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Sorting cells based on their intrinsic properties is a highly desirable objective, since
changes in cell deformability are often associated with various stress conditions and
diseases. Deterministic lateral displacement (DLD) devices offer high precision for rigid
spherical particles, while their success in sorting deformable particles remains limited due
to the complexity of cell traversal in DLD devices. We employ mesoscopic hydrodynamics
simulations and demonstrate prominent advantages of sharp-edged DLD obstacles for
probing deformability properties of red blood cells (RBCs). By consecutive sharpening
of the pillar shape from circular to diamond to triangular cross-section, a pronounced cell
bending around an edge is achieved, serving as a deformability sensor. Bending around
the edge is the primary mechanism which governs the traversal of RBCs through such a
DLD device. This strategy requires an appropriate degree of cell bending by fluid stresses,
which can be controlled by the flow rate, and exhibits good sensitivity to moderate changes
in cell deformability. We expect that similar mechanisms should be applicable for the
development of novel DLD devices that target intrinsic properties of many other cells.
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I. INTRODUCTION

Deterministic lateral displacement (DLD) is a powerful microfluidic technique capable of contin-
uous size-dependent particle sorting with exceptional resolution [1–3]. Due to the extreme precision
capabilities, DLD promises to have great potential for biological and clinical applications. DLD
devices have been employed to sort out circulating tumor cells from blood [4–6], to process blood
cells [7–10] and to separate bacteria [10,11] and parasites [12,13] from human blood. However,
the auspicious precision is directly realizable only for rigid spherical particles, while biological
particles (or cells) are generally deformable and nonspherical [9,14]. Therefore, biological cells may
attain different flow-induced orientation and deform in response to local flow conditions, making
the prediction of their traversal through a DLD device difficult. In fact, the success in several
cases above can mainly be attributed to significant size differences between targeted bioparticles
and other background cells. Nevertheless, in numerous biological and clinical applications, sorting
and detection based on intrinsic mechanical properties of cells is highly coveted, since a cell’s
deformability is recognized as an important biomarker for the state of a cell [15,16]. For instance, a
gradual stiffening of red blood cells (RBCs) is an important indicator for the onset and progression
of diseases such as diabetes, sickle cell anemia, and malaria [17–19]. This motivates large scientific
efforts to facilitate precise sorting in DLD devices using intrinsic cell properties such as shape and
deformability.
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DLD devices usually utilize a row-shifted post (or pillar) array, which divides the laminar
flow into several streams with equal volumetric flow rates [2]. The thickness of the first stream
adjacent to a pillar defines a critical radius Rc such that rigid spherical particles with a larger or
smaller size than Rc traverse in a displacement or zigzag mode, respectively [2,20,21]. Recently,
an intermediate traversal mode called “mixed” mode has also been demonstrated experimentally
[22,23], theoretically [20,21], and in simulations [14,22,24]. Biological cells not only can attain
all these modes, but also change their effective critical size depending on the flow conditions
[8,14,25,26]. For example, RBC orientation can be sterically controlled in a shallow DLD device
whose depth is smaller than the large diameter of the discocytic shape [8,12,27], and cell
deformation can be mediated by different fluid stresses at various flow rates [8,25,27]. However,
shallow devices have a low throughput and often suffer from cell sticking at the walls. Recently,
a deep DLD device (i.e. its depth is larger than the largest particle dimension) with asymmetric
gaps [23] has been shown to provide a better sorting of RBCs, wherein the underlying mechanism
resembles cross-flow filtration [28]. Different post geometries have also been used to explore their
possible advantages. For instance, I-shaped and L-shaped pillars were suggested as good candidates
for sorting nonspherical particles, as they can induce a rotational motion [9,10]. In our previous
work [24], we have demonstrated that RBCs exhibit different deformation in arrays with various
pillar geometries, since pillar shape influences the flow field in a DLD device. Airfoil-like and
diamond post shapes have been suggested to be advantageous for handling soft bioparticles, as
they minimize device clogging [29]. Nevertheless, there is no comprehensive understanding what
mechanisms and post structures should be employed to establish an efficient sorting scheme which
would target cell deformability as a biomarker.

We employ mesoscale simulations to identify robust mechanisms and advantages of different post
geometries for deformability-based sorting of RBCs. Our main result is that sharp-edged structures
in deep DLD devices are able to significantly enhance sensitivity for moderate differences in RBC
deformability. Conventional deep DLD arrays based on cylindrical pillars with a circular cross-
section have a poor performance for deformability-based sorting, because the rounded post shapes
do not generate distinct enough deformation of cells with different elastic properties. In contrast,
structures with diamond and triangular cross-sections and sharp edges induce strong RBC bending
around a post, which is the main mechanism for excellent deformability sensitivity and, thus, serves
as a sensor for the cell’s deformability. In addition, sharp edges result in a bended first stream,
whose length along the flow direction is significantly reduced. The relation between the length
of the first stream in the flow direction and a deformability-dependent effective length of RBCs
significantly influences the traversal of RBCs through the device. This constitutes a unique sorting
mechanism, which is important for the separation of deformable and anisotropic particles. It is
important to emphasize that optimal sensitivity of different sharp-edged structures is achieved only
for an appropriate correspondence between cell deformation and fluid stresses applied by the flow,
so that the flow rate has to be carefully selected. Our results provide general design principles for
DLD devices and should thus be useful for the construction of optimized microfluidic devices,
which can precisely target intrinsic cell properties.

II. SIMULATION METHODS AND MODELS

A. Post geometry and arrangement in DLD devices

To demonstrate how sharp-edged obstacles in deep DLD devices can dramatically enhance
deformability-based sorting of RBCs, we study microfluidic DLD arrays with different post
geometries (see Fig. 1). Investigated post shapes include circular, diamond, and triangular obstacles
with two characteristic lengths L = D = 15 μm, as depicted in Fig. 1(a). The corresponding array
gaps are GL and GD with a row shift �λ, and the post center-to-center distances are λL = L + GL

and λD = D + GD, as shown in Fig. 1(b). The DLD array we study in simulations is asymmetric
(GL : GD = 10 : 6), which leads to a reduced critical size in comparison to a conventional symmetric
design with GD = GL [23].
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FIG. 1. Schematic of DLD devices and RBC models. (a) Pillar shapes including circle, triangle, and
diamond geometries characterized by the pillar sizes L = D = 15 μm. (b) Asymmetrical DLD array with
triangular pillars characterized by the asymmetric gap sizes (lateral gap of GL = 10 μm and downstream gap
of GD = 6 μm), the post center-to-center distances λL = L + GL and λD = D + GD, and a row shift �λ. Red
arrows indicate the average flow direction along the x axis of the simulated box, while the row shift is made
along the y axis. Note that in 3D simulations, the device thickness is represented by the length of simulated
systems along the z axis. (c) 2D bead-spring model and 3D triangular mesh model of a RBC.

We employ simulations of two-dimensional (2D) and three-dimensional (3D) systems to study
RBC behavior in DLD devices for a wide range of parameters. The 2D model is employed for
its numerical efficiency; however, we will show that it qualitatively captures RBC behavior in
comparison with the 3D model.

B. RBC model

In the simulations, a RBC in 2D is represented by a bead-spring chain, incorporating bending
rigidity (κ) and length and area conservation, while the membrane in 3D is modeled by a triangular
mesh, which represents shear elasticity, bending rigidity, and area and volume conservation; see
Fig. 1(c).

In 2D, RBCs are modeled as closed bead-spring chains with Np = 50 beads connected by Ns =
Np springs [24,30]. The spring potential is given by

Usp =
Ns∑
j=1

[
kBT lm

(
3x2

j − 2x3
j

)
4lp(1 − x j )

+ kp

l j

]
, (1)
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TABLE I. Fluid and cell parameters used in 2D simulations. n is the fluid number density, and Y =
(−∂2Usp/∂l2)|l0 is the stretching modulus with l0 = 0.26rc being equilibrium spring length. Note that mass,
length, and energy are measured in units of the fluid particle mass m = 1, the cutoff radius rc = 1.5, and
kBT = 1.0, respectively.

DPD nr2
c arc/kBT γ rc/

√
mkBT ηrc/

√
mkBT

11.25 60 30 216.7
RBC A0/D2

r κ/(kBT l0) Y Dr/kBT kaD2
r /kBT

0.36 50K∗
2D 9000K∗

2D 37 430K∗
2D

where l j is the length of the spring j, lmis the maximum spring extension, x j = l j/lm ∈ (0, 1), lp

is the persistence length, and kp is the spring constant. Note that a balance between the two force
terms in Eq. (1) results in a nonzero equilibrium spring length l0, with lm/l0 = 2.2. Furthermore, to
induce a 2D biconcave cell shape in equilibrium, an additional membrane bending potential Ubend

and area constraint potential Uarea are incorporated as

Ubend =
Np∑
j=1

kb[1 − cos(θ j )], Uarea = ka
(A − A0)2

2
, (2)

where kb and ka are the bending coefficient and the area-constraint coefficient, respectively. θ j is the
instantaneous angle between two adjacent springs having a common vertex j, A is the instantaneous
area, and A0 is the desired cell area. In 2D, kb is related to the macroscopic bending rigidity κ as
κ = kbl0.

Typical values for a healthy RBC are the effective cell diameter D2D
r = 6.1 μm and the bending

rigidity κ of about 50–70kBT for the physiological temperature T = 37 ◦C. In 2D, we use D2D
r =

Lr/π , with the cell contour length Lr . All 2D simulation parameters are collected in Table I.
The RBC bending rigidity is characterized by a nondimensional rigidity factor K∗

2D = κ/κ0 ∈
{1, 2, 4, 10, 20, 40}, where κ0/(kBT l0) = 50 corresponds to the typical bending rigidity of a healthy
RBC.

In 3D, the RBC membrane is modeled as a triangulated network of springs [31–35]. It is
constructed from a collection of Nv = 1000 particles linked by Ns = 3(Nv − 2) springs with the
bonding potential of Eq. (1). The membrane bending rigidity in absence of spontaneous curvature
is described by a bending energy

Ubend =
Ns∑
j=1

kb[1 − cos(φ j )], (3)

where φ j is the angle between two normal vectors of triangular faces adjacent to the spring j. In
addition, to represent area incompressibility of the lipid bilayer and incompressibility of the inner
cytosol, the area and volume constraints are introduced by the potentials

Uarea = ka
(A − Ar )2

2Ar
+

∑
j∈1,...,Nt

kd

(
Aj − A0

j

)2

2A0
j

, Uvol = kv

(V − Vr )2

2Vr
, (4)

where ka, kd , and kv are the global area, local area, and volume constraint coefficients, respectively.
A and V are the instantaneous area and volume of RBCs with the desired values of Ar and Vr , while
Aj and A0

j are the instantaneous and desired areas of the jth triangle in the network, respectively.
Note that the desired values of those parameters are set according to the initial triangulation.
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TABLE II. Fluid and cell parameters used in 3D simulations. In all simulations, we set m = 1, rc = 1.5,
and kBT = 0.2.

SDPD nr3
c p0r3

c /kBT br3
c /kBT ηr2

c /
√

mkBT
20.25 25 313 24 975 503.1

RBC Nv lm/l0 κ/kBT μrD2
r /kBT

1000 2.2 70K∗
3D 47 620

The parameters of the triangulated-network model have been related to the macroscopic
membrane properties [33,34,36,37]. For example, the membrane shear modulus is given by

μr =
√

3kBT

4plmx0

[
x0

2(1 − x0)3
− 1

4(1 − x0)2
+ 1

4

]
+ 2

√
3kp

4l3
0

, (5)

where x0 = lm/l0 = 2.2 for all springs. The bending constant kb can be expressed in terms of the
macroscopic bending rigidity κ of the Helfrich model [38] as κ = √

3kb/2. Accordingly, mechanical
properties of 3D RBCs can be characterized by both the shear modulus μr and bending rigidity
κ with a Föppl–von Kármán number � = μrD2

r /κ . In this study, μr is fixed and κ is varied and
characterized by K∗

3D = κ/κ0, where κ0 = 70kBT corresponds to a healthy RBC with � ≈ 680.
An effective RBC diameter is defined as Dr = √

Ar/π with Ar = 133.5 × 10−12m2, implying that
Dr = 6.5μm. RBC volume is set to Vr = 94 × 10−18 m3. Table II summarizes important parameters
used in 3D simulations.

C. Mesoscale hydrodynamics approach

We employ the dissipative particle dynamics (DPD) method [39,40] in 2D to qualitatively explore
physical mechanisms for efficient deformability-based separation. The smoothed dissipative particle
dynamics (SDPD) approach [41,42] is applied in 3D for a detailed quantitative exploration of
specific flow conditions and post shapes.

In the DPD method [39,40], each individual particle represents a group of molecules. The inter-
particle force (F i j) acting on particle i by particle j is a sum of three pairwise forces, conservative
(FC

i j), dissipative (FD
i j), and random (FR

i j) within a selected cutoff radius rc:

FC
i j = ai j (1 − ri j/rc)r̂i j,

FD
i j = −γi jω

D(ri j )(vvvi j · r̂i j )r̂i j, (6)

FR
i j = σi jω

R(ri j )ξi jdt−1/2r̂i j,

where ri j = ri − r j , ri j = |ri j |, r̂i j = ri j/|ri j |, and vvvi j = vvvi − vvv j . The coefficients ai j , γi j , and σi j

determine the strength of the corresponding forces, respectively. ωD(ri j ) and ωR(ri j ) are weight
functions, and ξi j is a random number generated from a Gaussian distribution with zero mean and
unit variance. The dissipative and random forces must satisfy the fluctuation-dissipation theorem
given by the conditions ωD(ri j ) = [ωR(ri j )]2 and σ 2 = 2γ kBT [40], in order to maintain the system
temperature (T ) and generate a correct equilibrium Gibbs-Boltzmann distribution. ωR(ri j ) = (1 −
ri j/rc)k with k = 0.15 is employed in this study. The DPD parameters for 2D simulations are given
in Table I.

In the SDPD method [41,42], each individual particle represents a small volume of fluid. SDPD
is often considered as an improved version of DPD with a direct connection to the Navier-Stokes
equation and consistent thermal fluctuations [43]. The three pairwise forces on particle i in SDPD
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are given by

FC
i =

∑
j

[
pi

ρ2
i

+ p j

ρ2
j

]
ωi j r̂i j, FD

i = −
∑

j

γi j (vvvi j + (vvvi j · r̂i j )r̂i j ),

FR
i =

∑
j

σi j

(
dW

S
i j + 1

3
tr[dWi j]

)
· r̂i j, (7)

where tr[dWi j] and dW
S
i j are the trace of a random matrix of independent Wiener increments

dWi j and its traceless symmetric part, respectively. pi and p j are local particle pressures given
by the equation of state p = p0(ρ/ρ0)7 − b, where p, ρ0, and b are selected parameters. γi j and
σi j are the coefficients of dissipative and random forces, respectively, such that γi j = 5η0

3
ωi j

ρiρ j
and

σi j = 2
√

kBT γi j with η0 being the desired dynamic viscosity.

D. Simulation characteristics

A simulated system consists of a single suspended RBC, a single pillar, and many fluid particles
within the computational domain. Post walls and the ceiling and floor walls in 3D are modeled
by a layer of frozen particles with a thickness of rc and same equilibrium structure as that of
the suspending fluid. In addition, to prevent wall penetration, bounce-back reflections are applied
to particles at fluid-solid interfaces. An infinite DLD array is represented by applying periodic
boundary conditions in both the flow (x) and lateral (y) directions. To model a shift �λ in the lateral
direction, a shift in the y direction is applied for each boundary-crossing event in the x direction.

The flow in the x direction is driven by a constant force f applied to each fluid particle, which is
equivalent to a constant pressure gradient �P/λD = f n, where �P is the pressure drop over a single
post column and n is the number density of fluid particles in simulations. To characterize the flow
strength, we define a capillary number as Ca = ¯̇γ ηD3

r /κ . Here the average shear rate is ¯̇γ = Q/G2
L

in 2D and ¯̇γ = Q/(G2
LHDLD) in 3D, where Q is the flow rate within a single post section and HDLD

is the height of a DLD device in 3D. η is the fluid’s dynamic viscosity. In 3D simulations, another
capillary number based on the shear modulus of RBC membrane can be defined as Caμ = ¯̇γ ηDr/μr ,
which is related to the employed Ca number based on the bending rigidity through the Föppl–von
Kármán number � ≈ 680. Which of these capillary numbers is most relevant depends on the type of
deformation. For bending of RBCs around sharp edges considered here, it is Ca, whereas for RBC
buckling in shear flow at high shear rates, it is Caμ [44]. It is important to note that an additional
adaptive force is applied in y direction to ensure no net flow in the lateral direction [14,24]. Both
2D and 3D simulations are performed with a viscosity contrast C = ηi/η = 1 between the internal
(ηi) and external (η) fluid viscosities.

To analyze cell deformation, we employ RBC acircularity δ2D in 2D [24] and asphericity δ3D in
3D [45], which are defined as

δ2D = (λ1 − λ2)2

(λ1 + λ2)2
, (8)

δ3D = [(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2]

2(λ1 + λ2 + λ3)2
, (9)

where λ1 � λ2 � λ3 are the square roots of the eigenvalues of the squared radius-of-gyration
tensor. Acircularity (or asphericity) characterizes the departure of cell shape from a circular (or
spherical) geometry. Thus, the value of δ is equal to zero for a perfect circular or spherical shape
and approaches 1.0 for a strongly elongated object. In equilibrium, δ2D ≈ 0.29 and δ3D ≈ 0.13
correspond to the 2D and 3D biconcave shapes of a RBC, respectively.
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FIG. 2. Deformation and displacement of RBCs in circular post array. (a) Acircularity distributions of soft
(K∗

2D = κ/κ0 = 1) and stiff (K∗
2D = 40) RBCs in a circular post array with �λ/λL = 0.0625. The acircularity

is defined as δ2D = (λ1 − λ2)2/(λ1 + λ2)2, where λ1 � λ2 are square roots of the eigenvalues of the squared
radius-of-gyration tensor. The plotted shapes of RBCs represent typical cell configurations from simulated
trajectories. (b) Separation index Is for a RBC as a function of the row shift �λ. Is is the ratio of average
lateral displacement of a RBC per post and the row shift �λ. Error bars correspond to standard deviations.
Here Ca = 34.1/K∗

2D.

III. RESULTS

A. RBC behavior in circular post arrays

We start with a conventional circular post geometry and investigate its performance for
deformability-based sorting of RBCs. Figure 2(a) presents acircularity distributions, which char-
acterize the deviation of cell shape from a circular configuration for the two very different RBC
bending rigidities (K∗

2D = κ/κ0 = 1 and 40). The softer RBC with bending rigidity κ0 (i.e., K∗
2D = 1)

approximates normal healthy conditions (see Methods) and shows considerable deformations in
DLD, documented by a wide acircularity distribution in Fig. 2(a). The stiffer cell exhibits a rather
narrow acircularity distribution, which is centered around an acircularity value δ2D ≈ 0.29 of the
RBC biconcave shape in equilibrium, indicating that a RBC with K∗

2D = 40 can be considered nearly
rigid under these flow conditions with Ca = 34.1/K∗

2D. Such strong differences in the deformation
of these two cells should in general strongly affect their traversal through the DLD device and
eventually translate into their tangible separation.

To quantitatively characterize the traversal of RBCs through a device, a dimensionless parameter
called “separation index” Is, defined as the ratio of average lateral displacement of a cell per post and
the row shift �λ, is introduced similarly to Ref. [24]. An ideal displacement mode is characterized
by Is = 1 such that cells are laterally displaced at each post. An ideal zigzag mode is generally
referred to as Is ≈ 0 without a significant net lateral displacement of cells in the device. In addition,
a “mixed mode” with irregular alternation of zigzag and displacement modes can be also present, for
which Is ∈ [0.3, 0.6] [24], and be used to localize the displacement-to-zigzag transition. Figure 2(b)
shows the separation index for soft and nearly rigid RBCs as a function of �λ. Despite the very
strong differences in overall deformation of these two RBCs illustrated in Fig. 2(a), Is displays
only a slight shift toward a lower value of �λ with increasing cell rigidity. This results in a very
narrow window of �λ values (∼100 nm), where deformability-based sorting should theoretically be
possible. However, in practice the use of this narrow separation window would likely lead to a poor
performance or inability to efficiently carry out deformability-based cell sorting. Therefore, strong
differences in particle deformation within a DLD device do not guarantee good or even moderate
sorting efficiency.
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FIG. 3. Motion and deformation of soft (K∗
2D = 1, bottom) and nearly rigid (K∗

2D = 40, top) RBCs during a
zigzagging event. The snapshots are extracted from simulated flow trajectories of RBCs in a circular post array
with �λ/λL = 0.0625. In the background, corresponding fluid flow profiles of the velocity in flow direction
(x axis) are presented with several typical streamlines. The velocity field is normalized by a maximum value
which is same for both cases. Ca = 34.1/K∗

2D.

To identify cell deformation which primarily governs the traversal of RBCs through a DLD
device, we take a closer look at RBC trajectories (Fig. 3). Such visual analysis reveals that RBC
deformation near the top of a pillar determines a cell’s trajectory, as it can result in a further displace-
ment motion or initiate a zigzaging event. This is also consistent with previous studies [8,14,25],
which demonstrated that strong enough deformation near a post can effectively reduce particle size
and alter its traversal through a DLD device. Note that the argument about effective reduction of the
particle size due to deformability is not strictly applicable here, since the soft cell displays a slightly
larger effective size than the stiff RBC in Fig. 2(b). Figure 3 compares typical motion of soft and stiff
RBCs as they experience a zigzagging event. Despite some differences in cell deformation, the mo-
tion of both RBCs is quite similar. In fact, significant deformations of soft RBCs represented by the
wide acircularity distribution in Fig. 2(a) occur mainly away from the posts and do not significantly
contribute to the cell’s traversal through the DLD device. Interestingly, slight deformations of soft
RBCs near a post in Fig. 3 aid the RBC to escape from the first stream, leading to a larger effective
size and Is value in Fig. 2(b) in comparison to the stiff cell. However, it is apparent that the rounded
geometry of circular posts and the resulting flow field do not induce strong enough differences in
RBC deformation near a post and, thus, result in a poor deformability-based separation.

B. Sorting with sharp-edged post structures

The results for circular posts indicate that a considerable deformation of cells near the top of post
structures likely has a strong correlation with the sensitivity of a DLD device for deformability-
based sorting. A stronger RBC deformation can be initiated by sharper edges at the post top, which
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FIG. 4. Schematic of different post shapes. Different pillar shapes illustrate a gradual edge sharpening from
circular to diamond to triangular geometry. Furthermore, various post shapes lead to differences in bending of
RBCs (1) and stall lines (2) corresponding to the first stream of the flow in the DLD device.

is illustrated by different post geometries in Fig. 4, including circular, diamond, and triangular
structures. Sharp edges in post geometry result in two crucial changes for RBC behavior in DLD.
First, such structures are able to induce a considerable RBC bending around a post due to steric
cell-post interactions and corresponding flow stresses within a flow field with bent streamlines,
since a RBC generally deforms along a post edge [23]. Second, a sharp edge leads to a reduced
thickness of the first stream along this edge, as illustrated in Fig. 4. For rigid spherical particles,
this reduces the critical size for separation [24,46]. Furthermore, Fig. 4 displays that a length of the
bent first stream adjacent to the edge is significantly reduced for sharp edges, which is important
in comparison to a characteristic RBC length. Note that the length of the bent first stream is also
reduced due to the asymmetric post positioning with a smaller gap GD between consecutive rows.
As it will become evident further on, for the separation of nonspherical particles, the stream length
instead of its thickness may play a decisive role for particle traversal through a DLD device.

To verify these propositions, we first consider acircularity distributions for a RBC with K∗
2D = 4

in DLD arrays with various post geometries, as shown in Fig. 5. For the fixed bending rigidity,
a DLD array with triangular posts induces the strongest cell deformations, which is evidenced by
the widest acircularity distribution. All three DLD devices here have �λ/λL = 0.05, such that a
RBC remains in the displacement mode. This means that the distributions in Fig. 5 represent RBC
deformation around different pillar structures and its subsequent shape relaxation, confirming that
sharp-edged post shapes significantly enhance RBC deformation. A stronger cell bending around
triangular posts is also directly visible from cell snapshots in Fig. 5 when compared to diamond and
circular structures (see also Movie S1 [47]).

Figure 6 presents separation index Is for RBCs in diamond and triangular pillar arrays as a
function of a cell’s rigidity and the row shift �λ. In contrast to a very slight dependence of the
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FIG. 5. RBC deformation in DLD arrays with different post geometries. Acircularity distributions for
RBCs (K∗

2D = 4) in DLD arrays with (a) circular, (b) diamond, and (c) triangular posts and �λ/λL = 0.05.
The presented snapshots illustrate deformation of RBCs in the displacement mode; see also Movie S1 [47].
Regular alteration of black and red cells corresponds to sequential positions of RBCs with a fixed spacing in
the flow direction (�x = 6.0 μm). Ca = 34.1/K∗

2D = 8.53.

displacement-to-zigzag transition on RBC bending rigidity in circular post arrays [Fig. 2(b)], this
transition is much more sensitive to κ in diamond-post arrays and most distinct for the triangular
post geometry. Consequently, the diamond and triangular structures result in a clear improvement
of the sensitivity and selectivity of a DLD device to subtle differences in RBC bending rigidity.
Therefore, sharp-edged structures would likely lead to a practically realizable and efficient DLD
design for deformability-based sorting.

Another interesting difference in RBC behavior in DLD arrays with circular and sharp-edged
posts is that the displacement-to-zigzag transition shifts to a larger value of �λ with increasing κ

for circular posts, while an opposite trend is observed in arrays with diamond and triangular pillars.
This qualitative difference indicates that there are distinct mechanisms at play. As discussed above
for the circular-post array, RBC deformation near the top of a pillar aids in cell escaping from the
first stream illustrated in Fig. 3 and leads to an effective increase in the critical size. Furthermore,
RBC snapshots in Fig. 5 demonstrate that a RBC may not necessarily make a tight contact with
circular posts, as a narrow fluid gap between the cell and the posts is clearly visible. This effect
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FIG. 6. Separation index Is of RBCs in DLD devices with sharp-edged geometries. Is for RBCs with
different bending rigidities in (a) diamond and (b) triangular pillar arrays as a function of the row shift �λ.
Error bars correspond to standard deviations. Ca = 34.1/K∗

2D.

likely occurs due to hydrodynamic interactions of a RBC with pillar walls, which is often referred
to as a “lift” force [48,49], or possibly due to hydrodynamic slowing down of particles near a
surface. The lift force generally acts stronger on soft particles in comparison to rigid particles and
drives a deformable RBC away from a pillar wall, effectively increasing its critical size. In contrast,
RBCs in diamond and triangular post arrays often make a tight contact with the posts, as seen in
Fig. 5, suggesting that hydrodynamic interactions between RBCs and the posts are weaker than in a
circular pillar array.

For a closer look at a typical RBC deformation around a triangular post, Fig. 7 shows
representative cell morphologies for three bending rigidities (K∗

2D = 1, 4, and 40) in a DLD device
with �λ/λL = 0.0625 (see also Movie S2 [47]). The RBC snapshots clearly show that a softer RBC
experiences a stronger bending deformation around the triangular pillar in comparison to stiffer
cells. In fact, this deformation aids a RBC to remain within the first stream in a DLD device and leads
to an effective reduction of the critical size. Here the length of the first stream in the flow direction
(illustrated in Fig. 4) with respect to the RBC size plays a decisive role. Thus, the stiff cell with
K∗

2D = 40, which does not bend much around the triangular post, is forced to leave the first stream
due to steric RBC-edge interactions, since its elongated shape exceeds the length of the first stream.
In contrast, the soft RBC with K∗

2D = 1 is able to bend sufficiently around the triangular post, in order
to remain within the first stream and proceed with a zigzagging mode. Therefore, the degree of RBC
bending around a sharp edge determines whether the cell proceeds with a displacement or zigzag
mode, resulting in different traversal paths in a DLD device depending on κ . This induced deforma-
tion around a sharp edge serves as an effective sensor for RBC deformability in the DLD device.

C. Effect of flow rate

Besides RBC deformability, the flow rate in a DLD device is another important parameter, as
it is directly related to applied fluid stresses. Intuitively, an increase in the flow rate should have a
similar effect as a decrease in cell’s bending rigidity for a fixed flow rate, as both lead to increased
deformation. Figure 8(a) shows the separation index Is for a RBC with K∗

2D = 4 at various flow
rates in triangular post arrays. Indeed, an increase in the flow rate results in a gradual shift of the
displacement-to-zigzag transition to lower row shifts, analogously to a decrease in cell rigidity. The
Is curves in Fig. 8(a) also indicate that the correspondence between the flow rate (or fluid stresses)
and the cell’s rigidity needs to be selected with care. For instance, the differences in Is curves for
Ca = 8.53 and 34.12 are not as large as for Ca = 34.12 and 68.24, indicating that the flow rates for
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FIG. 7. Snapshots of RBC deformation in triangular pillar arrays. Several RBC configurations for different
bending rigidities extracted from flow trajectories in a DLD device with triangular posts and �λ/λL = 0.0625;
see also Movie S2 [47]. The background shows corresponding fluid flow profiles of velocities in the flow
direction (x axis) with several typical streamlines. All velocities are normalized by a maximum value. Ca =
34.1/K∗

2D.

Ca � 34 are too small to induce significant deformation for a RBC with K∗
2D = 4, which is a key

point for deformability-based sorting. Similarly, too high flow rate would likely induce very strong
deformations independently of the RBC rigidity, compromising sorting sensitivity. Therefore, the
flow rate in a DLD device has to be carefully selected to induce distinguishable deformation for
RBCs within a desired range of membrane rigidities.

To examine the discussed similarity of effects of a cell’s bending rigidity and the flow rate in a
DLD device in more detail, we plot in Fig. 8(b) the critical shift �λc (at Is = 0.5) for RBC separation
as a function of capillary number Ca. The comparison is performed between the curves’ “varying
K∗

2D” and the corresponding curves’ “varying Q” for the same post shapes. Even though the critical
shift �λc decreases with increasing Ca number for both “varying K∗

2D” and “varying Q” cases, the
correspondence between these curves is only qualitative. This means that capillary number, although
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FIG. 8. Dependence of RBC sorting on flow rate and bending rigidity. (a) Separation index Is of RBCs
(K∗

2D = 4) in triangular post arrays for different Ca numbers (flow rate is varied) as a function of the row shift
�λ. Error bars correspond to standard deviations. (b) Critical row shift �λc (at Is = 0.5) for RBC separation
as a function of capillary number Ca. The diamond and triangle symbols represent diamond and triangular post
arrays, respectively.

an important parameter, is not the only dimensionless number which determines deformability-
based separation. There are several possible reasons that may lead to this complex behavior of
RBCs, which cannot be fully characterized by a single Ca number. These include nonlinear cell
deformation, nonlinear relaxation of the cell shape, and complex flow field and distribution of local
stresses. As a result, both the cell’s rigidity and the flow rate in the DLD device need to be carefully
considered, if a quantitative prediction of �λc is aimed for.

Note that the curves in Fig. 8(b) allow the selection of a proper flow rate Q for a pre-defined �λ

to achieve good sorting efficiency of RBCs whose bending rigidity is close to a targeted κ value.
Similarly, we can determine a range of cell rigidities which can be targeted well for preselected �λ

and Q.

D. Triangular post arrays in 3D simulations

To verify the discussed effect of sharp-edged structures, simulations of DLD devices with
triangular posts have been performed in three spatial dimensions. The post geometry and DLD
arrangement are the same as in the 2D study, while the height of the device was set to HDLD =
11 μm, such that a 8 μm RBC has full orientational freedom. The post edges were slightly
blunted by replacing the corners with short planes of 1 μm length. This shape modification
improves the stability of simulations and mimics better pillar structures in microfluidic devices,
since very sharp corners cannot easily be achieved due to fabrication limitations and/or subsequent
surface functionalization. As in the 2D simulations, bending rigidity of RBCs is varied such that
K∗

3D = κ/κ0 ∈ {1, . . . , 16}, where κ0 = 70kBT represents a typical bending rigidity of a healthy
RBC. The viscosity contrast between RBC cytosol and the suspending medium is set to unity, in
order to reduce effects from dynamic shape changes at high viscosity contrasts [14,50] and focus
primarily on cell deformation around a sharp edge. The flow rate is characterized by a capillary
number Ca = 63.4/K∗

3D.
Figure 9(a) shows the separation index for RBCs with different bending rigidities as a function of

the row shift �λ. A comparison with Fig. 6(b) demonstrates qualitative similarity between 2D and
3D results. Difference in the displacement-to-zigzag transition for K∗

3D = 1 and 4 is quite small (∼
100 nm), which is due to a relatively high flow rate such that RBCs strongly deform independently
of its bending rigidity. This proposition is corroborated by the instantaneous asphericity in Fig. 9(b),
which shows only moderate differences in cell asphericity between K∗

3D = 1 and 4. However, the
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FIG. 9. Separation properties of RBCs with different bending rigidities in 3D. (a) Separation index Is

for RBCs (K∗
3D = 1, 4, and 16) in triangular post arrays as a function of the row shift �λ. Error bars

correspond to standard deviations. (b) Typical evolutions of the instantaneous asphericity for RBCs moving
in the displacement mode in a device with �λ/λL = 0.08. (c) Two representative snapshots for K∗

3D = 1 and
16, illustrating cell bending around the top edge of triangular pillars in a device with �λ/λL = 0.08; see also
Movies S3 and S4 [47]. Ca = 63.4/K∗

3D.

difference in the displacement-to-zigzag transition for K∗
3D = 4 and 16 is large enough (∼400 nm) to

achieve deformability-based sorting in practice. Consistently, Fig. 9(b) shows that RBC asphericities
for K∗

3D = 4 and 16 are quite distinct, indicating an appropriate correspondence between RBC
rigidity and applied fluid stresses. Figure 9(c) illustrates RBC snapshots for K∗

3D = 1 and 16, where
a noticeable difference in cell bending around the top edge of a triangular post is clearly visible
(see also Movies S3 and S4 [47]). Finally, critical row shifts �λc for varying bending rigidity and
flow rate are plotted in Fig. 8(b) and show a good qualitative correspondence, consistent with the 2D
results. In 3D, due to the presence of shear elasticity in RBC membrane, the second capillary number
Caμ based on the shear modulus (see Sec. II D) may contribute to the complex cell behavior in
DLD devices. In conclusion, the 3D simulation results confirm the relevance of the same separation
mechanisms discussed in the context of 2D systems and support encouraging perspectives for
efficient deformability-based cell sorting in DLD devices with sharp-edged obstacles.

IV. CONCLUSIONS

Our simulation study demonstrates advantages of sharp-edged post structures in deep DLD
devices for deformability-based cell sorting. It is clear that not any deformation can be efficiently
exploited for cell separation in DLD devices. Only deformations near the posts, which affect the cell
positioning with respect to the separatrix between displacement and zigzag modes, are important.
This point is best illustrated by RBC acircularity in circular post arrays in Fig. 2(a), which is strongly
affected by RBC bending rigidity, but the majority of deformation is due to flow-field inhomogeneity
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away from the posts, so that deformability-based sorting remains poor. Thus, cell deformation near
the top of a pillar (region of highest shear rate) governs cell’s traversal through a DLD device,
since it can facilitate or prevent a zigzagging event. Interestingly, this type of deformation is rather
insensitive to RBC bending rigidity in circular post arrays. In contrast, DLD devices with cylindrical
posts of diamond or triangular cross-section induce a favorable mode of deformation in the critical
flow region, so that sharp-edged geometries serve as efficient deformability sensors.

The sorting capabilities of DLD devices are generally characterized by a critical size, which is
related to the thickness of the first stream and defines the displacement-to-zigzag transition [1,2].
This single parameter functions perfectly for rigid spherical particles in DLD devices with various
geometric structures [24]. Obviously, the behavior of anisotropic and deformable particles in DLD
devices is much more complex and cannot be described well by a single predefined critical size
[9,14], since particle deformation may alter its effective size and affect the particle trajectory. In
addition to the effective particle size in comparison to thickness of the first stream, our simulations
show that the relation between effective particle length and the length of the first stream in the flow
direction is very important. For example, a stiff RBC in triangular post arrays is not able to bend
much around a sharp edge (see Fig. 7) and thus keeps its full length during cell-post interaction.
However, this steric interaction forces the stiff RBC to leave the first stream, because its length is
smaller than the RBC size. In contrast, soft RBCs, which can bend enough around a sharp edge,
effectively reduce their length and remain within the first stream, as illustrated in Fig. 7. This
constitutes a new mechanism that is different from the concept of a critical size and can be at
play as well for long enough rodlike anisotropic particles.

Cell deformation in a DLD device is directly associated with applied fluid stresses controlled by
the device geometry and flow rate. Low flow rates, which do not induce substantial cell deformation,
are not very sensitive to deformability differences. Another strong drawback of low flow rates is a
low device throughput, which needs to be high enough for practical applications in order to process
a required amount of sample within an acceptable time limit. However, too high flow rates can also
be problematic, because even though they are advantageous for a device’s throughput, the sensitivity
of deformability measurements is compromised, as large fluid stresses can induce very strong cell
deformations independent of cell rigidity. Thus, the flow rate (or fluid stress) has to be carefully
selected, such that a proper deformation is induced to efficiently differentiate cell rigidities within
a range of interest. Furthermore, for a decision about the device throughput, a potential trade-off
between a device’s throughput and sensitivity needs to be considered.

Another practical limitation of high flow rates and consequently strong cell deformations is
potential cell lysis. An average shear stress in our 3D simulations can be estimated as ¯̇γ η = κCa/D3

r ,
whose value is smaller than 0.1 Pa. In fact, RBCs are able to sustain much larger stresses without
lysis in microvasculature [51] or in microfluidics [8]. A further concern is whether sharp edges might
impose very strong local stresses on RBC membranes. The analysis of simulated RBC deformation
within DLD devices with triangular posts shows that RBCs experience the strongest membrane
stresses near sharp edges. Interestingly, the largest local stresses are at the top side of a RBC that is
opposite to the side of direct contact between the cell and the post. However, the magnitude of these
stresses is maximum 40% larger than the average fluid stresses on a RBC within a DLD device.
In addition, the fabrication of very sharp edges is not possible in practice, so that they are slightly
blunted, which leads to a reduction of local shear stresses. Therefore, we conclude that RBC lysis is
unlikely to be a serious issue for flow rates which represent a good sensitivity for RBC deformability
measurements.

In summary, sharp-edged structures in deep DLD devices can be employed as deformability
sensors, as they induce a bending-like deformation around a sharp edge. Two different mechanisms
contribute to this process. The first corresponds to a relation between the effective cell size and
thickness of the first stream, which is the conventional mechanism for the characterization of DLD
devices with a critical particle size. The second mechanism is related to the correspondence between
effective cell length and the length of the first stream in the flow direction, which is altered during
cell bending around a sharp edge. Optimal sensitivity for deformability measurements requires fine
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tuning of the flow rate in order to induce an appropriate deformation strength. This means that
generally there exists a compromise between device throughput and sensitivity for deformability-
based sorting. DLD devices with sharp-edged structures are expected to be applicable in situations
where the cell’s mechanical properties are altered, for instance, in diseases such as diabetes, malaria,
and sickle-cell anemia. We hope that our proposition will be tested experimentally in the near future.
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