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Shape factor of the turbulent boundary layer on a flat plate and the Reynolds
shear stress in the outer region
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It has recently been shown by Wei and Klewicki [Phys. Rev. Fluids 1, 082401 (2016)]
that in a zero-pressure-gradient turbulent boundary layer flow, the product of the nondi-
mensional free-stream velocities in the streamwise (U+

∞) and wall-normal (V +
∞ ) directions

is the flow shape parameter (H ): U+
∞V +

∞ = H . It is suggested here that this result is a
consequence of the variation of the Reynolds shear stress with U∞V in the outer region of
the boundary layer.
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I. INTRODUCTION

Recently, Wei and Klewicki [1] and Wei and Maciel [2] have reported very interesting scales for
the mean wall-normal velocity and the Reynolds shear stress in a zero-pressure-gradient turbulent
boundary layer. Wei and Klewicki [1] have proposed that (1) the appropriate velocity scale for the
mean wall-normal velocity, V , is its value at the boundary layer edge, V∞, and (2) the product of
the free-stream speed, U∞ and V∞ when normalized by the friction velocity, uτ , is the shape factor,
H (=δ∗/θ ):

U+
∞V +

∞ = H. (1)

Here U+
∞ = U∞/uτ , V +

∞ = V∞/uτ , δ∗ is the displacement thickness, and θ is the momentum
thickness. Another important result due to Wei and Maciel [2] is that (3) the scaling order of
the Reynolds shear stress, τxy , in the outer layer is that of U∞V∞. Their equation (21) in present
notations is

O(τxys ) ∼ O(U∞V∞); (2)

here an additional subscript “s” denotes the characteristic scale. Utilizing the characteristic scales
U∞ and the boundary layer thickness, δ, these results were obtained from an order-of-magnitude
analysis of various nondimensional terms in the continuity equation and the boundary layer equation
without the viscous term for the outer region [2] using integral analysis results of the continuity
and momentum equation [1]. In this short note, we consider the boundary layer equation for the
velocity-deficit in the outer layer [3] to show that U+

∞V +
∞ = H is associated with the linear variation

of U+
∞V + with the Reynolds shear stress in the outer layer.
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II. ANALYSIS

We consider a steady and incompressible flow over a semi-infinite flat plate. For this constant-
pressure flow, let U and V , respectively, denote the mean streamwise velocity and the wall-normal
velocity; u′ and v′ are the fluctuating velocity components in these directions, respectively.

In the outer region of a turbulent boundary layer, the viscous effect is negligible for large friction
Reynolds number, Reτ (=uτ δ/ν) [3], and one is concerned with the velocity defect, (U∞ − U ). The
linear boundary layer equation for the velocity defect [3] is

U∞
∂

∂x
(U − U∞) + (U − U∞)

dU∞
dx

− y
dU∞
dx

∂

∂y
(U − U∞) = −∂ (u′v′)

∂y
. (3)

For U∞ = const, Eq. (3) becomes

U∞
∂U

∂x
= −∂ (u′v′)

∂y
. (4)

Using the continuity equation,

∂U

∂x
+ ∂V

∂y
= 0, (5)

Eq. (4) becomes

−U∞
∂V

∂y
= −∂ (u′v′)

∂y
. (6)

Integrating once, we have

U∞V = u′v′ + C, (7)

where C is the constant of integration; in fact, C is a function of x, as the dependent variables
in Eq. (6) are functions of x as well. This constant is such that, as u′v′ → 0 away from the wall,
U∞V is finite. It may be noted that Eqs. (3)–(5) and implicitly Eq. (6) are available in textbooks [4].
However, to our knowledge, Eq. (7) is unique to this paper.

In terms of the inner velocity scale, uτ , Eq. (7) can be written as

U+
∞V + = (u′v′)+ + C+, (8)

where C+ = C/u2
τ . Comparing this with Eq. (2), it can be seen that this scaling is similar to that

proposed by Wei and Maciel [2].
Equation (7) shows that U∞V in the outer boundary layer varies linearly with u′v′. This linear

variation is shown in Figs. 1(a)–1(c) using the simulation data of Simens et al. [5], Schlatter and
Örlü [6], and Eitel-Amor et al. [7]; Reθ (=U∞θ/ν) is the Reynolds number based on the momentum
thickness. We may note that the data shown here are for y+(=yuτ /ν) > 100. For a given Reynolds
number, the value of C+ was obtained by fitting a straight line to the data. The value of C+
(corresponding to u′v′ = 0) so inferred is compared with the shape parameter in Figs. 1(d)–1(f).
For a finite V +

∞ (as u′v′ → 0) far away from the wall, we have

U+
∞V +

∞ = C+. (9)

Comparing this with Eq. (1), one can say that C+ = H . That this is so can be seen in Figs. 1(d)–
1(f) showing a good agreement between C+ and H . Therefore, U+

∞V +
∞ = H is an outcome of the

variation of the Reynolds shear stress in the outer layer.
Alfredsson et al. [8] have found that urms/U varies linearly with U/U∞ in the outer region of the

boundary layer; urms is root-mean-squared value of the fluctuating streamwise velocity component,
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FIG. 1. (a–c) Variation of U+
∞V + with the Reynolds shear stress. (d–f) Comparison of C+ (open symbol)

with the shape parameter (filled symbol). Data shown are Schlatter and Örlü [6] in panels (a) and (d), Simens
et al. [5] in panels (b) and (e), and Eitel-Amor et al. [7] in panels (c) and (f).

u′. The region of such linear variation increases with an increase in the Reynolds number. For the
Reynolds shear stress in the outer layer, on the other hand, it is shown here that one should seek its
variation with U∞V ; also, this possibly suggests a simple relationship between these two quantities
via a complicated physics.
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III. CONCLUSION

For a zero-pressure-gradient boundary layer, it has recently been shown that the nondimensional
product of the characteristic velocities in the streamwise direction and the wall-normal direction is
the flow shape parameter [Eq. (1)]. It is shown here that this is a consequence of the linear variation
of U+

∞V + with the Reynolds shear stress, and for the far field zero Reynolds stress condition, Eq. (8)
leads to Eq. (1).
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