the value of the profile slope
constant for the velocity or scalar is connected to the profile of the Reynolds stress or scalar flux,
respectively. Specifically, analytical treatment of the mean equations reveals that the discrepancy
between kθ (Pr = 1) and k derives from small differences between the wall-normal gradients of
these functions on the inertial (nondiffusive) domain.

The decay rate of these functions determine the characteristic length distributions that respec-
tively underly the logarithmic dependence of the mean profiles [19]. For each case, the distribution
of lengths describes the widths of a hierarchy of scaling layers. For the velocity and scalar these
are, respectively, denoted W + and W +

θ [see Eqs. (26) and (27)]. Both are functions of y+. The layer
width distributions analytically derive from determining an invariant form of the mean equation
that holds on each layer of the hierarchy. While this invariant form is valid across a domain that
extends from near the edge of the viscous sublayer to beyond the logarithmic layer, our present
focus is on the inertial (nondiffusive) domain. Here the analysis reveals that W +(y+) or W +

θ (y+)
asymptotically attain proportionality with the distance from the wall, and at any finite δ+ they best
approximate linearity on this domain. To the authors’ knowledge, these analyses yield the only
analytical basis for distance from the wall scaling. The invariance of the mean equation and this
associated property underlies a similarity solution found by directly integrating the mean equations
(for velocity or scalar) on the inertial domain. Relevant to the present aims, these analyses also
reveal that the values of k and kθ are directly related to dW +/dy+ and dW +

θ /dy+, respectively.
Namely, k = (dW +/dy+)2 on the inertial domain, and similarly kθ = (dW +

θ /dy+)2.
The respective relationships between W + and W +

θ and the Reynolds stress and scalar flux
gradients are seen through their definitions [8,9]

W + =
(

dT +

dy+ + 1

δ+

)− 1
2

(26)

and

W +
θ =

(
dT +

θ

dy+ + 1

δ+

)− 1
2

, (27)

where T + = −〈u+v+〉 and T +
θ = −〈v+θ+〉. The only difference in these expressions comes from

those between dT +/dy+ and dT +
θ /dy+. Since the v fluctuations are unchanged in a flow with a

passive scalar, the differences in the transport of the u and the θ fluctuations, and/or their correlation
with the v fluctuations, account for the difference between the gradients of Reynolds stress and
turbulent scalar flux on the nondiffusive domain of interest. In what follows, we first expose the
primary reason why the Reynolds stress and scalar flux gradients are different on the inertial domain,
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and then investigate the differences between the u and θ fluctuation statistics and their associated
effect on the Reynolds stress and scalar flux.

A. Composition of the Reynolds stress and scalar flux gradients

Product rule expansion of the Reynolds stress and scalar flux gradients yields

dT +

dy+ = −
〈
v+ ∂u+

∂y+

〉
−

〈
u+ ∂v+

∂y+

〉
(28)

and

dT +
θ

dy+ = −
〈
v+ ∂θ+

∂y+

〉
−

〈
θ+ ∂v+

∂y+

〉
, (29)

respectively. These representations are useful since they identify the second term with the continuity
constraint on the velocity field. As discussed further below, this factors into how u and v correlate
in a manner different from θ and v. Regarding Eq. (28) it is also relevant to note that for fully
developed channel flow

dT +

dy+ = 〈v+ω+
z 〉 − 〈w+ω+

y 〉, (30)

where ω+
z and ω+

y are the spanwise and wall-normal vorticity fluctuations, respectively. Recalling
the definitions of these vorticity components reveals that the terms on the right-hand side of Eqs. (28)
and (30) are identically equal to each other. This is obvious for the first terms, but one must invoke
continuity to show that the second terms are equal to each other. The representation of the Reynolds
stress gradient in Eq. (30) is physically significant. Here the first term is associated with the turbulent
wall-normal advection of spanwise vorticity, while the second term embodies change of scale effects
associated with vorticity stretching and reorientation [3,20].

With this as context, we now compare the analogous terms on the right-hand side of Eqs. (28)
and (29). Figure 5(a) displays these profiles at δ+ = 4088 over the entire half-channel, and Fig. 5(b)
shows a close-up of these profiles on the inertial domain. In combination, Figs. 5(a) and 5(b) show
that the profiles of 〈v+∂u+/∂y+〉 and 〈v+∂θ+/∂y+〉 are nearly identical, while on the inertial domain
〈u+∂v+/∂y+〉 is distinctly different from 〈θ+∂v+/∂y+〉. Physically, these findings indicate that the
wall-normal turbulent advection of scalar and spanwise vorticity are on average very similar, while
the average change of scale effects on the inertial domain are significantly different. According to
Eqs. (26) and (27), this discrepancy accounts for the observed difference between k and kθ .

B. Streamwise velocity variance budget versus scalar variance budget

The differences between the streamwise velocity and scalar fluctuations have been studied by a
number of researchers [18,21,22]. Relative to the present aims, it is useful to examine the respective
budget equations for 〈u2〉 and 〈θ2〉.

The inner-normalized streamwise velocity variance budget equation for fully developed turbulent
channel flow is

− d

dy+ 〈u+u+v+〉 + d2

dy+2
〈u+u+〉 + 2T + dU +

dy+ − 2

〈
∂u+

∂x+
k

∂u+

∂x+
k

〉
+ 2

〈
p+ ∂u+

∂x+

〉
= 0. (31)

As expected, this equation has five terms of a form similar to those found in the turbulence kinetic
energy equation. The five terms are referred to as turbulent diffusion, viscous diffusion, production,
dissipation, and pressure strain.

024606-10



PROPERTIES OF THE SCALAR VARIANCE TRANSPORT …

(a)

(b)

FIG. 5. (a) Profiles of terms on the right of Eq. (28) at δ+ = 4088. Profiles of terms on the right-hand
side of Eq. (29) at δ+ = 4088 and Pr = 1. Solid line, 〈v+∂u+/∂y+〉; dotted line, 〈v+∂θ+/∂y+〉; dashed line,
〈u+∂v+/∂y+〉; dashed-dotted line, 〈θ+∂v+/∂y+〉. (b) Closeup plot of (a) across inertial (nondiffusive) domain.
The vertical dashed line denotes y+ = 2.6

√
δ+. The vertical dashed-dotted line denotes y+ = 0.3δ+.

The analogous inner-normalized scalar variance budget equation with uniform scalar generation
which is two times Eq. (7) is

− d

dy+ 〈v+θ+θ+〉 + 1

Pr

d2

dy+2
〈θ+θ+〉 + 2T +

θ

d�+

dy+ − 2
1

Pr

〈
∂θ+

∂x+
k

∂θ+

∂x+
k

〉
= 0. (32)

The four terms are referred to as turbulent diffusion, molecular transport, gradient production, and
dissipation.

There are five terms in the 〈u2〉+ budget equation, while there are only four terms in the 〈θ2〉+
budget equation. As is apparent, the pressure-strain terms play a nontrivial role in streamwise
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(a) (b)

FIG. 6. (a) Profiles of terms in Eq. (31) across inertial domain at δ+ = 4088.
�

, turbulent diffusion;
�

,
viscous diffusion; �, production; �, dissipation; �, pressure strain. The vertical dashed line denotes the
external bound of layer III for mean momentum balance. The vertical dashed-dotted line denotes y+ = 0.3δ+.
(b) Profiles of terms in Eq. (32) across nondiffusive domain at δ+ = 4088 and Pr = 1.

�
, turbulent diffusion;�

, molecular transport; �, gradient production; �, dissipation. The vertical dashed line denotes the external
bound of layer III for mean scalar balance. The vertical dashed-dotted line denotes y+ = 0.3δ+.

velocity transport. Since the similarity solution for both the mean velocity and mean scalar are
valid over the inertial domain, the leading balance for the budget equations, Eqs. (28) and (29),
are considered in this region. Specifically, this region is demarcated by 2.6

√
δ+ � y+ � 0.3δ+ for

the velocity, and 2.5
√

δ+/Pr � y+ � 0.3δ+ (with Pr = 1), for the scalar [8,19]. Figures 6(a) and
6(b), respectively, show representative profiles of the terms in Eqs. (31) and (32) across the noted
domains. Similar production and generation production profiles are observed across this domain.
The 〈uu〉+ budget in the logarithmic region of the mean velocity profile is characterized by the
leading balance of three terms, production, dissipation, and pressure strain. However, only the
dissipation term balances the gradient production terms in the logarithmic region of the mean scalar
profile. The magnitude of the streamwise velocity dissipation is considerably less than that of the
scalar dissipation. This difference is physically compensated by the pressure strain. The findings of
the previous subsection suggest that this is related to the differences in the change of scale effects
on the vorticity versus scalar fields. The negative work done by the fluctuating pressure of the
turbulence and the lower streamwise velocity dissipation rate play a role in generating a higher mean
gradient for the velocity relative to the mean scalar gradient, i.e., k < kθ . This is consistent with
the observation of Pirozzoli et al. [18], showing that the instantaneous cross-stream visualizations
of θ exhibit much sharper internal interfaces than exhibited by the u field. This observation is also
presumably related to the lower dissipation and the work done by the pressure on the inertial domain.

C. Correlation

Streamwise velocity variance profiles and scalar variance profiles for Pr = 1 are shown in
Fig. 7(a). The 〈u2〉+ profiles attain distinctly larger values than the 〈θ2〉+ profiles on the internal
domain, and tend towards a plateau just prior to the approximately logarithmic decay. The Reynolds
stress, T +, and turbulent flux, T +

θ profiles of Fig. 7(b), are, however, nearly indistinguishable from
each other. A subtle difference between T + and T +

θ is observed in the inertial domain (see inset),
where the T +

θ is larger. It is this subtle difference that modifies the hierarchy length scale distribution
described by Eq. (26) versus Eq. (27), and as reflected in the differences in the contributions to
dT +/dy+ and dT +

θ /dy+ in Fig. 5.
Given the relatively large differences between the 〈u2〉+ and 〈θ2〉+ profiles, it is remarkable that

the net inner-normalized correlation between u and v and θ and v is nearly identical. To understand
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θ
(a)

θ

δ
(b)

θ

FIG. 7. (a) Streamwise velocity and scalar variances. Dotted line, 〈u2〉+
, δ+ = 548; Dashed line,

〈u2〉+
, δ+ = 995; dashed-dotted line, 〈u2〉+

, δ+ = 2017; solid line, 〈u2〉+
, δ+ = 4088;

�
, 〈θ2〉+

, δ+ =
548, Pr = 1;

�
, 〈θ 2〉+

, δ+ = 995, Pr = 1; �, 〈θ2〉+
, δ+ = 2017, Pr = 1; �, 〈θ2〉+

, δ+ = 4088, Pr = 1.
(b) Reynolds stress and turbulent flux. Inset: Solid line, T +, δ+ = 4088; �, T +

θ , δ+ = 4088, Pr = 1.

this further we consider the associated correlation coefficient. This statistic is defined by

Cab = 〈ab〉√
〈a2〉

√
〈b2〉

. (33)

It is the ratio of the covariance to the product of the respective standard deviations. The profiles
of −Cuv and −Cvθ for varying δ+ and Pr = 1 are shown in Fig. 8(a) and specifically for δ+ =
4088 in Fig. 8(b). In the logarithmic region, both −Cuv and −Cvθ stay relatively close to 0.4, but
increase with distance from the wall, and consistent with previous observations display a reduction
in magnitude with increasing δ+ [23]. The upward increment of −Cvθ on the inertial domain is,
however, significantly greater than that of −Cuv . Here θ becomes more linearly correlated with v

than does u. The noted difference is, however, much greater than that observed in Fig. 6(b), and this
increased “efficiency” of the correlation nearly compensates for the amplitude differences shown in
the profiles of Fig. 6(a).

(a) (b)
θ

FIG. 8. (a) Profiles of correlation coefficient. Dotted line, −Cuv, δ
+ = 548; dashed line, −Cuv, δ

+ =
995; dashed-dotted line, −Cuv, δ

+ = 2017; solid line, −Cuv, δ
+ = 4088;

�
, −Cvθ , δ

+ = 548, Pr = 1;
�

,
−Cvθ , δ

+ = 995, Pr = 1; �, −Cvθ , δ
+ = 2017, Pr = 1; �, −Cvθ , δ

+ = 4088, Pr = 1. (b) Profiles of correlation
coefficient. Solid line, −Cuv, δ

+ = 4088; �, −Cvθ , δ
+ = 4088, Pr = 1. The vertical dashed line denotes the

external bound of layer III for mean scalar balance. The vertical dashed-dotted line denotes y+ = 0.3δ+.
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As discussed relative to Fig. 7, we reiterate that the streamwise velocity, u, and the wall-normal
velocity, v, are related to each other through continuity. The correlation coefficient profiles indicate,
however, that the unconstrained θ is more linearly correlated with v than is u. This phenomenon
apparently leads to the observation that the continuity constraints on u and v render them less
linearly correlated in this region of the flow. These effects are associated with the subtle variations
in T +(y+) and T +

θ (y+) (for Pr = 1) observed in Fig. 6(b), and as revealed in Fig. 7 apparently
arise from differences in the change of scale effects on dT +/dy+ and dT +

θ /dy+. These underlie the
modifications to the scaling layer hierarchies associated with the logarithmic profile solutions on
the inertial domain.

IV. CONCLUSIONS AND DISCUSSION

Properties of the layer structure associated with total scalar variance equation in fully developed
turbulent channel flow with uniform scalar generation are revealed and investigated. These proper-
ties were explored using the DNS data sets of Pirozzoli et al. [18], which cover 548 � δ+ � 4088
and 0.2 � Pr � 1. Quantitatively, the layer thicknesses are found to exhibit distinct Reynolds
number and Prandtl number dependencies. Similar to the total kinetic energy equation, a four-layer
structure is revealed. As is evident, the width of the layer closest to the wall (layer i) is characterized
by a thermal inner scale,

√
ν2α/u3

τ δ, which leads the inner-normalized thickness of this layer to
scale with 1/

√
Prδ+. Analytical results indicate that the layer iii width follows a (δ+ − √

δ+/Pr)
dependence at finite Reynolds numbers for each fixed Prandtl number. This finding is supported by
the data. Quantitatively, the present results indicate that the layer scaling behaviors associated with
the scalar variance differ substantially from those of the total kinetic energy balance and the mean
scalar balance.

Previous empirically and analytically based estimates by Pirozzoli et al. [18] and by Zhou et al.
[8], respectively, indicated the value of scalar Kármán constant. They both found that kθ is greater
than the Kármán constant, k, for momentum. The analytical finding is based on the properties of
the similarity solution for the logarithmic mean profile over the inertial (nondiffusive) domain. For
Pr = 1, the two formulations yield the same differential equation with the same boundary condi-
tions. Given this, the present framework provides a clear basis for evaluating the origins of the noted
difference. Consistent with the previous observations of Pirozzoli et al. [18], the present analyses
indicate that the pressure-strain term in the streamwise velocity budget equation that is absent in the
scalar budget equation plays a significant role. Investigation of the Reynolds sear stress and turbulent
heat flux shows the scalar θ is more linearly correlated with v than streamwise velocity u over the
inertial (nondiffusive) domain, even if the development of the u is more constrained by v due to
incompressibility. Within the context of the present theory, these effects lead to a modification of an
internal scaling layer hierarchy via subtle difference between the Reynolds stress and turbulent heat
flux gradients. This changes the exact distance from the wall scaling attained in the scalar versus
momentum formulations, and thus the slope of the respective logarithmic mean profiles.
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