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Wet active matter in the presence of an imposed temperature gradient, or chemical
potential gradient, is considered. It is shown that there is a type of convective instability
that is caused by a (negative) activity parameter. Physically this corresponds to active
fluids with contractual stress. In this nonequilibrium steady state the singular generic
long-ranged correlations are computed and compared and contrasted with the analogous
results in a passive fluid. In addition, the singular nonequilibrium Casimir pressure or
force is determined. The fluid motion above the instability is determined by generalizing
the Lorenz equations for the Rayleigh-Benard problem in a passive fluid to Lorenz-like
equations to describe this instability.
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I. INTRODUCTION

In recent years there has been an enormous amount of research on various aspects of active matter
[1,2]. The hydrodynamic description of active matter rests on identifying the relevant variables,
conservation laws, and slow processes and using symmetry to determine the allowed terms in
the equations in a gradient expansion [3,4]. This is exactly the case for passive matter, but the
crucial differences between the active and passive matter description are twofold: (1) the soft
mode equation is in general different, for example, active matter, or swimmers, chemically generate
their own energy so that the hydrodynamic temperature equation is not diffusive [5,6], and (2) the
coefficients in the hydrodynamic equations are not constrained by Onsager relations or free energy
considerations.

Active matter can be wet, that is, coupled to a momentum conserving solvent, or dry, that is,
coupled to momentum absorbing boundaries. Wet active matter is more similar to the usual passive
fluid hydrodynamics because they have more conservation laws in common. Physically, wet active
matter includes bacterial swarms in a fluid, the cytoskeleton of living cells, and biomimetic cell
extracts.

Much of the work on active matter has focused on active liquid crystals. These have either a
polar or nematic order parameter that leads to new active terms in the hydrodynamic stress tensor.
Depending on the size of the activity, there can be completely new physics, such as giant number
fluctuations, and spontaneous flow instabilities above an activity threshold [7–9]. Experiments on
bacteria swarms and microtubule-based cell extracts [10,11] seem to be closely related to numerical
simulations [12–14] of the active liquid crystal hydrodynamic equations.

Over the last decade there has been an immense amount of study of the complex dynamics of
suspension of self-propelled microorganisms and related synthetic microswimmers [15–20]. The
suspended particles exert active stresses, arising from the conversion of energy of one form to
another, on the fluid in which they are immersed. The fluid provides a coupling medium through
which large-scale dynamics is created. A typical minimal model was introduced in Ref. [21] with
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the particle represented as a rigid dumbbell exerting equal and opposite localized forces which
helped create a dipolar field at large distances due to self-propulsion. Coupling many such particles
hydrodynamically helped create interesting correlated motion at high concentrations. Solving such
models requires a large amount of computational effort and expense, which prompted the modeling
of active suspensions as complex fluids. Coarse graining, continuum mechanics, and statistical
mechanics were used to arrive at necessarily nonlinear continuum models [22]. One could then
look at physically relevant steady states and study the stability of such states by linearizing about
them. In a typical model of this variety one starts with a suspension of particles characterized by a
position vector r and an orientation vector p and introduces a distribution function ψ (r, p, t ). This
function follows a Liouville-like evolution (the Smoluchowski equation in this context). It should
be noted that this was the point of view in treating passive particles as well [23]. The additional
feature of the active particle emerges when one calculates the positional and orientational fluxes
that enter the conservation law for active fluid momentum. The interaction between the background
fluid velocity field and the position and orientation vectors of the particle (which is small but has
a definite extension) leads to a net force that characterizes the active particle. In turn the reaction
forces exerted by the particle on the fluid provides an additional contribution to the stress tensor in
the relevant Navier-Stokes equation for fluid flow. The system is thereby closed. In general one finds
two important classes of steady states: an aligned one and one which is isotropically ordered. It is the
study of the stability of such states which is a very important aspect of active matter hydrodynamics
[7,24–26]. Instabilities of this kind can also be seen in active polar liquid crystalline films where
the transition to a spontaneously flowing steady state is accompanied by strong concentration
inhomogeneities [28]. These flows become time dependent if the activity parameter is increased.

Here we study a different aspect of wet active matter. In particular we consider active matter
in a spatially dependent nonequilibrium steady state (NESS). We show that for a sufficiently large
driving force, or large activity, there is a type of convective hydrodynamic instability that is not
caused by gravity. To characterize it, we first consider the fluid below the instability and determine
the dynamics and singular fluctuation effects as the instability is approached from below. Above the
instability there is a NESS that we then characterize by generalizing the Lorenz equations for the
Rayleigh-Benard (RB) problem in a passive fluid [28] to Lorenz-like equations for this instability
in an active fluid. The steady state solution above the instability is given, and its eventual instability
to time-dependent flow is determined. To keep things simple, we have dropped all orientational
degrees of freedom which are actually not necessary for the study of the instability of the NESS.
This is where our study differs from the earlier investigations described in the previous paragraph.

The organization of the paper is as follows. We discuss the equations of motion and the physical
setup in Sec. II. The instability of the NESS of Sec. II under increasing drive or activity is discussed
in Sec. III. Just below the instability, one finds a number of interesting effects, the most striking
of which is the giant Casimir force, and this is discussed in Sec. IV. In Sec. V we consider the
situation above the threshold. Here we derive the active fluid Lorenz equations and discuss how the
properties of this Lorenz model differ from those of the existing one. We end with a short discussion
in Sec. VI.

II. EQUATIONS AND PHYSICAL SETUP

To simplify the problem as much as possible we use a model for wet (momentum-conserving)
active matter that was introduced by Tiribocchi et al. [27]. It is an active fluid version of model H
in the Halperin-Hohenberg classification scheme [29] and ignores orientational degrees of freedom.
The model has been used to study phase separation in active matter [27] and to illustrate some
general properties of active matter [30]. In driven passive liquid crystal systems there are RB-like
instabilities [31] that are closely related to the RB instability in simple fluids [28]. Similarly, we
expect there will be convective instabilities in driven active liquid crystal fluids that are closely
related to the one we describe here for the active version of model H.
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The hydrodynamic variables in the active fluid version of model H are a concentration
field, φ(r, t), proportional to the density of active particles, that is, swimmers, coupled to a
momentum-conserving solvent. The fluid velocity is u(r, t). The equations of motion are

φ̇ + u · ∇φ = D∇2φ (2.1)

and

u̇ + u · ∇u = −∇p + ν∇2u + ∇ · (� + P). (2.2)

Here D is a diffusion coefficient, p is a pressure, which in general is a function of φ and a temperature
T , ν is the kinematic viscosity, and P is a Gaussian thermal white noise Langevin force that is
specified by its second moment:

〈Pi j (r, t )Pkl (r′, t ′)〉 = 2kBT νδ(r − r′)δ(t − t ′)
(
δikδ jl + δilδ jk − 2

3δi jδkl
)
. (2.3)

There is also a noise term in the concentration equation, but it is not important in what follows. Also
in this equation there are higher order gradient terms, as well as nonlinearities that we similarly
neglect. � in Eq. (2.2) is an activity contribution to the stress tensor that is given by

�i j = −ζ

[
∂iφ∂ jφ − δi j

3
(∇φ)2

]
. (2.4)

Such a term is allowed by symmetry in both passive and active fluids. Indeed, historically it is
called a nonlinear Burnett term [4,32]. Importantly, in passive fluids such terms are always very
small compared to the Navier-Stokes terms as long as l/L∇ � 1, where l is the mean-free path
and L∇ is a gradient length. In passive fluids these terms have been used to understand the singular
behavior of the viscosity as the liquid-gas critical point is approached [33]. In active matter there
is no restriction on the sign or the magnitude of ζ [1,27]. We show here that for |ζ | large there
are qualitatively new phenomena for either sign of ζ . For contractile swimmers (ζ < 0) [34,35] the
fluid flow increases as the swimmer density gradient increases. This case is of particular interest.

We consider the active fluid in a parallel plate geometry in the z direction with the dis-
tance between the plates of size L and the transverse direction L⊥ � L. A spatially dependent
nonequilibrium steady state (NESS) is set up by having the plates at a different temperature or
chemical potential. In the former case the imposed temperature gradient will induce an average
concentration gradient ∇φ0 so that the average pressure gradient is zero. We assume that these
average gradients are basically constant, or that there is a linear temperature and concentration
profile so that ∇φ0 = 	φ0/L, where 	φ0 is the concentration difference between the two plates.
The concentration and velocity fields in the assumed NESS are then

φ0(r) = φ00 + 	φ0

L
z (2.5)

and

u0 = 0 (2.6)

with φ00 a constant. Note that Eq. (2.5) implies a nonzero particle current:

Jz = −D
∂φ0

∂z
= −D

	φ0

L
. (2.7)

This means there is a net flux of particles entering the system from the top plate and leaving the
system from the bottom plate.

Finally, we further assume that we can ignore the dynamical temperature fluctuations since they
decay on a relatively fast timescale [5,6].
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III. THE INSTABILITY

Linearizing Eqs. (2.1) and (2.2) about the NESS allows us to determine the stability of the
solution. Assuming no-slip boundary conditions we use the Fourier representations:

(δφ(r, t ), uz(r, t )) = 2

L

∑
n=1

∫
dω

2π

∫
k⊥

eik⊥·r⊥−iωt sin

(
nπz

L

)
[δφ(k, ω), uz(k, ω)].

Here k⊥ = (kx, ky), k = (k⊥, nπ/L), and r⊥ = (x, y).
The interesting eigenfrequencies are derived next. From the basic physics of the instability

problem we are interested in how shear modes in the velocity fluctuations couple to the diffusion
modes in the swimmer density equation. This implies we can take the fluid to be incompressible and
use the condition ∇ · u = 0 in Eq. (2.2) to eliminate the pressure in terms of � and P. The Fourier
transforms of Eqs. (2.1) and (2.2) linearized about the NESS are

[−iω + Dk2]δφ(k, ω) = −(∂zφ0)uz(k, ω), (3.1)

[−iω + νk2]uz(k, ω) = ζk2
⊥(∂zφ0)δφ(k, ω) + Q(k, ω) (3.2)

with Q a projected part of the noise term ∇ · P, Q = ikα[Pzα − δzαkμkβPμβ/k2], that has the
correlation

〈Q(k, ω)Q(k′, ω′)〉 = (2π )d L

2
δkz,k′

z
δ(k⊥ + k′

⊥)δ(ω + ω′)2νk2
⊥. (3.3)

Using these equations gives (here we use units where kBT = 1)

〈|δφ(k, ω)|2〉 = (∂zφ0)22νk2
⊥

|F (k, ω)|2 (3.4)

with

F (k, ω) = [−iω + Dk2][−iω + νk2] + ζk2
⊥(∂zφ0)2. (3.5)

Solving for the roots of F (k, ω) gives

ω± = −ik2

2
(D + ν) ± i

2

√
k4(D − ν)2 − 4ζ (∂zφ0)2k2

⊥, (3.6)

with k2 = k2
⊥ + k2

z = k2
⊥ + n2π2/L2.

For ζ = 0 Eq. (3.6) gives a shear mode and a diffusion mode. For ζ > 0 and large, the two modes
change from being diffusive to propagating. More interestingly, for ζ < 0, and large magnitude, the
ω+ mode becomes unstable. Structurally this is very similar to what happens at the RB instability
[36]. It first occurs at kz = k⊥ = π/L. The analog of the Rayleigh number is N ≡ (	φ0)2|ζ |/Dν.
Note that physically this is similar to the Rayleigh number, and diffusion and viscosity suppress the
instability (make N smaller), while the activity parameter takes the place of gravity in driving the
instability. The critical N for the instability is Nc = 4π2. Near the instability,

ω+ ≈ −i
2νD

(ν + D)

[(
k⊥ − π

L

)2

+ π2

L2
ε

]
, (3.7)

where N = Nc(1 − ε), with ε � 1. Note the implied critical slowing down as the instability
is approached. The average flow pattern and concentration field for N > Nc are discussed and
illustrated in Sec. IV.

The feedback mechanism that causes the instability is that a convective force ∝|ζ |(∂zφ0)2

competes with dissipative forces ∝Dν. For sufficiently large |ζ |(∂zφ0)2 the convective force wins
and there is an instability. The linear mathematics of this instability are identical, for example, to
the instability in the Richardson combat or arms race model discussed in Ref. [37]. If we exclude

024306-4



DRIVEN ACTIVE MATTER: FLUCTUATIONS …

complex roots, we see below that the nonlinear mathematics of the instability are similar to the
pitchfork bifurcation that occurs in the RB problem.

IV. THERMAL FLUCTUATION EFFECTS BELOW THE INSTABILITY

It is interesting to compute various equal time correlation functions that characterize the generic
long-ranged correlations in the NESS, and especially their amplification as the instability is
approached. Of particular interest is the static structure factor, S(k⊥, kz ), defined by

〈|δφ(k)|2〉 = S(k⊥, kz ) =
∫

dω

2π
〈|δφ(k, ω)|2〉. (4.1)

Using Eqs. (3.4)–(3.6) gives

S(k⊥, kz ) = (∂zφ0)2k2
⊥

D(ν + D)k2

1

[k4 − Nk2
⊥/L2]

(4.2)

(for ζ > 0 change the sign of N). Note that in the absence of activity (N = 0), this long-range
correlation is analogous to the experimentally well-verified [38] one that appears in a simple fluid
in a temperature gradient [39]. In the presence of activity it is enhanced (suppressed) compared to
the passive fluid result for ζ < 0 (ζ > 0). Near the instability the singular contribution is

S(k⊥, kz = π/L)sing ≈ (	φ0)2

8π2D(ν + D)

1

[(k⊥ − π/L)2 + π2ε/L2]
. (4.3)

The nonequilibrium (NE) Casimir pressure, pNE (L), or force is also of interest. For a passive fluid
in a NESS it has been discussed in great detail elsewhere [40–44]. Physically, nonlinear long-range
fluctuations renormalize the pressure [45]:

pNE (L) = 1

2

(
∂2 p

∂φ2

)
T

〈δφ(r)2〉, (4.4)

where the overline denotes a spatial average. For small |N | the equal time correlation function in
Eq. (4.4) is

〈δφ(r)2〉|N |�1 ≈ (	φ0)2

48πLD(D + ν)
. (4.5)

Near the instability there is a singular contribution given by

〈δφ(r)2〉N=Nc (1−ε) ≈ (	φ0)2

32π2LD(ν + D)
√

ε
. (4.6)

For ζ > 0 and |N | � 1 one obtains

〈δφ(r)2〉|N |�1 ≈ (	φ0)2

16LD(ν + D)
√|N | . (4.7)

Note that these Casimir forces are huge at long distances compared to the vacuum fluctuation or
critical Casimir forces that decay as 1/L4 and 1/L3, respectively, for large L. This L dependence can
be used to distinguish this force from other, short-ranged, forces. Also, we again see that positive
activity suppresses fluctuations effects, while negative activity enhances fluctuations.

As the instability is approached, the transport coefficients themselves become singularly renor-
malized. This leads to a sort of Ginzburg criterion for ignoring nonlinear fluctuation effects as the
instability is approached: If the renormalization effects are small, then the nonlinear fluctuations
can be ignored and the instability analysis given above is valid. To illustrate this, the mode-coupling
renormalization of the diffusion coefficient, δD, can be determined as follows. Equation (2.1) defines
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a concentration current in the z direction given by

Jz = −uz(r)δφ(r) + D∂zφ(r). (4.8)

Averaging over the fluctuations gives an equation for δD:

δD = −〈uz(r)δφ(r)〉
(∂zφ0)

. (4.9)

Near the instability the singular contribution can be determined using Eqs. (3.1)–(3.3) and (3.7):

δD ≈ 1

16L(D + ν)
√

ε
. (4.10)

Numerically this is a very small (it is a 1/L effect) perturbation on the bare D unless one
is extraordinarily close to the instability. A similar result is obtained for the thermal diffusion
coefficient near the RB instability [36]. In practice this means that more sophisticated self-consistent
or renormalization grouplike treatments are not needed to describe these instabilities [46].

V. ACTIVE FLUID BEHAVIOR ABOVE THE INSTABILITY

To complete the description of the active fluid hydrodynamic instability we consider the active
fluid average NE motion above the instability threshold by constructing a three-mode Lorenz-like
model [47]. Only for N > Nc does it become clear that the fluid behavior at this hydrodynamic
instability is qualitatively different than the passive fluid behavior near a RB instability. The spatial
structure of the convection rolls that occur for N > Nc is determined by the critical wave numbers
being k⊥ = kz = π (here we use units where L = 1) and by taking the fluid to be incompressible
(∇ · u = 0). We are interested here in the average fluid motion, so that the Langevin force in Eq. (2)
can be neglected. Taking the curl of Eq. (2.2) eliminates the pressure so that equations of motion,
Eq. (2.1) and Eq. (2.22), are for the wall normal and wall transverse velocities (uz, ux ), and δφ =
φ − φ0. Consistent with this we define

uz = A(t ) cos πx sin πz,

ux = −A(t ) sin πx cos πz, (5.1)

δφ = B(t ) cos πx sin πz + C(t ) sin 2πz.

Inserting the representations of (uz, ux, δφ) into these equations of motion gives a set of coupled
nonlinear ordinary differential equations for (A, B,C) with multiplicative trigonometric functions.
Multiplying the (Ȧ, Ḃ, Ċ) equations by (

∫
dz sin(πz),

∫
dz sin(πz),

∫
dz sin(2πz)), respectively,

leads to the equations

Ȧ = −2π2νA − |ζ |(∂zφ0)π2B − |ζ |π3BC, (5.2)

Ḃ = −2π2DB − (∂zφ0)A + πAC, (5.3)

Ċ = −4π2DC − π

2
AB. (5.4)

Defining a dimensionless time by τ = 2π2Dt and X = A/23/2Dπ , Y = πB/
√

2(∂zφ0), and Z =
−πC/(∂zφ0) leads to the scaled equations of motion:

Ẋ = σ (−X + rY + rY Z ),

Ẏ = −XZ + X − Y, (5.5)

Ż = −2Z + XY.
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FIG. 1. (a) The cellular flow pattern after the onset of the instability using the generalized Lorenz equations.
(b) Typical concentration contours in a single cell.

These are the generalized Lorenz equations for the active matter instability. In these equations r =
N/Nc and σ = ν/D is the Prandtl number for this system.1 The nonlinear term in the Ẋ equation
reflects the activity nonlinearity and is not present in the RB problem.

The fixed points of these Lorenz equations are

X = Y = Z = 0 (stable for r < 1) (5.6)

and for r > 1,

X 2

2
= r − 1 ±

√
(r − 1)2 + r − 1 (two real roots), Y = X(

1 + X 2

2

) , Z = XY

2
. (5.7)

The flow pattern for N > Nc is shown in Fig. 1(a), while the concentration profile is shown in
Fig. 1(b).

Compared to the RB Lorenz equations [37,48] at least three interesting features are associated
with these Lorenz equations that warrant further study: (1) The physical fixed points close to and
above the convective instability are (X,Y, Z ) = [±21/2(r − 1)1/4, ±21/2(r − 1)1/4, (r − 1)1/2]. In
the RB problem, (r − 1)1/4 is replaced with (r − 1)1/2. The convective transport is proportional to
Z = √

r − 1, which is nonanalytic in the control parameter r − 1, unlike in the RB problem [47,48]
where Z = r − 1 and is therefore analytic. Further, unlike the RB problem for r � 1, the transport
saturates in this case. The difference between the two transports is shown in Fig. 2. (2) The crucial

1This Prandtl number will generally be very large compared to the Prandtl number in the RB problem because
particle diffusion coefficients are typically very small compared to thermal diffusion coefficients.
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FIG. 2. The concentration flux from one plate to another as a function of the parameter ε = r − 1. The
saturation at high values and the nonanalytic behavior near the threshold are distinctive features of the present
model. In contrast, the standard Lorenz model shows a linear dependence.

nonlinearity in the Ẋ equation is proportional to r and thus increases with driving causing the time-
independent solution given by Eqs. (5.7) to become unstable at a smaller r than in the RB problem.
This implies that the Lorenz equations for this system are a more realistic representation of the
active fluid hydrodynamics than the RB Lorenz equations are for the passive fluid hydrodynamics.
(3) There are two additional complex fixed points of Eqs. (5.7), compared to the RB problem. This
suggests the Hopf bifurcation and the transition to turbulence in this system will be qualitatively
different than in the RB problem.

The steady-state solution given by Eqs. (5.7) physically means that the average fluid motion for
r > 1 consists of time-independent convection rolls in addition to the linear φ0 profile. This roll
solution will become unstable at a Hopf bifurcation, rH , to time-dependent motion. The instability
point can be determined by inserting Eqs. (5.7) into Eqs. (5.5) and linearizing about the steady state.
Since Eqs. (5.5) are three coupled equations, this defines a cubic eigenvalue problem. Assuming a
eiωt time dependence, with ω = ωR + iωI , implies that at the Hopf bifurcation ωI = 0, that is, linear
perturbations about the steady-state solution no longer decay in time at r = rH . At rH the complex
cubic equation for ωR has a real and imaginary part, both of which must be satisfied. These two
equations are

ω2
R = 2 + X 2 + 3σ − σ r(1 − Z2) − σ rY 2 (5.8)

and

(3 + σ )ω2
R = σ (2 + X 2) + 2σ r(3Z2 − 1) − σ rY 2, (5.9)

with (X,Y, Z ) given by Eqs. (5.7). Equating ω2
R from these two equations gives rH (σ ). As noted

already, σ will typically be quite large. From the two equations above it follows that rH grows with
σ . For example, in the very large σ limit it is easily shown that rH ≈ σ/4. To do better, we use that
Eqs. (5.7) for large r give

X 2 = 4ε + 1 + O(ε−1), Y 2 = 1

ε

[
1 − 5

4ε
+ O(ε−2)

]
, Z2 = 1 − 1

ε
+ 1

ε2
+ O(ε−3), (5.10)

with ε = r − 1. Using these results in equating the two equations and retaining leading-order and
next to leading-order terms for large σ leads to a quadratic equation for rH that when solved gives

rH = 1 + σ 2 + 6σ + σ
√

σ 2 + 16σ + 24

8(σ − 3)
. (5.11)
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FIG. 3. The hysteretic limit cycle just below the threshold of the Hopf bifurcation. Inside the unshaded
elliptic region of the figure there is a closed curve which is the locus of initial conditions which separate the
basin of attraction of the stable fixed point from the basin of the limit cycle.

For large σ the frequency at the critical point is ω ≈ ±√
8σ (rH − 1). We note that at σ = 10, an

exact solution of the cubic equation for the Hopf bifurcation gives rH ≈ 7.19.2 In contrast, for the
RB Lorenz equations there is a Hopf bifurcation at rH = σ (σ + 5)/(σ − 3), so that at σ = 10,
rH ≈ 21.4. These two very different values of rH are consistent with the notion that the Lorenz
equations given by Eq. (5.5) are a better model for the active matter full hydrodynamic equations
than the original Lorenz equations are for the RB problem. Physically this is plausible because both
sets of Lorenz equations ignore the fluid velocity convective nonlinearity in the Ẋ equation, but in
the active matter case, this nonlinearity will be subleading to the activity nonlinearity if the activity
coefficient is large.

In Fig. 3 the active fluid behavior in the X -Y plane is illustrated. In particular we show that below
the Hopf point (for σ = 10) there is a very clear limit cycle. Close to the Hopf point the basin of
attraction of the stable fixed point (5.7) is extremely small: One needs initial conditions very close
to the fixed point to reach it, otherwise the flow is to the limit cycle. The separatrix between the fixed
point and the limit cycle is clear. There is another separatrix between the limit cycle and a strange
attractor. In the passive fluid Lorenz model there is only a coexisting limit cycle and chaos, i.e.,
there is never a clear-cut limit cycle. In general it appears that in comparison to the RB problem, the
smaller values of (X,Y, Z ) at the fixed point (5.7) seem to make the active fluid more stable near rH .

VI. DISCUSSION

Driven active matter has been shown to exhibit a type of convective instability reminiscent of
the RB instability in passive fluids. As the instability is approached from below, N → N−

c , various
singular correlation functions have been computed. For N > Nc the average fluid behavior has been
characterized, and a Hopf bifurcation to time-dependent flow has been illustrated.

We conclude with several further remarks:
(1) The presumed size of ζ here and in Ref. [27] is quite large. In simple passive fluids at liquid

state densities we can estimate the scale of ζ as follows. If φ is dimensionless, then ζ has the
dimensions of �4/τ 2 = v2�2. Here � is a length, τ is a time, and v is a velocity. � is the larger of the
molecular diameter, σ , and the mean-free-path, which for liquid state densities would be σ , and v

2Equation (18) gives rH ≈ 6.87 for σ = 10. For σ = 50, both the full cubic equation and Eq. (18) give
rH ≈ 16.1.
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is the thermal velocity. For water at standard temperature and pressure, this would numerically give
|ζ | ≈ 2 × 10−6 cm4/sec2, which is about an order of magnitude larger than Dν in water. The value
of Nc and this suggest that the activity part of |ζ | plays a qualitatively new role when it is larger than
the passive one by a factor of 100 to 1000.

(2) To within numerical factors the condition for the instability is |ζ |(	φ0)2 ∝ Dν. We can
compare this condition to, for example, the condition for the bending instability of extensile
filaments in active matter [1,7]. First, we note that because of the gradients in Eq. (2.4), |ζ |/L2

corresponds to W c0 in Ref. [1]. Using Stokes’ law, D ∝ kBT/aη, with a a mesoscopic length, we can
write our instability condition as W c0 ∝ kBT/aL2(	φ0)2. Apart from the factor (	φ0)2, expected
for a gradient induced instability, this is basically the condition for the bending instability [1]. We
conclude that for moderate 	φ0 the NE instability discussed here could be experimentally relevant.

(3) Experimental studies of (wet) active matter systems with an average temperature (or
chemical potential) gradient would be very interesting. If the activity coefficient is large enough,
the hydrodynamic instability discussed here will be apparent. It could be distinguished from the
usual RB instability because it will occur when the fluid is heated both from below and above.
Further, the generalized Lorenz equations indicate that the fluid behavior for N > Nc will be very
different than what occurs in a passive system convective instability.

(4) In general in both passive and active fluids a gradient expansion breaks down after Naiver-
Stokes order (in simple fluids in three dimensions), and the generalized description must be nonlocal
[49–52]. Technically one finds divergences in the calculation of higher order or Burnett transport
coefficients such as ζ . These singular renormalization will have a scale set by the small passive
generalized transport coefficients and will presumably not be important. This deserves further study.
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