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Self-diffusion in compressible gas flow through a microconduit
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Steady viscous compressible gas flow through a microconduit is studied using the
classical formulation of compressible Navier-Stokes equations with the no-slip condition.
The mathematical theory of Klainerman and Majda for low Mach number flow is employed
to derive asymptotic equations in the limit of small Mach number. The leading-order
equations give rise to the Hagen-Poiseuille solution, and the equations at a higher order
lead to a diffusive velocity field induced by self-diffusion of the gas. An explicit solution
for the diffusive field is obtained under the no-slip condition and the overall flow exhibits a
sliplike mass flow rate even though the velocity satisfies the no-slip condition. The results
indicate that the classical formulation includes the self-diffusion effect and it embeds
the extended Navier-Stokes equation (ENSE) theory without the need of introducing an
additional constitutive hypothesis or assuming slip on the boundary. The predicted pressure
profile agrees well with experiments. Contrary to reports in many ENSE publications, an
extensive comparison with 35 experiments shows that in the slip-flow regime the predicted
mass flow rate is still significantly below the measured mass flow rate, as the self-diffusion
effect is too small to account for the observed mass flow-rate enhancement in this flow
regime.
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I. INTRODUCTION

Rapid growing applications of micromechanical systems (MEMS) and microfluidics during
the past three decades have stimulated significant research on viscous compressible flow through
micron-size conduits [1–6]. Steady compressible flow of a gas through such a microconduit can
produce a mass flow rate much higher than that predicted by the classical Hagen-Poiseuille solution
for macroscale flows [7–21]. This departure from the classical result has been attributed to a
breakdown of the continuum assumption, which is the basis for the Navier-Stokes equations for
macroscale flows. The mean free path in a low-pressure gas flow through a microconduit can
become comparable to the characteristic length of the confining geometry [16,22,23] and a large
surface-to-volume ratio can make the interaction between the wall and the gas important for the
flow. The degree of departure of such a small scale flow from the classical continuum theory is
commonly characterized by the Knudsen number, Kn = λ/Lc, with λ being the mean free path
of the gas molecules and Lc being the characteristic length of the flow (typically the hydraulic
diameter of the conduit). It is widely acknowledged that for Knudsen number Kn < 0.001 the
classical continuum formulation of the Navier-Stokes equations with the no-slip condition holds,
and when Kn > 10 free molecular flow (Knudsen diffusion) results [8,24,25]. Thus, as the Knudsen
number is increased from a very small value to a large value, the flow changes from a continuum
flow to a free molecular flow. The flow regimes between the continuum limit and the free molecular
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flow limit are commonly classified as the slip-flow regime, the transitional-flow regime, etc., in the
order of increasing Knudsen number. For example, gas flows through MEMS devices typically have
Knudsen numbers in the range of 0.01 to 1, which fall into the slip and the transitional flow regimes,
corresponding to 0.001 < Kn < 0.1 and 0.1 < Kn < 10, respectively [16]. Flow in the slip regime,
however, is expected to show only a small to moderate departure from the classical continuum
theory, as the Knudsen number is still relatively small. It has been common to assume that in the
slip-flow regime the breakdown of the continuum theory occurs only in the Knudsen layer adjacent
to the solid boundary and the Navier-Stokes equations still hold in the bulk of the fluid. Within
the Knudsen layer, which has a thickness in the order of the mean free path, gas-wall collision is
more frequent than intramolecular collision. This results in a sliplike thin layer, which has been
often modeled by a slip-boundary condition for the gas motion in the bulk [7,26–31]. The results
from this slip-boundary-condition approach for the slip-flow regime match well with experimentally
observed mass flow rate when a slip parameter is tuned to a suitable value. Another popular approach
to compressible microflow in the slip-flow regime is the extended Navier-Stokes equation (ENSE)
theory formulation proposed by Brenner [32] and Durst et al. [33]. This approach recognizes the
importance of self-diffusion (bulk diffusion) caused by a local-density gradient in compressible flow
through small conduits [34] and it extends the Navier-Stokes equations to include an additional
diffusive mass (or volume) flux from self-diffusion (mass or volume) as well as an additional
diffusive momentum flux. The overall velocity is assumed to be given by the sum of the convective
velocity, as in the Navier-Stokes equations, and a diffusive velocity from the self-diffusion of the
fluid mass. Only the convective velocity is made to satisfy the no-slip condition while the diffusive
velocity is allowed to slip on the wall [32,33,35–39]. Noticeably, this ENSE approach involves
constitutive modifications to both the mass flux and the stress tensor of the classical Newtonian fluid.
Many ENSE publications have reported that this approach yields good agreements with experiments
without an adjusting parameter, which has been advocated as a major appeal of this approach. The
difference between the slip-boundary-condition approach and ENSE is that the former lacks the
self-diffusion mechanism in the bulk and it also uses an adjustable slip parameter. It is also noted
that Veltzke and Thaming [40] used a slightly different approach by simply superposing Knudsen
diffusion upon the Hagen-Poiseuille flow with a linear pressure profile. The velocity associated
with the Knudsen diffusion flux still slips on the wall. They have also produced good agreements
with their own experimental measurements. Other approaches that have been successfully applied to
the same range as well as higher Knudsen numbers include linearized Boltzmann equations, direct
simulation Monte Carlo, etc. [29,41–43]. Together, these studies have significantly advanced our
understanding of compressible flow through microconduits.

The cornerstone of the ENSE theory is the inclusion of the self-diffusion effect for a viscous
compressible flow. It cites the lack of the self-diffusion mechanism in the classical formulation of
the Navier-Stokes equations as the motivation for the development of the extended theory. Using the
classical formulation of the Navier-Stokes equations with the no-slip condition, we have recently
found that the mass flow rate for the volumetric-expansion-driven transient drainage flow of a
viscous compressible fluid from a semisealed microcapillary is diffusive and it is proportional to
the square of the tube radius [44,45]. Noticeably, the sliplike mass flow rate is the result of the
longitudinal mass diffusion caused by a local-density gradient, consistent with the self-diffusion
effect modeled in the ENSE theory for steady flows. The result for the drainage flow, however, is
strictly derived from the linearized compressible Navier-Stokes equations without any additional
hypothesis, and the velocity for the drainage flow satisfies the no-slip condition on the capillary
wall. This finding naturally raises the following questions:

(a) Is the fluid’s self-diffusion effect already embedded in the classical formulation for both
transient and steady flows?

(b) Does the classical formulation also admit no-slip solutions with sliplike mass flow rates for
steady compressible flow through narrow conduits?

(c) If such a steady sliplike solution exists, how does it perform compared to experiments?

024202-2



SELF-DIFFUSION IN COMPRESSIBLE GAS FLOW …

To answer these questions, we revisit the problem of steady compressible gas flow through a long
and narrow open microconduit (circular tube or two-dimensional channel) within the framework of
the classical formulation of the compressible Navier-Stokes equations with the no-slip condition.
The mathematical theory for low Mach number flows developed by Klainerman and Majda [46,47]
is employed to expand the governing equations in terms of the vanishing Mach number and to
derive asymptotic equations for compressible flow through microconduits. It will be shown that for
a compressible flow in a long and narrow open conduit the leading-order equations give rise to the
Hagen-Poiseuille solution, and the balance between the convective acceleration and an equivalent
body force induced by a local-density gradient at the next order leads to a steady diffusive field.
The cross-sectional averaged mass flux of the diffusive field will be shown to obey Fick’s law
of diffusion, which gives rise to the self-diffusion effect. The Helmholtz decomposition theorem
is then used to obtain an explicit solution for the diffusive field under the no-slip condition. The
mass flow rate of the microflow is the sum of the mass flow rate from the Hagen-Poiseuille
flow and that due to the diffusive field, which is identical to that from the ENSE theory when
adjusted for the contribution of the bulk viscosity. This paper shows that the classical formulation
already embeds the self-diffusion effect and the ENSE theory without the need of introducing an
additional constitutive hypothesis or assuming slip on the boundary. For a very narrow conduit, the
self-diffusion effect dominates, and the mass flow rate is sliplike with a radius-square dependence,
even though the velocity satisfies the no-slip condition. These results are compared to multiple
experiments and other works published in the literature. The pressure profile agrees very well with
measured data. Contrary to the claims made in many ENSE publications, however, in the slip-flow
regime, the predicted mass flow rate is still significantly below the measured mass flow rate, as
the self-diffusion effect is too small to account for the observed mass flow-rate deviation from the
Hagen-Poiseuille solution in this flow regime.

II. SELF-DIFFUSION EMBEDDED IN THE COMPRESSIBLE NAVIER-STOKES EQUATIONS

The conservative forms of the continuity and the compressible Navier-Stokes equations [48] are

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.1)

∂ (ρv)

∂t
+ ∇ · (ρv ⊗ v) = −∇p + (μb + μ/3)∇(∇ · v) + μ∇2v, (2.2)

where ρ, p, and v are the density, pressure, and velocity of the fluid; μb is the bulk viscosity; and μ is
the shear viscosity. An equation of state such as the ideal gas law is supplied to link the pressure and
the density. Since compressible flows through microconduits are low Mach number flows (global
Mach number M � 1), the energy equation is not included here as temperature change is assumed
to be small. This assumption is adopted in most studies on microflows. In the following, we will
show how self-diffusion arises from these governing equations for compressible flow through a long
and narrow microconduit.

A. Self-diffusion in transient flow perturbing an equilibrium state

For a flow perturbing an equilibrium state, linearization of Eqs. (2.1) and (2.2) leads to the
well-known linear acoustic equations governing the propagation of small amplitude acoustic waves
[49,50]:

∂ρ ′

∂t
+ ρ0∇ · v′ = 0, (2.3)

ρ0
∂v′

∂t
= −∇p′ + (μb + 4μ/3)∇(∇ · v′) − μ∇ × (∇ × v′), (2.4)
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FIG. 1. Microflow through a channel. For a microcapillary, the radius of the capillary is R.

where ρ ′ = ρ − ρ0 is the density perturbation from the equilibrium density ρ0, p′ is the pressure
perturbation, and v′ is the velocity. Density perturbation satisfies a damped wave equation of the
form [49,51,52]

∂2ρ ′

∂t2
=

(
c2 + D0

∂

∂t

)
∇2ρ ′, (2.5)

where c is the speed of sound and

D0 = (μb/μ + 4/3)
μ

ρ0
(2.6)

is the damping coefficient for the density wave. The damping term in Eq. (2.5) is called “sound-
absorption” in the acoustic literature [53].

For transient flows in semisealed long and narrow capillaries (Fig. 1), it is shown that density
relaxes quickly in the transverse direction and it becomes uniform in the cross section shortly after
startup [44]. Thus, ρ = ρ(x, t ), with x being the longitudinal direction. The second term on the
right-hand side (rhs) of Eq. (2.4) then becomes −exD0∂

2ρ ′/∂x∂t , where ex is the unit base vector
in the x direction. This leads to the damping of the acoustic wave by the second term on the rhs
of Eq. (2.5), which is due to the self-diffusion induced by the local-density gradient ∂ρ ′/∂x. Since
Eq. (2.5) is derived from the linearized compressible Navier-Stokes equations, we conclude that the
linearized compressible Navier-Stokes equations include the self-diffusion effect for transient flows
via sound absorption.

B. Self-diffusion in steady flow through a microconduit

Consider the motion of a compressible fluid through a circular capillary with radius R and length
L (Fig. 1). The capillary is long and narrow such that R � L. Steady-state flow is the long-time
solution of a startup flow. The self-diffusion effect in a transient startup flow does not vanish at
large times, as the dilatation ∇ · v term in Eq. (2.2) remains in the momentum equation for steady
compressible flows. The mathematical theory for low Mach number flows developed by Klainerman
and Majda [46,47] can be employed to show that self-diffusion is persistent for steady compressible
flow through a small capillary.

To this end, the governing Eqs. (2.1) and (2.2) are first made dimensionless with the scales used
by Klainerman and Majda [47]. Let vref be a reference fluid particle velocity, let Lref be a reference
length, and let a reference time be defined as tref = Lref/vref . The reference pressure and density are
pref and ρref , respectively. A reference speed of sound can be defined as cref = √

pref/ρref (a constant
factor is dropped for convenience; see Ref. [47]). The dimensionless velocity, pressure, density,
coordinates, and time are v̄ = v/vref , p̄ = p/pref , ρ̄ = ρ/ρref , x̄ = x/Lref , and t̄ = t/tref . A global
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Mach number is defined as M = vref/cref and a Reynolds number is defined as Re = ρrefvref Lref/μ,
both of which are assumed to be small. The dimensionless governing equations are then

∂ρ̄

∂ t̄
+ ∇̄ · (ρ̄v̄) = 0, (2.7)

∂ (ρ̄v̄)

∂ t̄
+ ∇̄ · (ρ̄v̄ ⊗ v̄) = − 1

M2
∇̄ p̄ + μb/μ + 1/3

Re
∇̄(∇̄ · v̄) + 1

Re
∇̄2v̄. (2.8)

It is known that the limit of M → 0 is singular as these governing equations change types [46].
For inviscid isentropic flows, Klainerman and Majda [47] have rigorously proved that for given
initial data the linearized acoustics is a uniformly valid principal correction in the deviation of the
compressible flow solution from the incompressible solution as the global Mach number M → 0,
and they have derived the following asymptotic results:

|v̄ − (v̄I+M ṽA)| � �5M2, (2.9)

| p̄ − ( p̄0+M2( p̃I + p̃A))| � �6M3, (2.10)

where || stands for the magnitude; superscripts I and A stand for incompressible and acoustic quan-
tities, respectively; �5 > 0 and �6 > 0 are fixed constants; and p̄0 is a background thermodynamic
pressure. The asymptotic results (2.9) and (2.10) have been extended by Klein [54] to nonisentropic
flows and by Munz et al. [55,56] to the general heat conducting viscous compressible Navier-Stokes
equations. These asymptotic results allow us to decompose a low Mach number flow into the sum of
two fields, the limiting incompressible field and a linearized acoustic field, v̄ = v̄I + v̄A + O(M2)
with ∇̄ · v̄I = 0 and v̄I = limM→0 v̄. Specifically,

v̄ = v̄I+ v̄A + O(M2) = v̄I + M ṽA + O(M2), (2.11)

p̄ − p̄0 = p̄I + p̄A + O(M3) = M2 p̃I + M2 p̃A + O(M3). (2.12)

Density can also be expanded:

ρ̄ = 1 + M2ρ̃2 + O(M4). (2.13)

These asymptotic expansions are valid for all times. In the absence of a continuous acoustic
excitation and flow instabilities, a condition met by low Reynolds number steady microflows, the
two flow fields are expected to approach steady-state solutions at large times which are governed by
the corresponding steady-state equations:

∇̄ · (ρ̄v̄) = 0, (2.14)

∇̄ · (ρ̄v̄ ⊗ v̄) = − 1

M2
∇̄ p̄ + μb/μ + 4/3

Re
∇̄(∇̄ · v̄) − 1

Re
∇̄ × (∇̄ × v̄), (2.15)

where the vector identity ∇2a = ∇(∇ · a) − ∇ × (∇ × a) has been used.
For steady flows, we replace the superscript A by D in the expansion (2.11) and (2.12), with

v̄D = lim
t→∞ v̄A, p̄D = lim

t→∞ p̄A, (2.16)
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while maintaining the superscript I for the limiting steady incompressible field. Thus, for steady
flows,

v̄ = v̄I+ v̄D + O(M2) = v̄I + M ṽD + O(M2), (2.17)

p̄ − p̄0 = p̄I + p̄D + O(M3) = M2 p̃I + M2 p̃D + O (M3). (2.18)

The momentum equation for the limiting incompressible flow is (with ρ̄ = 1)

∇̄ · (v̄I ⊗ v̄I ) = −∇̄ p̃I − 1

Re
∇̄ × (∇̄ × v̄I ). (2.19)

Subtracting Eq. (2.19) from Eq. (2.15) and substituting Eqs. (2.17) and (2.18) into the result gives

∇̄ · (ρ̄v̄ ⊗ v̄) − ∇̄ · (v̄I ⊗ v̄I ) = −∇̄ p̃D + μb/μ + 4/3

Re
∇̄(∇̄ · v̄D) − 1

Re
∇̄ × (∇̄ × v̄D), (2.20)

where for each of the three contributions on the right-hand side only the leading-order term has
been retained. The limiting incompressible field v̄I is driven by the pressure gradient while the
compressible field v̄D is driven by the density gradient. Since microflows are weak flows with very
low mass flow rates, we seek a leading-order solution that is linear in each driving mechanism
(gradient), which takes the form

v̄I = ṽp
∂ p̄

∂ x̄
, v̄D = ṽρ

∂ρ̄

∂ x̄
, (2.21)

and we neglect any interactive term that involves the product of the two velocities, i.e., the
product of the two gradients, in the governing equations. Thus, there is no coupling between the
incompressible field v̄I and the compressible field v̄D other than conservation of the overall mass.
This approximation is used either explicitly or implicitly in all models involving density gradient
for compressible microflows, for example the diffusive flux theories, and it puts the two flow driving
mechanisms on equal footings.

With the assumption (2.21) and the density expansion (2.13), after neglecting the product term
∂ p̄
∂ x̄

∂ρ̄

∂ x̄ , Eq. (2.20) becomes

∇̄ · (ρ̄v̄D ⊗ v̄D) = −∇̄ p̃D + μb/μ + 4/3

Re
∇̄(∇̄ · v̄D) − 1

Re
∇̄ × (∇̄ × v̄D). (2.22)

The Helmholtz decomposition [57–59] can be used to further decompose v̄D = M ṽD to the sum
of an irrotational part and a solenoidal part:

ṽD = ṽIR + ṽRT , (2.23)

where ∇ × ṽIR = 0, ṽIR = ∇�, and ∇ · ṽRT = 0. � is the scalar velocity potential for the irrota-
tional velocity. Thus,∇̄ × ṽD = ∇̄ × ṽRT and the momentum Eq. (2.22) becomes

M2∇̄ · (ṽD ⊗ ṽD) + O(M4) = −∇̄ p̃D − μb/μ + 4/3

Re
M3∇̄(ṽD · ∇̄ρ̃2) − M

Re
∇̄ × (∇̄ × ṽRT ),

(2.24)

where the continuity equation

∇̄ · v̄D = −v̄D · ∇̄ ln ρ̄ (2.25)

has been used. For microflows through an open conduit with small to moderate ratios between
the inlet pressure and the outlet pressure, Ref. [20] has shown that M ∼ Re ∼ ε = R/L. Thus,
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M/Re = O(1). Therefore, in the limit of M → 0, the order O(1) and O(M2) equations of Eq. (2.24)
become, respectively,

−∇̄ p̃D − M

Re
∇̄ × (∇̄ × ṽRT ) = 0, (2.26)

∇̄ · (ṽD ⊗ ṽD) = −(μb/μ + 4/3)
M

Re
∇̄(ṽD · ∇̄ρ̃2). (2.27)

In dimensional forms, the solenoidal part of the diffusive velocity is then governed by the
incompressibility and the creeping flow equations:

∇ · vRT = 0, (2.28)

−∇pD + μ∇2vRT = 0. (2.29)

As will be shown in Sec. III below, the solenoidal velocity is induced by the irrotational part of
the diffusive velocity and its role is to ensure that the diffusive velocity satisfies the no-slip condition
on the wall.

Equation (2.27) reflects a balance between the convective acceleration and an equivalent body
force induced by the self-diffusion of the fluid mass. It is noticed that, with a difference of a term of
the higher-order O (M4), Eq. (2.27) is the same as the equation

∇̄ · (ρ̄v̄D ⊗ v̄D) = −μb/μ + 4/3

Re
∇̄(v̄D · ∇̄ ln ρ̄ ), (2.30)

which in dimensional form is

∇ · (ρvD ⊗ vD) = −(μb + 4μ/3)∇(vD · ∇ ln ρ ). (2.31)

It is observed that deviation of a compressible gas flow from the Hagen-Poiseuille solution stems
from the continuous volumetric expansion of the gas along the conduit (rarefication effect), which
makes the flow a developing flow instead of a fully developed flow. This effect is characterized by
the convective acceleration of the fluid, which is balanced by the density gradient induced body
force as shown by Eq. (2.31).

In a cylindrical coordinate, the velocity for an axisymmetric flow is given by v = ervr (r, x) +
exvx(r, x), where er and ex are the unit base vectors in the r and x directions, respectively. Density
relaxes for compressible flow in long and narrow capillaries and it is a function of x only [44]:

vD · ∇ ln ρ = vD
x

d

dx
ln ρ. (2.32)

The x-direction component of Eq. (2.31) is

2

r

∂

∂r

(
ρrvD

r vD
x

) + ∂

∂x

(
ρvD

x vD
x

) = −(μb + 4μ/3)
∂

∂x

(
vD

x

d

dx
ln ρ

)
. (2.33)

This is the momentum balance equation at a length scale comparable to the length of the
tube. At this long length scale, density gradient drives a large-scale compressible flow, which is
decoupled from the incompressible field v̄I when the leading-order approximation (2.21) is adopted.
Integrating Eq. (2.33) over the cross section and utilizing the no-penetration condition for vD

r on the
tube wall gives

∂

∂x

∫ R

0
2πrρ

(
vD

x

)2
dr = −(μb + 4μ/3)

∂

∂x

[(∫ R

0
2πrvD

x dr

)
d

dx
ln ρ

]
. (2.34)
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The velocity vD is induced by the density gradient. Thus, when dρ/dx = 0, vD = 0. Integrating
Eq. (2.34) with respect to x then leads to

ρ

∫ R

0
2πr

(
vD

x

)2
dr = −(μb+4μ/3)

(∫ R

0
2πrvD

x dr

)
d

dx
ln ρ. (2.35)

Thus, the mass flow rate from the density-gradient induced flow and the corresponding mass flux
are given, respectively, by

ṀD = ρ

∫ R

0
2πrvD

x dr = −πR2CmDρ

dρ

dx
, (2.36)

ṁD = −CmDρ

dρ

dx
= −Dm

dρ

dx
, (2.37)

Dρ = (μb/μ + 4/3)ν, ν = μ/ρ, (2.38)

Cm = 2

R2

(∫ R
0 rvD

x dr
)2

∫ R
0 r

(
vD

x

)2
dr

. (2.39)

Therefore, the cross-section averaged mass flux ṁD obeys Fick’s law of diffusion with a diffusion
coefficient Dm = CmDρ . Dρ is the self-diffusion coefficient in the free space, which is comparable to
that from the kinetic theory of gas that gives D11 = 1.3ν [60]. Cm is a shape correction factor caused
by a nonuniform velocity profile vD

x and it is independent of the strength of vD
x . For a uniform flow,

Cm = 1, and, for a parabolic profile that does not slip on the tube wall with the form 1 − r2/R2,
Cm = 3/4.

Physically, the compressibility-driven large-scale flow vD is the aftereffect of the attenuated
acoustic wave field at large times, as the acoustic wave associated with the startup process evolves
into a diffusive field at large time [44,61–63]. It should be emphasized that the mass flux diffusive
law (2.37) is derived from the compressible Navier-Stokes equations. Thus, the self-diffusion effect
is already embedded in the classical Navier-Stokes formulation for compressible flow in small
capillaries. Self-diffusion of a compressible fluid generates an equivalent body force in the bulk
of the fluid: the dilatation term (μb + 4μ/3)∇(∇ · v) in the momentum equation is directly related
to the density gradient, as it can be expressed as −∇(DρDρ/Dt ) after using the continuity equation
(with D/Dt being the substantial derivative). This term is equivalent to a body force that only
manifests itself at a length scale comparable to the length of the tube. This body force is proportional
to the fluid’s local kinematic viscosity, and for transient flow in linear acoustics it causes a damping
of the acoustic wave. For steady-state flow, the equivalent body force becomes −∇(Dρvxdρ/dx)
and it drives a diffusive flow field described by the mass flux Eq. (2.37), which is maintained by
the balance of this body force with the convective acceleration at the large length scale. Such a
diffusive motion is completely absent in an inviscid compressible flow or an incompressible flow.
This dual effect of viscosity (which drives the diffusive flow) also occurs in acoustic streaming [64].
Convection with a nonuniform velocity only modifies the self-diffusion coefficient.

A similar mass diffusive law can be derived for microflows in a channel with a thin gap 2h and a
large width w (h/w � 1). The velocity is given by

v = exvx(x, y) + eyvy(x, y), (2.40)

where y is measured from the centerline of the channel and the x axis is along the centerline. The
corresponding mass flux is given by

ṁD,ch = ṀD,ch

2wh
= −Dm,ch

dρ

dx
, (2.41)
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with

Dm,ch = Cm,chDρ, (2.42)

Cm,ch =
(∫ h

−h vx,ρdy
)2

4h
∫ h
−h v2

x,ρdy
. (2.43)

For no-slip flow of the parabolic form 1 − y2/h2, the shape correction factor Cm,ch = 5/6.
It should be pointed out that in the 1960s Lund and Berman [34] recognized the importance of

self-diffusion in low Mach number viscous compressible flow through a narrow conduit. Such an
effect is completely absent in models based on a slip-boundary condition [39]. In the context of
modern microfluidics applications, Brenner [32] and Durst et al. [33] brought the importance of
self-diffusion to the attention of the research community. Our analysis in this section confirms the
assertions of these previous works. In addition, the analysis here shows that the self-diffusion effect
is already included in the compressible Navier-Stokes equations and no constitutive modification is
necessary. In this regard, the ENSE theory can be considered as already embedded in the classical
formulation.

III. NO-SLIP FLOW WITH A SLIPLIKE MASS FLOW RATE

As shown in Eq. (2.17), the velocity for a low Mach number flow through a small capillary is the
sum of an incompressible field vI and a diffusive field vD. These two velocity fields as well as the
mass flow rates are found for flow through a long and narrow circular tube in this section.

A. The incompressible field

The incompressible field vI is governed by the incompressible flow equations, which for small
Reynolds numbers are reduced to the creeping flow equations

∇ · vI = 0, (3.1)

0 = −∇pI + μ∇2vI . (3.2)

For long and narrow capillaries, the lubrication approximation can be used and the solution of
Eqs. (3.1) and (3.2) subject to the no-slip condition is the well-known Hagen-Poiseuille velocity:

vI = − R2

4μ

∂ pI

∂x
(1 − r2/R2)ex. (3.3)

B. The diffusive field

To find the diffusive field vD, the Helmholtz decomposition is used to decompose vD into two
parts, vD = vIR + vRT , as in Eq. (2.23), and vD satisfies the no-penetration and no-slip condition on
the tube wall. An average diffusive speed VD(x) can be defined through the mass flux Eq. (2.37):

ṁD = ρVD = −Cm
μb + 4μ/3

ρ

dρ

dx
. (3.4)

Thus,

VD = −Cm
μb + 4μ/3

ρ2

dρ

dx
. (3.5)
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The irrotational part of vD is then

vIR = VD(x)ex. (3.6)

The solenoidal part of the velocity satisfies the incompressible creeping flow Eqs. (2.28) and
(2.29) and the boundary condition

r = R : vRT
r = 0; vRT

x = −vIR
x = −VD(x). (3.7)

The boundary condition (3.7) ensures that the diffusive velocity vD satisfies the no-slip condition
on the capillary wall. Thus, the solenoidal field (pD, vRT ) is driven by the irrotational flow vIR via
the boundary condition (3.7). The solenoidal velocity vRT can be conveniently found by using the
stream-function-vorticity formulation for an axisymmetric flow, with the stream function ψ (r, x)
defined by

vRT
r = −1

r

∂ψ

∂x
, vRT

x = 1

r

∂ψ

∂r
. (3.8)

Thus,

E4ψ = 0, (3.10)

with

E2 = r
∂

∂r

(
1

r

∂

∂r

)
+ ∂2

∂x2
. (3.11)

The boundary condition becomes

r = R :
∂ψ

∂x
= 0;

∂ψ

∂r
= −R VD. (3.12)

On the centerline, the velocity and the vorticity must be bounded. For long and narrow capillaries,
the lubrication approximation can be used to simplify E2. In addition, the flow rate for the diffusive
field must vanish when dρ/dx = 0. The solution for the stream function is then

ψ = VD(x)

2
r2

(
1 − r2

R2

)
, (3.13)

and the components for the solenoidal velocity are given by

vRT
r = 1

2
r

(
r2

R2
− 1

)
dVD

dx
,

vRT
x = VD(x)

(
1 − 2r2

R2

)
. (3.14)

Finally, the diffusive velocity field is given by vD = vIR + vRT = ervRT
r + ex(VD + vRT

x ), which
has the components

vD
r = −1

2
r

(
1 − r2

R2

)
dVD

dx
, vD

x = 2VD

(
1 − r2

R2

)
. (3.15)

The diffusive velocity (3.15) satisfies the no-slip condition on the wall. When the velocity profile
(3.15) is substituted into the shape correction factor Eq. (2.39), we obtain the shape correction factor
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FIG. 2. Comparison of the predicted pressure profiles with the measurements of Pong et al. [65], as well
as the incompressible flow linear pressure profiles. The five profiles correspond to five different inlet pressures.
The outlet pressure is atmospheric.

Cm = 3/4, and

VD = −3μb/4 + μ

ρ2

dρ

dx
. (3.16)

The self-diffusion coefficient is then

Dm = 3μb/4 + μ

ρ
. (3.17)

When the bulk viscosity is taken as zero, this diffusion coefficient is reduced to that from the
ENSE theory [33].

The above results show that the diffusive velocity field induced by self-diffusion can also satisfy
the no-slip condition. This is in contrast to ENSE, which allows the diffusive velocity to slip on the
capillary wall.

C. No-slip flow with a sliplike mass flow rate

The total velocity is

v = vI + vD = −1

2

dVD

dx
r

(
1 − r2

R2

)
er +

[
− R2

4μ

d p

dx

(
1 − r2

R2

)
+ 2VD

(
1 − r2

R2

)]
ex. (3.18)

This velocity profile satisfies the no-slip condition on the tube wall. The volumetric flow rate and
mass flow rate are given, respectively, by

QT = QHP + QD = −πR4

8μ

d p

dx
+ πR2VD, (3.19)

ṀT = ρQT = −πR4ρ

8μ

d p

dx
+ πR2ρVD = −πR4ρ

8μ

d p

dx
+ πR2ṁD. (3.20)

Here subscripts T , HP, and D stand for total, Hagen-Poiseuille, and diffusive contributions,
respectively. The mass flow rate for the no-slip flow, Eq. (3.20), is the same as that of the slip theory
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FIG. 3. (a)–(e) Comparison of the pressure deviations from the incompressible pressure with the measure-
ments of Pong et al. [65].

of ENSE if the self-diffusion coefficient in ENSE is adjusted to take into account bulk viscosity.
Conservation of mass requires the mass flow rate to be a constant. For an ideal gas, p = ρR̃T , with
T being the temperature and R̃ being the gas constant. An equation for the pressure is then obtained:

R2 p

8μR̃T

d p

dx
+ 3μb/4 + μ

p

d p

dx
= − ṀT

πR2
= const. (3.21)
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FIG. 4. (a)–(c) Mass flow-rate comparison between theory and the experiment of Ewart et al. [17] for
nitrogen flow through a microtube. (a) Dimensional mass flow rates in log-log scale. (b) S plots in linear-linear
scale. (c) G plots in linear-log scale.

This pressure equation is the same as Eq. (15) of Jaishankar and McKinley [39] after adjusting
for the self-diffusion coefficient. The pressure distribution is given implicitly by

p̄2
i − p̄2 +

∏
μ

ln
p̄2

i

p̄2
=

(
p̄2

i − p̄2
o +

∏
μ

ln
p̄2

i

p̄2
o

)
x̄, (3.22)

where pi and po are the inlet and outlet pressures, respectively; x̄ = x/L; p̄ = pR/μ
√

8R̃T ; and∏
μ = 3μb/(4μ) + 1. By integrating Eq. (3.21) from the tube inlet to the outlet, the mass flow rate

is found:

ṀT = πR4

16μR̃T

p2
i − p2

O

L
+ πR2 3μb/4 + μ

L
ln

pi

po
, (3.23)

where pi and po are the inlet and outlet pressures. The mass flow rate depends on both the pressure
drop and the pressure ratio. The second term is due to self-diffusion, and it provides a sliplike mass
flow rate as it is proportional to R2 instead of R4 for the Hagen-Poiseuille flow (the first term on
the rhs). Equation (3.23) shows that for a very narrow tube the sliplike term dominates, leading to a
sliplike mass flow rate for the overall flow.
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FIG. 5. (a)–(c) Mass flow-rate comparison between theory and the experiment of Ewart et al. [18] for
helium flow through a microchannel. (a) Dimensional mass flow rates in log-log scale. (b) S plots in linear-
linear scale. (c) G plots in linear-log scale.

For channel flow, the overall velocity is

v =
[
− 1

2μ

d p

dx
(h2 − y2) + 3

2
VD

(
1 − y2

h2

)]
ex + y

2

(
y2

h2
− 1

)
dVD

dx
ey, (3.24)

VD = −5

6

μb + 4μ/3

ρ2

dρ

dx
. (3.25)

The pressure is given by Eq. (3.22) with p̄ = ph/μ
√

3R̃T and
∏

μ = 5μb/(6μ) + 10/9. The
mass flow rate is

ṀT = h3w

3μLR̃T

(
p2

i − p2
o

) + 2hw(5μb/6 + 10μ/9)

L
ln

pi

po
. (3.26)

IV. COMPARISON WITH EXPERIMENTS

The solution in the previous section is compared to experiments as well as other published works
in this section.
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FIG. 6. (a)–(c) Mass flow-rate comparison between theory and the experiment of Maurer et al. [15] for
helium flow through a microchannel. (a) Dimensional mass flow rates in log-log scale. (b) S plots in linear-
linear scale. (c) G plots in linear-log scale.

A. Pressure profile

The theoretical streamwise pressure distribution is compared to the pressure profile measured
by Pong et al. [65] for the flow of nitrogen through a microchannel (height 1.2 μm, width 40 μm,
length 3000 μm) with a fixed outlet pressure po of 1 atm and different inlet pressures. Figure 2
shows the dimensionless pressure profile p/po for the five sets of measurements with different
inlet pressures. The pressure profiles are nonlinear, and the predicted profiles agree very well
with the measurements. The deviations from the linear pressure profile of the incompressible flow
(p − pinc)/po are shown in Figs. 3(a)–3(e). Clearly, the theoretical curves all fall within the error
bars of the measurements.

B. Mass flow rate

As noted in the previous section, the mass flow rate for the no-slip flow derived in this paper
is the same as that of the slip theory of ENSE when the self-diffusion coefficient in ENSE is
adjusted for the contribution from the bulk viscosity. Many authors have previously reported good
agreements between ENSE theory and experiments [33,35–39]. These comparisons, however, were
mostly carried out by plotting the dimensional mass flow rate ṀT against �p · pm = (p2

i − p2
o)/2

on log-log scales. A logarithmic scale plot, however, can artificially distort the magnitudes of errors.
It is also noted that in studies using Maxwell-type slip-boundary conditions it is customary to plot
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FIG. 7. Streamwise velocity profile in a microchannel flow. The streamwise velocity is normalized by the
mean velocity. There is no difference between the normalized velocity from the Hagen-Poiseuille flow and the
present theory [they differ dimensionally; see Fig. 8(a)].

dimensionless mass flow rate normalized by the Hagen-Poiseuille rate, S = ṀT /ṀHP, against the
mean Knudsen number Knm = λm/d(λm is the average mean free path and d is the tube diameter or
the channel height; see the Supplemental Material [66]) on linear scale (the “S” plot). Some authors
have also used the Knudsen diffusion mass flow rate ṀK = πR3(pi − po)/L

√
2R̃T for the tube and

ṀK = (2h)2w(pi − po)/L
√

2R̃T for the channel, to normalize the mass flow rate, G = ṀT /ṀK (the
“G” plot). In order to provide an unbiased assessment of the mass flow-rate prediction, we use all
three types of mass flow-rate plot in the comparison.

In the ENSE literature, the most frequently used experimental data for mass flow-rate comparison
are Ewart et al. [17] for the tube and Ewart et al. [18] and Maurer et al. [15] for the channels.
The three types of plots for the mass flow-rate comparison between the theory and experiments
are shown in Figs. 4(a)–4(c), 5(a)–5(c), and 6(a)–6(c), respectively. A close inspection of these
comparisons shows that, while the dimensional mass flow rates on the log-log plots demonstrate
reasonably good agreements between the theory (the present theory, or ENSE) and experiment,
both S plots and G plots show significant gaps between theoretical predictions and experimental
measurements in the slip-flow regime 0.001 < Knm < 0.1, in which the Navier-Stokes equations
are still expected to hold in the bulk of the fluid. This meaningful discrepancy between the predicted
mass flow rate and the measured mass flow rate is suppressed by the use of the logarithmic scale in
the dimensional mass flow-rate plots. It is noted that the G plot in Fig. 4(c) has much larger values of
G than the G plots in Figs. 5(c) and 6(c). Thus, the difference between the theory and the experiments
in Fig. 4(c) is actually larger when viewed at the same scale as in Figs. 5(c) and 6(c) (this observation
also applies to the G plots in Figs. S1, S3, and S7 in the Supplemental Material [66]). We have also
carried out similar comparisons for 32 additional independent experiments [19,21,27,67–79] for
both microtubes and microchannels, and they are shown in the Supplemental Material [66]. These
additional comparisons confirm the above observation that the theory underpredicts the mass flow
rate in the slip-flow regime. Thus, we conclude that the self-diffusion effect is not strong enough
to account for the experimentally observed mass flow-rate enhancement from the Hagen-Poiseuille
flow solution in the slip-flow regime. This is in stark contrast to the claims made in most of the
ENSE publications. The only ENSE publication that mentioned this shortfall is Ref. [38].
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FIG. 8. Streamwise and cross stream velocity profiles in a microchannel flow at the entry, the middle, and
the exit sections of the microchannel.

C. Velocity profile

Using molecular dynamics (MD) simulation, Barisik and Beskok [80] computed the velocity
profile of the flow of argon through a microchannel with a 54-nm height. The MD simulation
converts a pressure-driven flow into a force-driven flow and the streamwise velocity normalized
by the mean velocity is shown in their Fig. 4(c) for a modified Knudsen number 0.1. In Fig. 7, the
streamwise velocity from the present theory is compared to Fig. 4(c) of Ref. [80]. The normalized
velocity from the MD simulation is much fuller than that from the present theory, which could be the
reason for the underprediction of the mass flow rate from the present theory in the slip-flow regime.
The smaller magnitude of the normalized velocity of MD simulation reflects the fact that its mean
velocity is larger than the one from the present theory. Although the Hagen-Poiseuille flow and the
present theory have the same normalized velocity, they differ significantly in dimensional terms, as
shown in Fig. 8. As shown in Fig. 8(a) for the cross section at the channel entry, the middle, and
the exit, the Hagen-Poiseuille flow velocity and the streamwise velocity of the present theory are
both parabolic, but they are different parabolas: the self-diffusion effect makes the velocity much
larger than that of Hagen-Poiseuille. As the gas moves down the channel, the streamwise velocity
increases. Figure 8(b) shows the corresponding y component of the velocity at these cross sections.

V. CONCLUSIONS

The revisit of the classical theory for steady viscous compressible flow through microconduits
shows the following:

(i) Contrary to previous claims in the literature, the classical formulation of the compressible
Navier-Stokes equations with the no-slip condition includes the self-diffusion (bulk diffusion) effect.
Furthermore, the classical formulation also admits a no-slip solution which exhibits a sliplike mass
flow rate due to the self-diffusion effect.

(ii) The pressure profile and the mass flow rate of the no-slip solution are the same as those of
the ENSE theory when the self-diffusion coefficient is adjusted to take into account the contribution
from the bulk viscosity. The ENSE theory, however, introduces an additional constitutive hypothesis
and assumes slip at the wall. These additional requirements are not necessary as far as microconduit
flow is concerned.

(iii) The predicted pressure profile agrees well with the measured data.
(iv) A more careful and comprehensive comparison with 35 experiments from 19 authors

clearly shows that, in the slip-flow regime, the predicted mass flow rate is significantly below the
measured flow rate. The self-diffusion effect is too small to account for the observed mass flow-rate
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enhancement from the Hagen-Poiseuille solution in the slip-flow regime, contrary to reports in many
ENSE publications.

ACKNOWLEDGMENT

We thank the reviewers for their helpful comments and suggestions.

[1] C. M. Ho and Y. C. Tai, Micro-electro-mechanical-systems (MEMS) and fluid flows, Annu. Rev. Fluid
Mech. 30, 579 (1998).

[2] M. Gad-el-Hak, The fluid mechanics of microdevices: The Freeman scholar lecture, ASME Trans. J.
Fluids Eng. 121, 5 (1999).

[3] H. A. Stone and S. Kim, Microfluidics: Basic issues, applications, and challenges, AIChE J. 47, 1250
(2001).

[4] H. A. Stone, A. D. Stroock, and A. Ajdari, Engineering flows in small devices: Microfluidics toward a
lab-on-a-chip, Annu. Rev. Fluid Mech. 36, 381 (2004).

[5] T. M. Squires, Microfluidics: Fluid physics at the nanoliter scale, Rev. Modern Phys. 77, 977 (2005).
[6] G. M. Whitesides, The origins and the future of microfluidics, Nature (London) 442, 368 (2006).
[7] J. C. Maxwell, On stresses in rarified gases arising from inequalities of temperature, Phil. Trans. R. Soc.

London 170, 231 (1879).
[8] M. Knudsen, Die gesetze der molekularstroemung und der inneren reibungsstroemung der gase durch

roehren, Ann. Phys. 333, 75 (1909).
[9] E. B. Arkilic, Gaseous flow in micron-sized channels, Master’s thesis, Massachusetts Institute of Tech-

nology, 1994, https://dspace.mit.edu/bitstream/handle/1721.1/12321/30998338-MIT.pdf?sequence=2.
[10] C. Harley, Y. H. Huang, H. Bau, and J. N. Zemel, Gas flow in microchannels, J. Fluid Mech. 284, 257

(1995).
[11] J. Shih, C. Ho, J. Liu, and Y. Tai, Monoatomic and polyatomic gas flow through uniform microchannels, in

Proceedings of the ASME Winter Annual Meeting: Application of Microfabrication to Fluid Mechanics,
1996 (unpublished), pp. 197–203.

[12] E. B. Arkilic, M. A. Schmidt, and K. S. Breuer, Gaseous slip flow in long microchannels, J.
Microelectromech. Syst. 6, 167 (1997).

[13] E. B. Arkilic, M. A. Schmidt, and K. S. Breuer, TMAC measurement in silicon micromachined channels,
in Proceedings of the 20th Symposium on Rarefied Gas Dynamics, 1997 (unpublished); E. B. Arklic,
K. S. Breuer, and M. A. Schmidt, Mass flow and tangential momentum accommodation in silicon
micromachined channels, J. Fluid Mech. 437, 29 (2001).

[14] J. Jang, Y. Zhao, S. T. Wereley, and L. Gui, Mass flow measurement of gases in deep-RIE microchannels,
in Proceedings of the IMECE2002 ASME International Mechanical Engineering Congress Exposition,
IMECE2002-33779, pp. 17–22 (New Orleans, LA, 2002).

[15] J. Maurer, P. Tabeling, P. Joseph, and H. Willaime, Second-order slip laws in microchannels for helium
and nitrogen, Phys. Fluids 15, 2613 (2003).

[16] S. Colin, Rarefaction and compressibility effects on steady and transient gas flows in microchannels,
Microfluid. Nanofluid. 1, 268 (2005).

[17] T. P. Ewart, P. Perrier, I. A. Graur, and J. G. Meolans, Mass flow rate measurements in gas micro flows,
Exp. Fluids 41, 487 (2006).

[18] T. P. Ewart, P. Perrier, I. A. Graur, and J. G. Meolans, Mass flow rate measurements in a microchannel,
from hydrodynamic to near free molecular regimes, J. Fluid Mech. 584, 337 (2007).

[19] T. P. Ewart, P. Perrier, I. A. Graur, and J. G. Meolans, Tangential momentum accommodation in microtube,
Microfluid. Nanofluid. 3, 689 (2007).

[20] C. Cai, Q. Sun, and I. D. Boyd, Gas flows in microchannels and microtubes, J. Fluid. Mech. 589, 305
(2007).

024202-18

https://doi.org/10.1146/annurev.fluid.30.1.579
https://doi.org/10.1146/annurev.fluid.30.1.579
https://doi.org/10.1146/annurev.fluid.30.1.579
https://doi.org/10.1146/annurev.fluid.30.1.579
https://doi.org/10.1115/1.2822013
https://doi.org/10.1115/1.2822013
https://doi.org/10.1115/1.2822013
https://doi.org/10.1115/1.2822013
https://doi.org/10.1002/aic.690470602
https://doi.org/10.1002/aic.690470602
https://doi.org/10.1002/aic.690470602
https://doi.org/10.1002/aic.690470602
https://doi.org/10.1146/annurev.fluid.36.050802.122124
https://doi.org/10.1146/annurev.fluid.36.050802.122124
https://doi.org/10.1146/annurev.fluid.36.050802.122124
https://doi.org/10.1146/annurev.fluid.36.050802.122124
https://doi.org/10.1103/RevModPhys.77.977
https://doi.org/10.1103/RevModPhys.77.977
https://doi.org/10.1103/RevModPhys.77.977
https://doi.org/10.1103/RevModPhys.77.977
https://doi.org/10.1038/nature05058
https://doi.org/10.1038/nature05058
https://doi.org/10.1038/nature05058
https://doi.org/10.1038/nature05058
https://doi.org/10.1098/rstl.1879.0067
https://doi.org/10.1098/rstl.1879.0067
https://doi.org/10.1098/rstl.1879.0067
https://doi.org/10.1098/rstl.1879.0067
https://doi.org/10.1002/andp.19093330106
https://doi.org/10.1002/andp.19093330106
https://doi.org/10.1002/andp.19093330106
https://doi.org/10.1002/andp.19093330106
https://dspace.mit.edu/bitstream/handle/1721.1/12321/30998338-MIT.pdf?sequence=2
https://doi.org/10.1017/S0022112095000358
https://doi.org/10.1017/S0022112095000358
https://doi.org/10.1017/S0022112095000358
https://doi.org/10.1017/S0022112095000358
https://doi.org/10.1109/84.585795
https://doi.org/10.1109/84.585795
https://doi.org/10.1109/84.585795
https://doi.org/10.1109/84.585795
https://doi.org/10.1063/1.1599355
https://doi.org/10.1063/1.1599355
https://doi.org/10.1063/1.1599355
https://doi.org/10.1063/1.1599355
https://doi.org/10.1007/s10404-004-0002-y
https://doi.org/10.1007/s10404-004-0002-y
https://doi.org/10.1007/s10404-004-0002-y
https://doi.org/10.1007/s10404-004-0002-y
https://doi.org/10.1007/s00348-006-0176-z
https://doi.org/10.1007/s00348-006-0176-z
https://doi.org/10.1007/s00348-006-0176-z
https://doi.org/10.1007/s00348-006-0176-z
https://doi.org/10.1017/S0022112007006374
https://doi.org/10.1017/S0022112007006374
https://doi.org/10.1017/S0022112007006374
https://doi.org/10.1017/S0022112007006374
https://doi.org/10.1007/s10404-007-0158-3
https://doi.org/10.1007/s10404-007-0158-3
https://doi.org/10.1007/s10404-007-0158-3
https://doi.org/10.1007/s10404-007-0158-3
https://doi.org/10.1017/S0022112007008178
https://doi.org/10.1017/S0022112007008178
https://doi.org/10.1017/S0022112007008178
https://doi.org/10.1017/S0022112007008178


SELF-DIFFUSION IN COMPRESSIBLE GAS FLOW …

[21] H. Yamaguchi, T. Hanawa, O. Yamamoto, Y. Matsuda, Y. Egami, and T. Niimi, Experimental measure-
ment on tangential momentum accommodation coefficient in a single microtube, Microfluid. Nanofluid.
11, 57 (2011).

[22] H.-S. Tsien, Superaerodynamics, mechanics of rarefied gases, J. Aeronaut. Sci. 13, 653 (1946).
[23] G. Karniadakis, A. Beskok, and N. Aluru, Microflows and Nanoflows: Fundamentals and Simulation

(Springer, New York, 2005).
[24] E. H. Kennard, Kinetic Theory of Gases (McGraw-Hill, New York, 1938).
[25] K. Malek and M. O. Coppens, Knudsen self- and Fickian diffusion in rough nanoporous media, J. Chem.

Phys. 119, 2801 (2003).
[26] A. Beskok and G. E. Karniadakis, Report: A model for flows in channels, pipes, and ducts at micro and

nano scales, Microscale Thermophys. Eng. 3, 43 (1999).
[27] Y. Zohar, S. Y. K. Lee, W. Y. Lee, L. Jiang, and P. Tong, Subsonic gas flow in a straight and uniform

microchannel, J. Fluid Mech. 472, 125 (2002).
[28] N. G. Hadjiconstantinou, Comment on Cercignani’s second-order slip coefficient, Phys. Fluids 15, 2352

(2003).
[29] N. G. Hadjiconstantinou, The limits of Navier-Stokes theory and kinetic extensions for describing small-

scale gaseous hydrodynamics, Phys. Fluids. 18, 111301 (2006).
[30] L. Wu, A slip model for rarefied gas flows at arbitrary Knudsen number, Appl. Phys. Lett. 93, 253103

(2008).
[31] W. M. Zhang, G. Meng, and X. Wei, A review on slip models for gas microflows, Microfluid. Nanofluid.

13, 845 (2012).
[32] H. Brenner, Navier-Stokes revisited, Physica A 349, 60 (2005).
[33] F. Durst, J. Gomes, and R. Sambasivam, Thermofluiddynamics: Do we solve the right kind of equations?

in Proceedings of the International Symposium on Turbulence, Heat and Mass Transfer, Dubrovnik,
Croatia, September 25–29 (Begell House, 2006), pp. 3–18.

[34] L. M. Lund and A. S. Berman, Flow and self-diffusion of gases in capillaries. Part II, J. Appl. Phys. 37,
2489 (1966).

[35] S. Chakraborty and F. Durst, Derivations of extended Navier-Stokes equations from upscaled molecular
transport considerations for compressible ideal gas flows: Towards extended constitutive forms, Phys.
Fluids 19, 088104 (2007).

[36] N. Dongari and A. Agrawal, Analytical solution of gaseous slip flow in long microchannels, Int. J. Heat
Mass Transf. 50, 3411 (2007).

[37] N. Dongari, A. Sharma, and F. Durst, Pressure-driven diffusive gas flows in micro-channels: From the
Knudsen to the continuum regimes, Microfluid. Nanofluid. 6, 679 (2009).

[38] S. K. Dadzie and H. Brenner, Predicting enhanced mass flow rates in gas microchannels using nonkinetic
models, Phys. Rev. E. 86, 036318 (2012).

[39] A. Jaishankar and G. H. McKinley, An analytical solution to the extended Navier Stokes equations using
the Lambert W function, AIChE J. 60, 1413 (2014).

[40] T. Veltzke and J. Thaming, An analytically predictive model for moderately rarefied gas flow, J. Fluid
Mech. 698, 406 (2012).

[41] T. Ohwada, Y. Sone, and K. Aoki, Numerical analysis of the shear and thermal creep flows of a rarefied
gas over a plane wall on the basis of the linearized Boltzmann equation for hard-sphere molecules, Phys.
Fluids A 1, 1588 (1989).

[42] G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon, Oxford, 1994).
[43] M. A. Gallis and J. R. Torczynski, Direct simulation Monte Carlo-based expressions for the gas mass flow

rate and pressure profile in a microscale tube, Phys. Fluids 24, 012005 (2012).
[44] K. P. Chen and D. Shen, Drainage flow of a viscous compressible fluid from a small capillary with a

sealed end, J. Fluid Mech. 839, 621 (2018).
[45] K. P. Chen and D. Shen, Mechanism of fluid production from the nanopores of shale, Mech. Res.

Commun. 88, 34 (2018).
[46] S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and

the incompressible limit of compressible fluids, Commun. Pure Appl. Math. 34, 481 (1981).

024202-19

https://doi.org/10.1007/s10404-011-0773-x
https://doi.org/10.1007/s10404-011-0773-x
https://doi.org/10.1007/s10404-011-0773-x
https://doi.org/10.1007/s10404-011-0773-x
https://doi.org/10.2514/8.11476
https://doi.org/10.2514/8.11476
https://doi.org/10.2514/8.11476
https://doi.org/10.2514/8.11476
https://doi.org/10.1063/1.1584652
https://doi.org/10.1063/1.1584652
https://doi.org/10.1063/1.1584652
https://doi.org/10.1063/1.1584652
https://doi.org/10.1080/108939599199864
https://doi.org/10.1080/108939599199864
https://doi.org/10.1080/108939599199864
https://doi.org/10.1080/108939599199864
https://doi.org/10.1017/S0022112002002203
https://doi.org/10.1017/S0022112002002203
https://doi.org/10.1017/S0022112002002203
https://doi.org/10.1017/S0022112002002203
https://doi.org/10.1063/1.1587155
https://doi.org/10.1063/1.1587155
https://doi.org/10.1063/1.1587155
https://doi.org/10.1063/1.1587155
https://doi.org/10.1063/1.2393436
https://doi.org/10.1063/1.2393436
https://doi.org/10.1063/1.2393436
https://doi.org/10.1063/1.2393436
https://doi.org/10.1063/1.3052923
https://doi.org/10.1063/1.3052923
https://doi.org/10.1063/1.3052923
https://doi.org/10.1063/1.3052923
https://doi.org/10.1007/s10404-012-1012-9
https://doi.org/10.1007/s10404-012-1012-9
https://doi.org/10.1007/s10404-012-1012-9
https://doi.org/10.1007/s10404-012-1012-9
https://doi.org/10.1016/j.physa.2004.10.034
https://doi.org/10.1016/j.physa.2004.10.034
https://doi.org/10.1016/j.physa.2004.10.034
https://doi.org/10.1016/j.physa.2004.10.034
https://doi.org/10.1063/1.1708841
https://doi.org/10.1063/1.1708841
https://doi.org/10.1063/1.1708841
https://doi.org/10.1063/1.1708841
https://doi.org/10.1063/1.2759531
https://doi.org/10.1063/1.2759531
https://doi.org/10.1063/1.2759531
https://doi.org/10.1063/1.2759531
https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.048
https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.048
https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.048
https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.048
https://doi.org/10.1007/s10404-008-0344-y
https://doi.org/10.1007/s10404-008-0344-y
https://doi.org/10.1007/s10404-008-0344-y
https://doi.org/10.1007/s10404-008-0344-y
https://doi.org/10.1103/PhysRevE.86.036318
https://doi.org/10.1103/PhysRevE.86.036318
https://doi.org/10.1103/PhysRevE.86.036318
https://doi.org/10.1103/PhysRevE.86.036318
https://doi.org/10.1002/aic.14407
https://doi.org/10.1002/aic.14407
https://doi.org/10.1002/aic.14407
https://doi.org/10.1002/aic.14407
https://doi.org/10.1017/jfm.2012.98
https://doi.org/10.1017/jfm.2012.98
https://doi.org/10.1017/jfm.2012.98
https://doi.org/10.1017/jfm.2012.98
https://doi.org/10.1063/1.857304
https://doi.org/10.1063/1.857304
https://doi.org/10.1063/1.857304
https://doi.org/10.1063/1.857304
https://doi.org/10.1063/1.3678337
https://doi.org/10.1063/1.3678337
https://doi.org/10.1063/1.3678337
https://doi.org/10.1063/1.3678337
https://doi.org/10.1017/jfm.2018.56
https://doi.org/10.1017/jfm.2018.56
https://doi.org/10.1017/jfm.2018.56
https://doi.org/10.1017/jfm.2018.56
https://doi.org/10.1016/j.mechrescom.2018.01.009
https://doi.org/10.1016/j.mechrescom.2018.01.009
https://doi.org/10.1016/j.mechrescom.2018.01.009
https://doi.org/10.1016/j.mechrescom.2018.01.009
https://doi.org/10.1002/cpa.3160340405
https://doi.org/10.1002/cpa.3160340405
https://doi.org/10.1002/cpa.3160340405
https://doi.org/10.1002/cpa.3160340405


DI SHEN AND KANG PING CHEN

[47] S. Klainerman and A. Majda, Compressible and incompressible fluids, Commun. Pure Appl. Math. 35,
629 (1982).

[48] J. D. Anderson, Jr., Computational Fluid Dynamics (McGraw-Hill, New York, 1995).
[49] J. Lighthill, Waves in Fluids (Cambridge University, New York,1978).
[50] A. D. Pierce, Acoustics: An Introduction to its Physical Principles and Applications (McGraw-Hill,

New York, 1981).
[51] P. M. Morse and K. Uno Ingard, Theoretical Acoustics, (McGraw-Hill, New York, 1968).
[52] S. Temkin, Elements of Acoustics (Wiley, New York, 1981).
[53] K. F. Herzfeld and T. A. Litovitz, Absorption and Dispersion of Ultrasonic Waves (Academic, New York,

1959).
[54] R. Klein, Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics. I.

One-dimensional flow, J. Comput. Phys. 121, 213 (1995).
[55] C. D. Munz, S. Roller, R. Klein, and K. J. Geratz, The extension of incompressible flow solvers to the

weakly compressible regime, Comput. Fluids 32, 173 (2003).
[56] C. D. Munz, M. Dumbser, and S. Roller, Linearized acoustic perturbation equations for low Mach number

flow with variable density and temperature, J. Comput. Phys. 224, 352 (2007).
[57] R. Aris, Vectors, Tensors, and the Basic Equations of Fluid Mechanics (Dover, New York, 1989).
[58] L. G. Leal, Advanced Transport Phenomena (Cambridge University, New York, 2010).
[59] R. L. Panton, Incompressible Flow, 4th ed. (Wiley, New York, 2013).
[60] J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New

York, 1954).
[61] M. H. J. Hagen, I. Pagonabarraga, C. P. Lowe, and D. Frenkel, Algebraic Decay of Velocity Fluctuations

in a Confined Fluid, Phys. Rev. Lett. 78, 3785 (1997).
[62] B. U. Felderhof, Transient flow of a viscous compressible fluid in a circular tube after a sudden point

impulse, J. Fluid Mech. 644, 97 (2010).
[63] D. Frydel and H. Diamant, Sound-mediated dynamic correlations between colloidal particles in a quasi-

one-dimensional channel. Microparticles in Stokes Flows 2011, J. Phys.: Conf. Ser. 392, 012007 (2012).
[64] J. W. S. Rayleigh, The Theory of Sound (Dover, New York, 1945), Vol. 2.
[65] K. C. Pong, C. M. Ho, J. Q. Liu, and Y. C. Tai, Non-linear pressure distribution in uniform micro-channels.

in Application of Microfabrication to Fluid Mechanics, vol. 197 of FED (ASME, New York, NY, USA,
1994), pp. 51–56.

[66] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.4.024202 for
mass flow-rate comparisons for 32 additional independent experiments for both microtubes and
microchannels.

[67] J. M. Anderson, M. W. Moorman, J. R. Brown, J. M. Hochrein, S. M. Thornberg, K. E. Achyuthan, and
R. P. Manginell, Isothermal mass flow measurements in microfabricated rectangular channels over a very
wide Knudsen range, J. Micromech. Microeng. 24, 055013 (2014).

[68] E. Arkilic, K. Breuer, and M. Schmidt, Mass flow and tangential momentum accommodation in silicon
micromachined channels, J. Fluid Mech. 437, 29 (2001).

[69] I. A. Graur, P. Perrier, W. Ghozlani, and J. G. Méolans, Measurements of tangential momentum
accommodation coefficient for various gases in plane microchannel, Phys. Fluids 21, 102004 (2009).

[70] M. Hadj Nacer, I. Graur, and P. Perrier, Mass flow measurement through rectangular microchannel from
hydrodynamic to near free molecular regimes, La Houille Blanche 4, 49 (2011).

[71] M. Hadj Nacer, I. Graur, P. Perrier, and J. G.Meolans, Gas flow through microtubes with different internal
surface coatings, J. Vac. Sci. Technol. A 32, 021601 (2014).

[72] V. Hemadri, V. V. Varade, A. Agrawal, and U. V. Bhandarkar, Investigation of rarefied gas flow in
microchannels of non-uniform cross section, Phys. Fluids 28, 022007 (2016).

[73] W. Lee, M. Wong, and Y. Zohar, Microchannels in series connected via a contraction/expansion section,
J. Fluid Mech. 459, 187 (2002).

[74] W. Lei and D. R. McKenzie, Revisiting Maxwell’s accommodation coefficient: A study of nitrogen flow
in a silica microtube across all flow regimes, Ann. Phys. (NY) 351, 828 (2014).

024202-20

https://doi.org/10.1002/cpa.3160350503
https://doi.org/10.1002/cpa.3160350503
https://doi.org/10.1002/cpa.3160350503
https://doi.org/10.1002/cpa.3160350503
https://doi.org/10.1016/S0021-9991(95)90034-9
https://doi.org/10.1016/S0021-9991(95)90034-9
https://doi.org/10.1016/S0021-9991(95)90034-9
https://doi.org/10.1016/S0021-9991(95)90034-9
https://doi.org/10.1016/S0045-7930(02)00010-5
https://doi.org/10.1016/S0045-7930(02)00010-5
https://doi.org/10.1016/S0045-7930(02)00010-5
https://doi.org/10.1016/S0045-7930(02)00010-5
https://doi.org/10.1016/j.jcp.2007.02.022
https://doi.org/10.1016/j.jcp.2007.02.022
https://doi.org/10.1016/j.jcp.2007.02.022
https://doi.org/10.1016/j.jcp.2007.02.022
https://doi.org/10.1103/PhysRevLett.78.3785
https://doi.org/10.1103/PhysRevLett.78.3785
https://doi.org/10.1103/PhysRevLett.78.3785
https://doi.org/10.1103/PhysRevLett.78.3785
https://doi.org/10.1017/S0022112009992874
https://doi.org/10.1017/S0022112009992874
https://doi.org/10.1017/S0022112009992874
https://doi.org/10.1017/S0022112009992874
https://doi.org/10.1088/1742-6596/392/1/012007
https://doi.org/10.1088/1742-6596/392/1/012007
https://doi.org/10.1088/1742-6596/392/1/012007
https://doi.org/10.1088/1742-6596/392/1/012007
http://link.aps.org/supplemental/10.1103/PhysRevFluids.4.024202
https://doi.org/10.1088/0960-1317/24/5/055013
https://doi.org/10.1088/0960-1317/24/5/055013
https://doi.org/10.1088/0960-1317/24/5/055013
https://doi.org/10.1088/0960-1317/24/5/055013
https://doi.org/10.1017/S0022112001004128
https://doi.org/10.1017/S0022112001004128
https://doi.org/10.1017/S0022112001004128
https://doi.org/10.1017/S0022112001004128
https://doi.org/10.1063/1.3253696
https://doi.org/10.1063/1.3253696
https://doi.org/10.1063/1.3253696
https://doi.org/10.1063/1.3253696
https://doi.org/10.1051/lhb/2011040
https://doi.org/10.1051/lhb/2011040
https://doi.org/10.1051/lhb/2011040
https://doi.org/10.1051/lhb/2011040
https://doi.org/10.1116/1.4828955
https://doi.org/10.1116/1.4828955
https://doi.org/10.1116/1.4828955
https://doi.org/10.1116/1.4828955
https://doi.org/10.1063/1.4942183
https://doi.org/10.1063/1.4942183
https://doi.org/10.1063/1.4942183
https://doi.org/10.1063/1.4942183
https://doi.org/10.1017/S0022112002008030
https://doi.org/10.1017/S0022112002008030
https://doi.org/10.1017/S0022112002008030
https://doi.org/10.1017/S0022112002008030
https://doi.org/10.1016/j.aop.2014.09.001
https://doi.org/10.1016/j.aop.2014.09.001
https://doi.org/10.1016/j.aop.2014.09.001
https://doi.org/10.1016/j.aop.2014.09.001


SELF-DIFFUSION IN COMPRESSIBLE GAS FLOW …

[75] P. Perrier, I. A. Graur, T. Ewart, and J. G. Méolans, Mass flow rate measurements in microtubes: From
hydrodynamic to near free molecular regime, Phys. Fluids 23, 042004 (2011).

[76] J. Pitakarnnop, S. Varoutis, D. Valougeorgis, S. Geoffroy, L. Baldas, and S. Colin, A novel experimental
setup for gas microflows, Microfluid. Nanofluid. 8, 57 (2010).

[77] M. Rojas-Cárdenas, E. Silva, M. T. Ho, C. J. Deschamps, and I. Graur, Time-dependent methodology for
non-stationary mass flow rate measurements in a long micro-tube, Microfluid. Nanofluid. 21, 86 (2017).

[78] E. Silva, M. Rojas-Cardenas, and C. J. Deschamps, Experimental analysis of velocity slip at the wall for
gas flows of nitrogen, R134a, and R600a through a metallic microtube, Int. J. Refrig. 66, 121 (2016).

[79] A. E. Velasco, S. G. Friedman, M. Pevarnik, Z. S. Siwy, and P. Taborek, Pressure-driven flow through a
single nanopore, Phys. Rev. E 86, 025302(R) (2012).

[80] M. Barisik and A. Beskok, Scale effects in gas nano flows, Phys. Fluids 26, 052003 (2014).

024202-21

https://doi.org/10.1063/1.3562948
https://doi.org/10.1063/1.3562948
https://doi.org/10.1063/1.3562948
https://doi.org/10.1063/1.3562948
https://doi.org/10.1007/s10404-009-0447-0
https://doi.org/10.1007/s10404-009-0447-0
https://doi.org/10.1007/s10404-009-0447-0
https://doi.org/10.1007/s10404-009-0447-0
https://doi.org/10.1007/s10404-017-1920-9
https://doi.org/10.1007/s10404-017-1920-9
https://doi.org/10.1007/s10404-017-1920-9
https://doi.org/10.1007/s10404-017-1920-9
https://doi.org/10.1016/j.ijrefrig.2016.02.006
https://doi.org/10.1016/j.ijrefrig.2016.02.006
https://doi.org/10.1016/j.ijrefrig.2016.02.006
https://doi.org/10.1016/j.ijrefrig.2016.02.006
https://doi.org/10.1103/PhysRevE.86.025302
https://doi.org/10.1103/PhysRevE.86.025302
https://doi.org/10.1103/PhysRevE.86.025302
https://doi.org/10.1103/PhysRevE.86.025302
https://doi.org/10.1063/1.4874678
https://doi.org/10.1063/1.4874678
https://doi.org/10.1063/1.4874678
https://doi.org/10.1063/1.4874678

