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Statistics of incompressible hydrodynamic turbulence:
An alternative approach
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Using a recent alternative form of the Kolmogorov-Monin exact relation for fully
developed hydrodynamics (HD) turbulence, the incompressible energy cascade rate ε is
computed. Under this current theoretical framework, for three-dimensional (3D) freely
decaying homogeneous turbulence, the statistical properties of the fluid velocity (u), vor-
ticity (ω = ∇ × u), and Lamb vector (L = ω × u) are numerically studied. For different
spatial resolutions, the numerical results show that ε can be obtained directly as the simple
products of two-point increments of u and L, without the assumption of isotropy. Finally,
the results for the largest spatial resolutions show a clear agreement with the cascade rates
computed from the classical four-thirds law for isotropic homogeneous HD turbulence.
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I. INTRODUCTION

Turbulence is a nonlinear phenomenon omnipresent in nature. However, due to its extremely
complex nature, full understanding remains far from completion. For fully developed turbulence,
the fluid flow contains fluctuations populating a wide range of space and timescales. In the so-called
inertial range, sufficiently decoupled from the injection and forcing large scales and the dissipation
small scales, the kinetic energy (or other inviscid invariants of the flow) takes part in a cascade
process across the different scales. This process is characterized by a scale-independent cascade
rate, i.e., ε, which represents the universality of turbulence.

In the theory of statistically homogeneous turbulence [1], there are only a few exact results. For
three-dimensional (3D), homogeneous, isotropic, and incompressible HD turbulence, in the limit of
infinitely large kinetic Reynolds numbers, one of the most important exact results is the so-called
four-fifths law. This type of exact law is crucial for obtaining an accurate and quantitative estimate of
the energy dissipation rate ε, and hence, of the heating rate by the process of the turbulent cascade.
In its anisotropic generalization, the so-called Kolmogorov-Monin relation, can be cast as [2]

−2ε = ∇� · 〈|δu|2δu〉, (1)

where δu ≡ u(x + �) − u(x) is the velocity increment, x is a reference point, and � is the separation
vector. It is worth mentioning that Eq. (1) expresses the energy cascade rate ε purely in terms of
the two-point third-order structure functions (see, e.g., Refs. [1–4]). In practice, also, one has to
integrate the above equation in order to calculate ε from numerical or observational data. When
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isotropy is assumed, the integrated form of Eq. (1) predicts a linear scaling between the third-order
velocity structure function and the separation length scale � [5]. As a consequence, this scaling law,
and in general all scaling laws, put strong boundaries to the theories of turbulence. Similar analytical
relations have also been derived using different models of incompressible (and compressible)
plasma turbulence, with and without the assumption of isotropy [5–11]. However, for an anisotropic
or compressible flow, the computation of ε becomes much more difficult because of the absence of
spherical symmetry [12] or the presence of source/sink terms in the exact law [10,13–17].

Recently, inspired by the Lamb formulation [18], a number of unconventional exact laws have
been derived for fully developed turbulence [19]. Using two-point statistics, Banerjee and Galtier
[19] have found that the energy cascade rate can be expressed simply in terms of second-order
mixed structure functions. In particular, in this simpler algebraic form the authors have found that
the Lamb vector, i.e., L ≡ ω × u, plays a key role in the HD turbulent process. Moreover, unlike
Eq. (1), the alternative exact relation directly gives ε without going through an integration. Hence,
the current form is equally valid for a turbulent flow with and without the assumption of isotropy.
The main objective of the present paper is to calculate ε using the recently derived alternative exact
law for incompressible HD turbulence. For our study, we use numerical data obtained from 3D
direct numerical simulations (DNSs) with spatial resolution ranging from 1283 to 15363 grid points.
In the course of this study, we also investigate the statistical behavior of the velocity, vorticity, and
the Lamb vector fluctuations.

The paper is organized as follows: In Sec. II A we describe the equations and the code used in
the present work, and in Secs. II B and II C we present the classical and alternative exact laws for
fully developed HD turbulence. In particular, we present a brief analysis of the exact law, with a
particular emphasis on the structure of each term involved in the nonlinear cascade of energy; in
Sec. III we present our main numerical results; and, finally, in Sec. IV we discuss the main findings
and their implications.

II. THEORY AND NUMERICAL SIMULATIONS

A. Navier-Stokes equation and code

We solve numerically the equations for an incompressible fluid with constant mass density and
without external forcing. Then, the Navier-Stokes equation reads

∂u
∂t

= −(u · ∇)u − ∇p + ν∇2u, (2)

with the constraint ∇ · u = 0, p is the scalar pressure (normalized to the constant unity density), and
ν is the kinematic viscosity. In the present paper, our numerical results stem from the analysis of a
series of DNSs of Eq. (2) using a parallel pseudospectral code in a three-dimensional box of size 2π

with periodic boundary conditions, from N = 128 up to N = 1536 linear grid points. The equations
are evolved in time using a second-order Runge-Kutta method, and the code uses the 2/3 rule for
dealiasing [20–22]. As a result, the maximum wave number for each simulation is kmax = N/3,
where N is the number of linear grid points. We can define the viscous dissipation wave number as
kη = (〈ω2〉/ν2)1/4, and as a consequence the Kolmogorov scale is equal to η = 2π/kη. It is worth
mentioning that all simulations presented are well resolved, i.e., the dissipation wave number kη is
smaller than the maximum wave number kmax at times where the statistical computations have been
done.

The initial state in our simulations consists of isotropic velocity field fluctuations with random
phases, such that the total helicity is zero, and the kinetic energy initially is equal to 1/2 and
localized at the largest scales of the system (only wave number k = 2 is initially excited). There
is no external forcing and our statistical analysis is made at a time when the mean dissipation
rate reaches its maximum (around 5 turnover times). We also can define the Taylor and integral
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TABLE I. Parameters used in runs I to V: N is the linear grid points; ν is the kinematic viscosity; λ and
L are the Taylor and integral scales, respectively; 〈u2〉1/2 and 〈ω2〉1/2 are the rms velocity and rms vorticity,
respectively; Reλ and ReL are the Reynolds numbers based in the Taylor and integral scales, respectively; and
kmax/kν is the maximum to the dissipation wave-number ratio.

Run N ν λ L 〈u2〉1/2 〈ω2〉1/2 Reλ ReL kmax/kν

I 128 3.0 × 103 0.99 2.49 0.78 5.31 258 646 1.02
II 256 1.5 × 103 0.83 2.38 0.76 7.99 419 1205 1.17
III 512 7.5 × 104 0.42 1.74 0.77 12.45 435 1789 1.32
IV 1024 3.0 × 104 0.27 1.60 0.79 19.28 725 4212 1.34
V 1536 1.5 × 104 0.15 1.50 0.81 34.60 870 8736 1.03

scale as

λ = 2π

( ∫
E (k)dk∫

E (k)k2dk

)1/2

, (3)

L = 2π

∫
E (k)k−1dk∫

E (k)dk
, (4)

where E (k) is the kinetic energy spectrum. From the definitions (3) and (4), we can compute
the corresponding Reynolds number ReL = U0L/ν and the Taylor-based Reynolds number Reλ =
U0λ/ν (here, U0 = 〈u2〉1/2 is the rms velocity). Table I summarized these values for all runs used in
the present paper.

B. Classical exact law

As we discussed in the introduction, following the original works of Kolmogorov and Monin
and Yaglom derivations [2,4] for homogeneous and isotropic HD turbulence, assuming statistical
stationarity and a finite-energy cascade rate as ν goes to zero, we can compute the energy cascade
rate as a function of the third-order velocity structure functions as

−4

3
ε� = 〈|δu|2δu�〉 = 〈F�〉, (5)

where u� is the projection of the velocity field on the increment direction �. Equation (5) is the
so-called four-thirds law, which can be also derived from Eq. (1) assuming isotropic turbulence.
Usually, the mean flux term 〈F�〉 ≡ 〈|δu|2δu�〉 along � is identified as the flux of kinetic energy
through scales. It is worth mentioning that in the new alternative derivation to compute the energy
cascade rate from Banerjee and Galtier [19] (see Sec. II C), there is no projection along the
increment direction � and the expression only depends in the two-point mixed structure functions.
In particular, this would be essential when there is a privileged direction in the system, as in
magnetohydrodynamics (MHD) with a magnetic guide field (see, e.g., Refs. [23–28]) or in rotating
HD turbulence (see, e.g., Refs. [29–32]).

C. Alternative exact law

Following Banerjee and Galtier [19], here we give an schematic description of the derivation of
the alternative exact relation for fully developed homogeneous and incompressible turbulence. The
alternative Navier-Stokes Eq. (2) can be cast as

∂u
∂t

= (u × ω) − ∇pT + ν∇2u, (6)
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where the nonlinear term have been written as (minus) the Lamb vector and as a part of the total
pressure pT ≡ p + u2/2. The symmetric two-point correlators for the total energy can be defined as

RE = R′
E ≡ 1

2 〈u · u′〉, (7)

where the prime implies variable at x′ = x + � point. Using Eq. (6), the dynamical evolution
equation for the energy correlator is,

∂t (RE + R′
E ) = −〈u′ · L〉 − 〈u · L′〉 + D + F , (8)

where we have used the constraint ∇ · u = 0 and the relations L · u = 0 = L′ · u′, and D, F
represent the correlation terms related to the dissipation and forcing, respectively. Then, assuming
the usual assumptions for fully developed turbulence (where an asymptotic stationary state is
expected to be reached) [5,13,19], we can derive an exact law valid in the inertial range. In
particular, assuming an infinite kinetic Reynolds number with a statistical balance between forcing
and dissipation terms and a finite energy cascade rate as we go to the zero viscosity limit,
D ∼ 0, F ∼ 2ε, and Eq. (8) can be cast as

−2ε = −〈u′ · L〉 − 〈u · L′〉. (9)

Finally, using statistical homogeneity, we obtain after few steps of simple algebra the alternative
formulation of the exact law,

2ε = −〈δL · δu〉 = 〈δ(u × ω) · δu〉, (10)

where δu ≡ u(x + �) − u(x) is the usual increment. Equation (10) gives a divergence-free exact
relation for homogeneous incompressible turbulence valid in the inertial range, i.e., far away from
the forcing and dissipative scales. Unlike Eq. (1), this new expression does not involve a third-order
structure function but second-order mixed structure functions. Besides, there is no global divergence
in the alternative formulation. Therefore, the estimation of the energy cascade rate can be obtained
directly from the measurement of the scalar product of the Lamb vector increments with the velocity
increments.

Equation (10) can be cast as

2ε = εx + εy + εz, (11)

where we have identified three specific contributions as

εx ≡ −〈δLxδux〉 = 〈δ(uyωz − uzωy)δux〉, (12)

εy ≡ −〈δLyδuy〉 = 〈δ(uzωx − uxωz )δuy〉, (13)

εz ≡ −〈δLzδuz〉 = 〈δ(uxωy − uyωx )δuz〉. (14)

In homogeneous and isotropic turbulence, we expect that each of these contributions be statistically
the same.

III. RESULTS

A. Statistical dynamics of the velocity, vorticity, and Lamb vector

The Lamb vector is known to be of great importance for fluid dynamics. In particular, it
is essential for the nonlinear dynamics of turbulence [33,34] since the nonlinear term in the
Navier-Stokes equation (2) can be written as a function of the Lamb vector cross product the velocity
vector plus a gradient term. Then, in order to study the turbulent regime, we discuss the statistics
properties of the velocity, vorticity, and Lamb vectors.

Figure 1 shows three snapshots of the velocity (a), vorticity (b), and Lamb vector (c) modulus
for run V at the time when the dissipation reaches its maximum value. In the three panels, the
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(a) Velocity modulus (b) Vorticity modulus (c) Lamb vector modulus
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FIG. 1. Snapshot (512 × 512) of the velocity (a), vorticity (b), and Lamb vector (c) modulus for run V on
linear and logarithm scale, respectively.

large-scale structures are a signature of the initial condition (see Sec. II A), while the small-scale
structures are produced by the nonlinear dynamics and the direct cascade of energy. As we expect,
since the Lamb vector is the cross product between the velocity and vorticity fields, it shows chaotic,
multiscale, and intermittent behavior (in which strong gradients are highly localized).

Several statistical features associated with isotropic and homogeneous turbulence can be ob-
served from our numerical results. Figure 2 shows the probability distribution functions (PDFs)
for the velocity (a), vorticity (b), and Lamb vector (c) components for run IV. While each velocity
field component shows a clear Gaussian distribution with an approximate zero mean value, the
vorticity and Lamb vector components show a more exponential or peak distribution. The Lamb
vector statistical behavior is a direct consequence of the vorticity field dynamics in homogeneous
turbulence [34]. In particular, a more direct approach to characterize a turbulent flow is to compare
the PDFs of velocity increments at different two-point distances �. Then, we can defined the parallel
and perpendicular velocity increment as

δu‖ = � · [u(x + �) − u(x)], (15)

δu⊥ = � × [u(x + �) − u(x)]. (16)

Figure 3 shows the PDFs for u⊥ = |u⊥| (a) and L⊥ = |L⊥| (b) increments for different separation
distances �. For large separation distances, for the δu⊥ we observe distributions close to the Gaussian
distribution with decaying tails (i.e., presence of strong gradients). On the other hand, as we expect
for a turbulent and intermittent fluid, Fig. 3(a) shows the development of exponential and stretched

FIG. 2. For run IV: PDFs of the velocity (a), vorticity (b), and Lamb vector (c) components.
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FIG. 3. For run IV, PDFs of the transverse velocity (a) and Lamb (b) increments with � = η, � = 5η, � =
10η, and � = 20η, where η is the Kolmogorov dissipation scale.

exponential tails as the increment separation distance � decreases. It is worth mentioning that this
behavior is not observed in the perpendicular Lamb vector increments. In particular, we observe
exponential or peak distributions for all scale separations.

Figure 4 shows the kinetic energy spectra compensated by (a) k5/3 and (b) k4/3 as a function of the
wave number k for all runs in Table I. Typically, in incompressible HD turbulence, an inertial range
corresponds to Kolmogorov-like k−5/3 scaling. However, our numerical results show a scaling close
to k−4/3 instead. This behavior has already been reported by Mininni et al. [35], where a difference
of 1/3 was found in the scaling of kinetic energy spectrum. This departure is most likely due to
the bottle-neck effect (see, e.g., Refs. [35,36]). Nevertheless, the bottle-neck effect was found to be
prominent mostly for 3D simulations with grid points below 10243. In our present study, the −4/3
slope is still present in 15363 grid points. It is worth noting that previous studies also reported a

FIG. 4. Energy spectra for all runs in Table I as a function of wave number k.
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departure of the spectral index by 0.1 due to intermittency effects [37]. In a more general sense, we
interpreted our numerical results as a combined effect of bottle-neck and intermittency. A detailed
discussion on this subject is, however, is beyond the scope of the present work where the velocity
power spectra are drawn only to get a prior idea of the inertial zone in k space (∼8 × 100–6 × 101

for run V).

B. Computation of velocity and mixed structure functions

For the computation of velocity and mixed structure functions in multiple directions (and thus
to obtain statistical convergence by averaging over all these directions), we use the angle-averaged
technique presented in Taylor et al. [38]. This technique avoids the need to use 3D interpolations
to compute the correlation functions in directions for which the evaluation points do not lie on
grid points. This significantly reduces the computational cost of any geometrical decomposition of
the flow [39]. In particular, we have used a decomposition based in the SO(3) rotation group for
isotropic turbulence (see Refs. [16,40]).

The procedure used to compute each term in the exact law given in Eq. (10) [or Eq. (5)] over
several directions can be summarized as follows: In the isotropic SO(3) decomposition, the mixed
structure functions are computed along different directions generated by the vectors (all in units
of grid points in the simulation box) (1,0,0), (1,1,0), (1,1,1), (2,1,0), (2,1,1), (2,2,1), (3,1,0), and
(3,1,1) and those generated by taking all the index and sign permutations of the three spatial
coordinates (and removing any vector that is a positive or negative multiple of any other vector in
the set) (see Refs. [38,41]). This procedure generates 73 unique directions. In this manner, the SO(3)
decomposition gives the mixed structure functions as a function of 73 radial directions covering the
sphere [38]. The average over all these directions results in the isotropic mixed structure functions
which depend solely on �.

As an example, Fig. 5 shows the third-order structure function F� = |δu|2δu‖ for the 73 different
directions in the gray dotted line (for run IV). The overplot is the average structure function 〈F�〉 in
a black solid line. The inset plot is the energy cascade rate ε,

ε = −3

4

〈|δu|2δu‖〉
�

. (17)

On the other hand, from the alternative exact law (10), ε is simply the average second-order mixed
correlation function between the velocity and Lamb vectors divided by 2. It is worth mentioning
that the computation of ε using in situ measurements and Eq. (10) (i.e., the computation of the
vorticity field) can be achieved using multispacecraft techniques, as the curlometer technique (e.g.,
see Ref. [42]). In general, this technique requires simultaneous measurements from four spacecrafts
to be able to compute gradients. In particular, this technique have been used to compute electric
currents and vorticity fields with in situ observation from Cluster and the most recent NASA
Magnetospheric Multiscale (MMS) mission. In the next Sec. III C, we use the technique described
above to compute the energy cascade rates for all runs in Table I according to the alternative (10)
and the classical (5) exact laws.

C. Energy cascade rates

Figure 6 shows the energy cascade rates as a function of the two-point distance for each run in
Table I using the alternative and the well-known Kolmogorov-Monin form. In the left panel, we
plot εAl. using the alternative exact law (10) (black solid) and its components (12) (red dotted), (13)
(green dashed), and (14) (blue dot-dashed), and in the right panel we plot the energy cascade rate
εCl. using Eq. (5). The vertical black dashed line is the Taylor scale. The integral scale for each
run is larger than 1.25; i.e., the upper x-axis limit. Each plot in Fig. 6 has been normalized to their
corresponding energy dissipation rate ν〈ω2〉 (see Table I). Finally, for each run, we report the mean
ratio r = εCl./εAl., where the average has been computed along each inertial range.
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FIG. 5. For run IV: mean structure function 〈F�〉 (black solid) and structure functions F� along different
increment directions � (gray dotted) using Eq. (5). Inset plot: energy cascade rate along different directions
(gray dotted) and mean cascade rate (black solid).

When we increase the spatial resolution, we obtain a flatter region where the total energy cascade
rate is constant, thereby corresponding to the inertial range. In particular, for the largest spatial
resolutions, i.e., N = 1024 and N = 1536, the inertial range obtained from the classical exact law is
quite similar to the one obtained from the alternative exact law (r = 0.97 in both cases). Moreover,
in contrast to Eq. (1) where we had to project the local divergence operator in the direction of �,
using Eq. (10), εAl. was obtained directly from the measurements of the scalar product of the Lamb
vector increments with the velocity field increments. This is clearly an improvement with respect to
the old formulation of the exact relations [43] and, in addition, it would be very efficient to compute
energy cascade rates in turbulent systems where there is a privileged direction (e.g., turbulence with
rotation or with a background magnetic field).

IV. DISCUSSION AND CONCLUSIONS

Using a SO(3) isotropic decomposition, we have computed the energy cascade rate and we
have investigated the statistical properties of the velocity, vorticity, and Lamb vector for freely
decaying homogeneous turbulence. For different spatial resolutions, our numerical results show
that the energy cascade rate can be obtained directly from the measurements of the scalar product
of the Lamb vector increments δL with the velocity field increments δu. This indeed provides an
advantage over the tradition Kolmogorov-Monin differential form, which needs to be integrated to
compute ε.

We have studied several features associated with isotropic and homogeneous turbulence. In
particular, the PDFs for the velocity components show a clear Gaussian distribution with a zero
mean value whereas both the vorticity and the Lamb vector components show exponential or peak
distribution. Moreover, the PDFs for the velocity increments for large separation distances show
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FIG. 6. Energy cascade rates using Eq. (10) (left panel) and using Eq. (5) (right panel) as a function of �,
for all runs.

distributions close to Gaussian, while we observe the development of exponential and stretched
exponential tails as the increment distance � decreases, a direct consequence of the presence of
intermittency in the fluid.

For the largest spatial resolutions, we observe similar inertial ranges obtained from the classical
exact law or the new alternative exact law. As we discussed before, this is a clear advantage of the
alternative exact law since to be able to use Eq. (5) is mandatory to project the local divergence
operator into the increment direction �, while the energy cascade rate obtained from Eq. (10) is
obtained simply from the measurements of the scalar product of the Lamb vector increments with
the velocity field increments.

Finally, as we increase the spatial resolution, we observe that the three correlation function
components in Eq. (10), i.e., εx/2, εy/2 and εz/2, converge to one third of the total energy cascade
rate ε in the inertial range. These results are a direct consequence of the isotropy in the system.
As we reach the dissipation or the injection scales for each run, the different contributions εx, εy,
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and εz separate from each other. It is worth mentioning that in the presence of anisotropy (strong
magnetic field or a rotation axis) some ideal invariants of the system could be transferred to both
large (the so-called inverse cascade) and small scales. In the case of rotating and/or stratified flows
[44,45], this alternative methodology could be useful in the research of geophysical turbulent flows.
An interesting question would be how the three energy cascade components εx, εy, and εz behave
in a nonisotropic medium. In part, this question will be addressed elsewhere, in which we include a
strong magnetic guide field into the system.
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