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In this paper, we develop a model based on successive linearization to study interactions
between different modes in boundary layer flows. Our method consists of two steps. First,
we augment the Blasius boundary layer profile with a disturbance field resulting from
the linear parabolized stability equations (PSE) to obtain the modified base flow; and,
second, we draw on Floquet decomposition to capture the effect of mode interactions
on the spatial evolution of flow fluctuations via a sequence of linear progressions. The
resulting parabolized Floquet equations (PFE) can be conveniently advanced downstream
to examine the interaction between different modes in slowly varying shear flows. We
apply our framework to two canonical settings of transition in boundary layers; the H-type
transition scenario that is initiated by exponential instabilities, and streamwise elongated
laminar streaks that are triggered by the lift-up mechanism. We demonstrate that the PFE
capture the growth of various harmonics and provide excellent agreement with the results
obtained in direct numerical simulations and in experiments.
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I. INTRODUCTION

A thorough understanding of the mechanisms driving laminar-turbulent transition in boundary
layer flows is crucial for the prediction of the point of transition and for the design of air and water
vehicles. In the past 30 years, remarkable progress has been made on simulating the physics of
transitional flows using models with various levels of fidelity. In spite of this, the multilayer nature
of transition and the inherent complexity of the Navier-Stokes (NS) equations have hindered the
development of practical control strategies for delaying transition in boundary layer flows [1]. Direct
numerical simulations (DNS) have opened the way to accurate investigations of the underlying
physics of transitional flows [2–4]. However, due to their high complexity and large number of
degrees of freedom, nonlinear dynamical models that are based on the NS equations are not suitable
for analysis, optimization, and control. On the other hand, nontrivial challenges, including lack of
robustness, may arise in the model-based control of reduced-order models that are obtained using
data-driven techniques [5].
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Linearization of the NS equations around the mean-velocity profile results in models that are well
suited for analysis and control synthesis using tools from modern robust control [1]. In particular,
stochastically forced linearized NS equations have been used to capture structural and statistical
features of transitional [6–9] and turbulent [10–13] channel flows. In these models, stochastic
forcing may be utilized to model the impact of exogenous excitation sources or to capture the
effect of nonlinear terms in the NS equations. Moreover, in conjunction with the parallel-flow
assumption, the linearized NS equations are convenient for modal and nonmodal stability analysis
of spatially evolving flows [14,15]. However, this approach does not account for the effect of
the spatially evolving base flow on the stability of the boundary layer. Global stability analysis
addresses this issue by accounting for the spatially varying nature of the base flow and discretizing
all inhomogeneous spatial directions [16–18]. Although accurate, this approach leads to problem
sizes that may be prohibitively large for flow control and optimization.

In the boundary layer flow, primary disturbances are instigated via receptivity processes that
involve internal or external perturbations [19], e.g., acoustic noise, free-stream turbulence, and
surface roughness. Depending on the amplitude of these disturbances, the transition process may
take various paths to breakdown [20,21]. In particular, primary disturbances can be amplified
through modal instability mechanisms or they may experience nonmodal amplification, e.g., via
transient growth, the lift-up [22,23], and Orr mechanisms [24,25]. Both pathways can intensify
disturbances beyond the critical threshold, trigger secondary instabilities, and induce a strong energy
transfer from the mean flow into secondary modes [26]. The H-type [26–28] and K-type [28,29]
transition scenarios are typical cases that are triggered by secondary instability mechanisms. Such
mechanisms have also been shown to play an important role in the breakdown of laminar streaks
at the later stages of transition [30–34]. All of these are initiated after the significant growth of
the primary disturbances, which intensify the role of nonlinear interactions. The modulation of
the base flow by the primary perturbations precludes the usual normal-mode assumptions made
in the derivation of the Orr-Sommerfeld equation. Instead, the physics of these secondary growth
mechanisms have been commonly studied using Floquet analysis [26,30,35] and the parabolized
stability equations (PSE) [36–38].

The PSE were introduced to account for nonparallel and nonlinear effects and thereby overcome
challenges associated with analyses based on a parallel-flow assumption. In particular, the PSE
were developed as a means to refine predictions of parallel flow analysis in slowly varying flows
[37–39], e.g., in the laminar boundary layer. The PSE have also been adapted to account for the
dynamics of three-dimensional flows that depend strongly on two spatial directions [40–42], and
more recently, they have been used to model the amplification of disturbances in DNS and wall-
modeled large-eddy simulation of transitional boundary layers [43]. In spite of these successes,
the nonlinear nature of this framework has hindered their utility in systematic optimal flow control
design. In general, the linear PSE provide reasonable predictions for the evolution of individual
primary modes such as Tollmien-Schlichting (TS) waves [37]. Moreover, the predictive capability
of the linear PSE has been further refined by modeling the effect of nonlinear terms as a stochastic
source of excitation [44]. However, secondary growth mechanisms that lead to laminar-turbulent
transition of the boundary layer flow originate from interactions between different modes and these
interactions cannot be explicitly accounted for using such techniques.

In the transitional boundary layer, primary instability mechanisms can cause disturbances to
grow to finite amplitudes and saturate at steady or quasisteady states. Floquet stability analysis
identifies secondary instability modes as the eigenmodes of the NS equations linearized around
the modified base flow profile that contains spatially periodic primary velocity fluctuations. In the
corresponding eigenvalue problem, the operators inherit a periodic structure from the underlying
periodicity of the base flow and, as a result, capture primary-secondary mode interactions. Such
representations that account for mode interactions also appear in the analysis of distributed systems
with spatially or temporally periodic coefficients [45,46] as well as in the model-based design
of sensor-free periodic strategies for controlling transitional and turbulent wall-bounded shear
flows [12,47–49].
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FIG. 1. Geometry of a transitional boundary layer flow.

In this paper, we take a step toward developing low-complexity models that account for harmonic
interactions via a linear progression. To capture the dominant mode interactions while taking
into account nonparallel effects, we introduce a computational framework that combines concepts
from Floquet analysis and the linear PSE. The resulting equations are advanced downstream via a
marching procedure. Our framework thus inherits the ability to account for mode interactions from
Floquet theory while maintaining the low complexity of the linear PSE. As a result, the proposed
approach not only captures the essential physics of transitional boundary layer flows, but also opens
the door to model-based control design.

Our presentation is organized as follows. In Sec. II, we describe the linearized NS equations and
the linear PSE. In Sec. III, we derive the proposed parabolized Floquet equations (PFE) and explain
the key features of our modeling framework. In Sec. IV, we examine the growth of subharmonic
modes in a typical H-type transition scenario and, in Sec. V, we employ our framework to study the
formation of streaks in the boundary layer flow. We conclude the paper with remarks and outline of
future research directions in Sec. VII.

II. BACKGROUND

We first present the equations that govern the dynamics of flow fluctuations in incompressible
flows of Newtonian fluids and then provide details on our proposed model for the downstream
marching of spatially growing fluctuations in the boundary layer flow.

In a flat-plate boundary layer, with geometry shown in Fig. 1, the dynamics of infinitesimal
fluctuations around a two-dimensional base flow ū = [ U (x, y) V (x, y) 0 ]T are governed by the
linearized NS equations

vt = −(∇ · ū)v − (∇ · v)ū − ∇p + 1

Re0
�v

0 = ∇ · v, (1)

where v = [ u v w ]T is the vector of velocity fluctuations, p denotes pressure fluctuations, u, v,
and w are the streamwise (x), wall-normal (y), and spanwise (z) components of the fluctuating
velocity field, and Re0 is the Reynolds number at the inflow location x0. The Reynolds number
is defined as Re = U∞δ/ν, where δ = √

νx/U∞ is the Blasius length scale at the streamwise
location x, U∞ is the free-stream velocity, and ν is the kinematic viscosity. Spatial coordinates
are nondimensionalized by the Blasius length scale δ0 at the inflow location x0, velocities by U∞,
time by δ0/U∞, and pressure by ρU 2

∞, where ρ is the fluid density.
It is customary to use the parallel-flow approximation to study the local stability of boundary

layer flows to small amplitude disturbances [14]. This approximation, in conjunction with Floquet
theory, has also been used to investigate secondary instabilities that inflict transition [14,26].
However, the parallel-flow approximation excludes the effect of the evolution of the base flow
on the amplification of disturbances. This issue can be addressed via global stability analysis,
which accounts for the spatially varying nature of the base flow by discretizing all inhomogeneous
directions. Nevertheless, global analysis of spatially evolving flows may be prohibitively expensive
for analysis, optimization, and control purposes.
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The PSE provide a computationally attractive framework for the spatial evolution of pertur-
bations in nonparallel and weakly nonlinear scenarios [37–39]. They are obtained by removing
terms of O(1/Re2) and higher from the NS equations and are significantly more efficient than
conventional flow simulations based on the governing equations. In weakly nonparallel flows, e.g.,
in the pretransitional boundary layer, flow fluctuations can be separated into slowly and rapidly
varying components via the following decomposition for the fluctuation field q = [ u v w p ]T in
(1). For a specific spanwise wave number and temporal frequency pair (β, ω), we consider

q(x, y, z, t ) = q̂(x, y) χ (x, z, t ) + c.c.,

χ (x, z, t ) = exp{i[α(x) x + β z − ω t]}, (2)

where q̂(x, y) and χ (x, z, t ) are the shape and phase functions, and α(x) is the streamwise
varying generalization of the wave number [39]. This decomposition separates slowly [q̂(x, y)]
and rapidly [χ (x, z, t )] varying scales in the streamwise direction. The ansatz in Eq. (2) provides a
representation of oscillatory instability waves such as TS waves.

The ambiguity arising from the streamwise variations of both q̂ and α is resolved by imposing
the condition ∫

�y

q̂H q̂x dy = 0,

where q̂H denotes the complex conjugate transpose of the vector q̂. In practice, this condition
is enforced through the iterative adjustment of the streamwise wave number ([37], Sec. 3.2.5).
Following the slow-fast decomposition highlighted in Eq. (2), the linearized NS equations are
parabolized under the assumption that the streamwise variation of q̂ and α are sufficiently small
to neglect q̂xx , αxx , αx q̂x , αx/Re0, and their higher-order derivates with respect to x, resulting in the
removal of the dominant ellipticity in the NS equations. The linear PSE take the form

L q̂ + M q̂x = 0, (3)

where expressions for the operator-valued matrices L and M can be found in Ref. [37]. We next
propose a two-step modeling procedure to study the dominant mode interactions in weakly nonlinear
mechanisms that arise in spatially evolving flows.

III. PARABOLIZED FLOQUET EQUATIONS

In the transitional boundary layer flow, primary instabilities can cause disturbances to grow
to finite amplitudes and get saturated by nonlinearity. Secondary stability analysis examines the
asymptotic growth of the resulting modulated state and is based on the linearized NS equations
around the modified base flow

ū = u0 + upr. (4)

Here, u0 denotes the original base flow and upr represents the primary disturbance field. Since ū is
typically spatially or temporally periodic, Floquet analysis is invoked to identify the spatial structure
of exponentially growing fluctuations around ū. However, such analysis relies on a parallel flow
assumption and it does not explicitly account for the spatially growing nature of the base flow.
To account for the interactions of fluctuations with spatially growing modified base flow ū in a
computationally efficient manner, we introduce a framework, which draws on Floquet theory to
enhance the linear PSE. Our approach allows us to capture the dominant mode interactions in the
fluctuating velocity field while accounting for nonparallel effects in the base flow.

Starting from a spatially or temporally periodic initial condition the linear PSE can be marched
downstream to obtain the primary disturbance field. For example, such an initial condition can
be obtained using stability analysis of the two-dimensional Orr-Sommerfeld equation or transient
growth analysis of streamwise constant linearized equations (under the locally parallel base flow
assumption). When the periodic solutions to the linear PSE computation are superposed to the
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Blasius boundary layer profile, the modulated base flow (4) takes the following form:

ū(x, y, z, t ) =
∞∑

m= −∞
um(x, y) φm(x, z, t ). (5)

Here, u0(x, y) = [ UB (x, y) VB (x, y) 0 ]T represents the Blasius boundary layer profile, φ0 = 1, um

and φm for m �= 0 are the shape and phase functions corresponding to various harmonics that
constitute flow structures of the primary disturbance field (such as TS waves or streaks), and
u∗

m = u−m, where ∗ denotes the complex conjugate. Note that each harmonic um of the modified
base flow ū inherits a similar slow-fast structure from PSE [cf. Eq. (2)] in which the phase function
φm is spanwise or streamwise/temporally periodic. For example, when TS waves are superposed to
the Blasius boundary layer profile the phase functions φm are streamwise and temporally periodic;
see Sec. IV for details. The evolution of fluctuations around the modulated base flow (5) can be
studied using the following expansion:

q(x, y, z, t ) =
∞∑

n= −∞
q̂n(x, y) χn(x, z, t ), (6)

which, similar to PSE, involves a decomposition of disturbances into slowly (q̂n) and rapidly (χn)
varying components. Note that we follow classical Floquet decomposition [26,50] in assuming
that the phase functions χn represent various harmonics of the same fundamental frequency/wave
number as φm in Eq. (5). As a result of this assumption the evolution of each harmonic mode in q
can contribute to the evolution of its neighboring harmonics via the periodicity of the modulated
base flow (5). For spanwise periodic modulations to the base flow, a concrete example of the form
of the fluctuation field (6) is discussed in Remark 1.

Remark 1. When spanwise-periodic streaks with a fundamental wave number β are superposed
to the Blasius boundary layer profile, the modified base flow takes the form

ū(x, y, z) =
∞∑

m =−∞
um(x, y) eimβz,

and the spatial evolution of fluctuations that account for fundamental harmonics in z around this
modulated base flow profile can be studied using the Fourier expansion

q(x, y, z) =
∞∑

n= −∞
q̂n(x, y) ei(αn (x)x + nβz).

Here, αn(x) is the purely imaginary streamwise wave number of various harmonics, which can
evolve in the streamwise direction similarly to linear PSE. Note that if αn(x) is identical for all
harmonics, we recover the nondispersive wave packet assumed in Floquet stability analysis; see
Sec. V for additional details.

Under the assumptions of linear PSE, the dynamics of fluctuations represented by (6) can be
studied using the parabolized Floquet equations (PFE)

LF q̂ + MF q̂x = 0. (7)

The state in Eq. (7),

q̂ = [ · · · q̂T
n−1 q̂T

n q̂T
n+1 · · · ]T

,

contains all harmonics of q in the periodic direction, i.e.,

q̂n = [
uT

n vT
n wT

n pT
n

]T
,
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and the operators LF and MF inherit the following bi-infinite structure from the periodicity of the
phase functions φm in the modified base flow (5),

LF :=

⎡
⎢⎢⎢⎢⎢⎢⎣

. . .
...

...
... . .

.

· · · Ln−1,0 Ln−1,+1 Ln−1,+2 · · ·
· · · Ln,−1 Ln,0 Ln,+1 · · ·
· · · Ln+1,−2 Ln+1,−1 Ln+1,0 · · ·

. .
. ...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

. (8)

Note that the operator Li,j captures the influence of the j th harmonic q̂j on the dynamics of the ith
harmonic q̂i . In practice, the generally bi-infinite structures of the state and operators in Eq. (7) are
truncated to account for the spatial evolution of a finite number of essential modes.

In what follows, we employ the PFE to examine two canonical problems:
(i) the H-type transition scenario (Sec. IV), and
(ii) the formation of streamwise elongated streaks in laminar boundary layer flow (Sec. V).
In the wall-normal direction, homogenous Dirichlet boundary conditions are imposed,

un(0) = 0, vn(0) = 0, wn(0) = 0,

un(Ly ) = 0, vn(Ly ) = 0, wn(Ly ) = 0,

where Ly denotes the height of the computational domain. We discretize differential operators LF

and MF using a pseudospectral scheme with Ny Chebyshev collocation points in the wall-normal
direction [51] and employ an implicit Euler method to march the PFE (7) in the streamwise direction
with constant step size �x.

A. Two-step modeling procedure

To model the effect of mode interactions in weakly nonlinear regimes we consider the following
two-step procedure:

(i) The linear PSE are used to march the primary harmonic and obtain the corresponding velocity
profile upr at each streamwise location.

(ii) The PFE are used to march all harmonics q̂ and obtain the spatial evolution of velocity
fluctuations around the modified base flow ū = u0 + upr.

The PFE are thus used to study the effect of dominant harmonic interactions on the growth of
disturbances in the streamwise direction. The block diagram in Fig. 2(a) illustrates our modeling
procedure.

When the secondary disturbances contain the same temporal frequency and spatial wave numbers
as the primary disturbances, the dominant harmonics resulting from the PFE (e.g., q̂0, q̂±1, and q̂±2

in the formation of streaks) can be subsequently used to update the modulation to the base flow,
iterate the PFE computation, and thereby provide an equilibrium configuration. The block diagram
in Fig. 2(b) illustrates how our framework can be employed to correct primary disturbances that
subsequently modulate the base flow. This should be compared and contrasted to the conventional
Floquet analysis in which the frequencies and wave numbers of the identified secondary instabilities
are different from those in the primary disturbances. Our computational experiments in Sec. V
demonstrate that the flow state of the feedback interconnection in Fig. 2(b) converges after a certain
number of iterations. While the equilibrium configuration in Fig. 2(b) implies that our framework
is inherently nonlinear, each step in our iterative procedure is linear. We note that a similar iterative
method was successfully utilized for model-based design of spanwise wall oscillations in turbulent
channel flows [12].

IV. H-TYPE TRANSITION

We next apply our approach to model an H-type transition scenario in a zero-pressure-gradient
boundary layer [26]. This route to transition begins with the exponential growth of two-dimensional
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FIG. 2. (a) The PFE are triggered with a primary disturbance upr that results from linear PSE and modulates
the base flow. The diagonal lines represent the base flows that enter as coefficients into the linear PSE and PFE,
respectively. (b) When the secondary disturbances are of the same frequencies and spatial wave numbers as the
primary disturbances, the dominant harmonics resulting from each PFE iteration (e.g., q̂0, q̂±1, and q̂±2 in the
formation of streaks) can be used to update the modulation to the base flow, iterate the PFE, and compute an
equilibrium configuration.

TS waves, which, upon reaching a critical amplitude, become unstable to secondary disturbances.
The modulation of the Blasius profile by the TS waves induces the amplification of otherwise
stable oblique modes, which have half the frequency of the TS waves. While the linear PSE can
be used to characterize the spatial evolution of modes arising from primary instabilities, secondary
instabilities that trigger the growth of subharmonic modes call for an expansion in the harmonics
of the modulated base flow. Such a growth mechanism cannot be identified via the normal-mode
ansatz employed in the linear PSE but it can be captured by marching the PFE, a model resulting
from a combination of linear PSE with Floquet decomposition.

A. Setup

At the initial position x0 and for a real-valued temporal frequency ω, the fundamental mode
in the H-type scenario is identified as the eigenvector corresponding to the most unstable complex
eigenvalue α from the discrete spectrum of the standard two-dimensional Orr-Sommerfeld equation;
see Ref. [14], Sec. 7.1.2 for additional details. The linear PSE can be used to march this fundamental
mode, which is in the form of a two-dimensional TS wave, and obtain a reasonable prediction of its
spatial growth [39]. We use the resulting solution to a primary linear PSE computation to augment
the Blasius boundary layer profile u0 in the base flow for the PFE as

U (x, y) = UB (x, y) + UT (x, y) eiαr (x − c t ) + U ∗
T (x, y) e−iαr (x − c t )

V (x, y) = VB (x, y) + VT (x, y) eiαr (x − c t ) + V ∗
T (x, y) e−iαr (x − c t ) (9)

W (x, y) = 0.

Equivalently, the base flow ū can be written in the following compact form:

ū(x, y, t ) =
1∑

m =−1

um(x, y) eimαr (x − c t ),
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where u0 is the Blasius profile. In Eq. (9), αr is the real part of the prescribed streamwise
wave number of the fundamental mode α(x) resulting from linear PSE, c = ω/αr denotes the
phase speed of the fundamental and subharmonic modes in the fixed (laboratory) frame, and
[ UT (x, y) VT (x, y) 0 ]T denotes the TS wave whose local amplitude and shape are obtained from
the linear PSE computation. Note that the exponential growth resulting from the imaginary part of
the wave number, αi , is absorbed into the amplitudes of UT (x, y) and VT (x, y).

To study the evolution of subharmonic modes that are triggered via secondary instability
mechanisms, we follow the Floquet decomposition, which was originally conducted in the moving
frame ([14], Sec. 8.2) using the following Fourier expansion, but in the fixed (laboratory) frame

q(x, y, z, t ) = eiβz

∞∑
n =−∞

q̂n(x, y) ei (n + 0.5) αr (x − c t ) + i γnx − i σnt , (10)

where q̂∗
n = q̂−n−1, and γn and σn are the spatial and temporal detuning factors corresponding to the

nth subharmonic. The imaginary and real parts of γn (σn) denote the spatial (temporal) growth rate
and the detuning in the wave number (frequency), respectively. In practice, the detuning factors of
the wave number and frequency are negligible, i.e., γn and σn can be assumed to be purely imaginary.
A further assumption of nondispersive wave packets in accordance with classical Floquet analysis
[26] brings the ansatz for the fluctuation field to the following form:

q(x, y, z, t ) = ei (βz + c γ t )
∞∑

n =−∞
q̂n(x, y) ei [(n+ 0.5) αr + γ ](x − c t )

= ei (βz + γ x)
∞∑

n= −∞
q̂n(x, y) ei(n + 0.5)αr (x − c t ), (11)

where Gaster’s transformation [52] has been used to replace σ with −cγ and all subharmonic
modes are assumed to share a uniform detuning parameter γ . In making these approximations,
we have followed [26] in assuming that all Fourier components have the same phase speed, which
is consistent with experimental studies [27]. While αr in the PFE computation is prescribed by the
solution of linear PSE for the primary disturbance field, we update the spatial growth rate −γ via a
similar scheme to the one used for the streamwise wave number update in PSE ([37], Sec. 3.2.5).

The PFE account for the interaction between different subharmonics by leveraging the slow-fast
decomposition inherited from the solution of the linear PSE. By substituting the ansatz (11) and the
modulated base flow (9) into the linearized NS equations, we arrive at the PFE, which take the form
of Eq. (7). For this case study, the operators LF and MF in the PFE (7) are provided in Appendix A.

The procedure for obtaining the results presented in Sec. IV B can be summarized as follows:
(i) Solve the spatial eigenvalue problem corresponding to the Orr-Sommerfeld equations to

obtain the initial complex wave number α(x0) and the shape of initial TS wave upr (x0).
(ii) Use linear PSE to march the TS wave downstream and obtain α(x) and upr (x).
(iii) Augment the Blasius boundary layer profile with the TS wave upr (x) to obtain the

modulated base flow ū.
(iv) Obtain the initial uniform growth rate γ and shape function q̂ as the most unstable

eigenvalue and eigenvectors from standard Floquet analysis [26] at x0.
(v) Use PFE to compute the spatial evolution of all subharmonic modes around the modulated

base flow.

B. Growth of subharmonic secondary instabilities

We next examine the interaction of TS waves with subharmonic secondary instabilities in the
classical H-type transition scenario. This problem was initially studied in Ref. [50] and has been
further explored using both experiments [27] and numerical simulations [28,36].
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FIG. 3. (a) The rms amplitudes of the streamwise velocity components of the fundamental and subhar-
monic modes resulting from experiments [27] (�), DNS [28] (−−), nonlinear PSE [36] (◦), PFE (thick
solid lines), and linear PSE (thin solid lines). The fundamental (2, 0) mode, (1, 1) subharmonic, and (3, 1)
subharmonic are represented by black, blue, and red colors, respectively. (b)–(d) The normalized amplitudes of
the streamwise velocity components of the (2,0) (b), (1,1) (c), and (3,1) (d) modes at Re = 620 resulting from
PFE (−), and nonlinear PSE (◦).

Following Refs. [26,27], the primary disturbance field is generated by marching a TS wave with
a root-mean-square (rms) amplitude of 4.8 × 10−3 and frequency ω = 0.496 from Re0 = 424 to
Re = 700 using linear PSE. We subsequently initialize the PFE with the most unstable eigenmode
from the classical Floquet analysis [26] to study the growth of subharmonic secondary instabilities
triggered by the TS wave. The initial rms amplitude of the subharmonic mode is 1.46 × 10−5 and
its frequency and spanwise wave number are ω = 0.248 and β = 0.132, respectively. The initial
spatial growth rate −γ is obtained by applying Gaster’s transformation to the temporal growth rate.
We consider a truncation of the bi-infinite state q with 2N modes, i.e., n = −N · · · N − 1, and a
computational domain with Lx × Ly = 1100 × 40. Our computations demonstrate that Ny = 80,
�x = 15, and N = 2 (i.e., four subharmonic modes), provide sufficient accuracy in capturing the
physics of H-type transition; see Appendix C for a discussion on wall-normal grid-convergence and
about the influence that the number of subharmonics has on our results.

Figure 3(a) shows the rms amplitude of individual modes resulting from experiments [27], DNS
[28], nonlinear PSE [36], along with the present PFE computations. Here, the modes are denoted
by (l, k), where l stands for the temporal frequency of the harmonic and subharmonic modes as a
multiple of the subharmonic mode frequency ω = 0.248 and k represents the spanwise wave number
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as a multiple of the fundamental wave number β = 0.132. The amplitude of the (1, 1) mode from the
PFE is in excellent agreement with other results. While the amplitude of the (3, 1) mode is somewhat
underpredicted, the general trend in the growth of this mode is captured by the PFE. We note that
in the absence of interactions between harmonics, the linear PSE results in inaccurate predictions
for the amplitude of subharmonic modes; see thin solid lines in Fig. 3(a). Figures 3(b)–3(d) show
the amplitude of the streamwise velocity profile of the modes considered in this study normalized
by the results of nonlinear PSE. For all three modes, the profiles resulting from the PFE are in good
qualitative agreement with the result of nonlinear PSE.

V. STREAMWISE ELONGATED LAMINAR STREAKS

Bypass transition often originates from nonmodal growth mechanisms that can lead to stream-
wise elongated streaks; see, for example, Ref. [53]. The streaks can attain substantial amplitudes
(15–25% of the free-stream velocity) and make the flow susceptible to the amplification of high-
frequency secondary instabilities [54,55]. Secondary instability analysis of saturated streaks has
been previously used to analyze the breakdown stage in the transition process [30,35]. However,
nonlinear effects that influence the formation of streaks become prominent in earlier stages of
transition and before the breakdown of streaks. In this section, we utilize the PFE to capture the
interactions between various modes in the amplification of the streaks. We focus on the interaction
between different spanwise harmonics and study their contribution to the mean flow distortion
(MFD), which in turn affects the energy balance among various harmonics that form streaks. We
show that the linear PSE fail to predict such a phenomenon and demonstrate how the PFE provide
the means to capture the correct trend in the MFD as well as the resulting velocity distribution.

A. Setup

We trigger the formation of streaks by imposing an initial condition computed via the PSE-based
optimization approach introduced in Ref. [56]. This optimal initial condition yields the highest
amplification of perturbation kinetic energy and it is obtained from the singular value decomposition
of a pseudopropagator, which advances arbitrary superpositions of the most unstable eigenfunctions
in the nonparallel base flow. The initial perturbation field describes a set of counterrotating
streamwise vortices, which give rise to the streaks by means of the lift-up mechanism. We compute
the spatial evolution of the perturbation field via the linear PSE and use this solution to augment the
Blasius boundary layer base flow profile u0 for the subsequent PFE computations as

U (x, y) = UB (x, y) + US,1(x, y) eiβz + U ∗
S,1(x, y) e−iβz

V (x, y) = VB (x, y) (12)

W (x, y) = 0,

which can be written in the following compact form

ū(x, y, z) =
1∑

m =−1

um(x, y) eimβz. (13)

In the linear PSE computations, the real part of the complex wave number α is set to zero in
accordance with the nature of streamwise elongated streaks and its imaginary part is initialized
with a small number (e.g., −10−10). Moreover, the exponential growth resulting from the imaginary
part of α is absorbed into the amplitude of US,1(x, y) in Eq. (12).

The velocity field of streamwise elongated streaks is dominated by the growth of the streamwise
component while wall-normal and spanwise components experience viscous decay. As a conse-
quence, we disregard the normal and spanwise components of the solution to linear PSE, and only
use the streamwise component US,1(x, y) in Eq. (12), which is also in agreement with the structure
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and amplitude of the initial condition. We represent the state in the PFE using the Fourier expansion

q(x, y, z) = eiαx

∞∑
n= −∞

q̂n(x, y) einβz, (14)

where q̂0 is the MFD, higher-order harmonics in the spanwise direction represent various streaks
of wavelength 2π/(nβ ), and α = iαi is the uniform streamwise wave number over all harmonics.
Similar to the procedure in Sec. IV A, we derive the PFE in the form of Eq. (7) by substituting
the ansatz (14) and modulated base flow (12) into the linearized NS equations and rearranging the
governing equations for each harmonic. For this case study, the operators LF and MF in PFE (7)
are provided in Appendix B.

The procedure for obtaining the results presented in Sec. V B can be summarized as follows:
(i) Compute the initial fluctuation field for maximum streamwise growth using the methodology

presented in Ref. [56].
(ii) March the initial fluctuation field downstream for the linear evolution of the optimal streak

using linear PSE.
(iii) Augment the Blasius boundary layer profile with the solution to linear PSE to obtain the

modulated base flow ū according to Eq. (13).
(iv) Use the same initial condition as the linear PSE in step (ii) and its complex conjugate to

initialize q̂±1 in Eq. (14) and initialize other harmonics with zero. Also, set the initial growth rate
α(x0) to a small imaginary number.

(v) Use the PFE to compute the spatial evolution of all harmonic modes around the modulated
base flow.

B. Nonlinear evolution of optimal streaks

Although the initial condition imposed at the first downstream location only contains a single
spanwise wave number, the appreciable amplitudes of the developing streaks lead to modal
interactions that introduce additional harmonics and modulate the mean flow. To investigate these
harmonic interactions, we consider truncations of the bi-infinite state q̂ in the PFE (7) to 2N + 1
harmonics in z, i.e., n = −N, . . . , N . We set N = 3 and consider a computational domain with
Lx × Ly = 2000 × 60, Ny = 80 collocation points in the wall-normal direction, and a step size of
�x = 15; see Appendix C for a discussion on wall-normal grid convergence and about the influence
that the number of harmonics has on our results.

The temporal frequency, streamwise and fundamental spanwise wave numbers are set to ω = 0,
α = −10−10i, and β = 0.4065, respectively. Note that the small imaginary-valued wave number α

corresponds to infinitely long structures in the streamwise direction that saturate after a particular
streamwise location. Moreover, α �= 0 maintains a well-conditioned downstream progression for
the PFE computations. We initialize the PFE computation at Re0 = 467 with zero initial conditions
for all q̂n with n �= ±1. The fundamental harmonic q̂±1 is initialized with the same initial condition
as the primary linear PSE computations and with an rms amplitude of 6.4 × 10−4. Since this case
study considers the evolution of disturbances with a slowly varying streamwise wave number α,
we set αx = 0 for both the primary linear PSE and the subsequent PFE computations. To verify the
predictions of our framework, we also conduct direct numerical simulations of the nonlinear NS
equations (with the same initial conditions) using a second-order finite volume code with 2049 ×
257 × 257 grid points in the streamwise, wall-normal, and spanwise dimensions, respectively.

As illustrated in Fig. 4, all harmonics undergo an initial algebraic growth followed by saturation.
The solution to the linear PSE accurately predict the evolution of the fundamental spanwise
harmonic; cf. Eq. (14). The PFE faithfully capture the growth of the dominant harmonics, and
especially the MFD. While a discrepancy is observed for the third harmonic, its contribution to
the overall structure of the streaks is negligible. The reasonable prediction of growth trends and
generation of the MFD component is a direct consequence of accounting for interactions between

023901-11



RAN, ZARE, HACK, AND JOVANOVIĆ

FIG. 4. The rms amplitudes of the streamwise velocity components for various harmonics with ω = 0
and β = 0.4065 resulting from DNS (�), PFE (−), and linear PSE (−−). The MFD, first, second, and third
harmonics are shown in black, blue, red, and green, respectively.

different harmonics within our framework because, apart from q̂±1, all other harmonics were
initialized with zero.

Figure 5 shows the cross-plane spatial structure of the streaks comprised of all harmonics in
the spanwise direction at x = 2400. Comparison of Figs. 5(a) and 5(b) indicates a significant
discrepancy between the shape of the structures in the cross plane if the interaction between modes
is not taken into account. Since the first (fundamental) harmonic has much larger amplitude than the
second and third harmonics, the velocity distribution resulting from the linear PSE is dominated by
the structure of the first harmonic. Furthermore, in the absence of interactions between harmonics,
the linear PSE would not be able to generate the MFD and would thus result in inaccurate predictions
for the amplitude of higher-order harmonics; see dashed lines in Fig. 4. In Fig. 4, we have used a
scaled version of the initial condition for the first harmonic to initialize the linear PSE computations
for higher-order harmonics. Figure 5(c) demonstrates excellent agreement of the results from PFE
and DNS. To emphasize the contribution of the MFD on the final velocity distribution, Fig. 5(d)
shows the cross-plane contours of the streamwise velocity component without the MFD. While the
influence of the MFD on the growth of the first, second, and third harmonics has been retained, this
figure demonstrates its influence on the shape of the streamwise elongated structures.

Since the evolution of streaks is highly influenced by nonlinear interactions, it is worth examining
if the results would change with an increase in the streak amplitude. To test the robustness of our
framework we consider a different initial condition that has twice the amplitude as the previous
case. We use the same computational configuration as before and initialize all harmonics apart from
q̂±1 with zero. As shown in Fig. 6(b), the linear PSE provide a poor prediction for the amplitude of
the fundamental harmonic. We use the MFD q̂0, fundamental harmonics q̂±1, and second harmonics
q̂±2 from each run of PFE to update the base flow modulation and rerun the PFE [cf. Fig. 2(b)]. The
base flow in subsequent iterations is thus given by

U (x, y) = UB (x, y) + US,0(x, y) + US,1(x, y) eiβz + U ∗
S,1(x, y) e−iβz + US,2(x, y) e2iβz

+ U ∗
S,2(x, y) e−2iβz,

V (x, y) = VB (x, y) + VS,0(x, y),

W (x, y) = 0, (15)
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FIG. 5. Cross-plane contours of the streamwise velocity of the streaks comprised of all harmonics in the
spanwise direction at x = 2400 resulting from DNS (a), linear PSE (b), and PFE with (c) and without (d) the
MFD component.

and takes the compact form

ū(x, y, z) =
2∑

m =−2

um(x, y) eimβz. (16)

Here, US,0, US,1, and US,2 represent the MFD, first- and second-order harmonics corresponding to
the solution of the previous PFE run, respectively, and u0 contains both the Blasius profile and the
MFD. We note that higher-order harmonics are omitted from the base flow modulation in Eq. (16)
as they do not significantly influence the profiles that result from the iterative PFE procedure.
Furthermore, similar to Eq. (12), special care is taken in modulating the base flow, i.e., higher-order
harmonics (|m| � 1) are excluded from the wall-normal and spanwise components of the base flow
modulation in agreement with the structure and amplitude of the initial condition.

Figure 6(a) demonstrates how iterating the PFE can improve our prediction of the predominantly
nonlinear streak evolution. The rms curves for various harmonics converge after seven iterations of
the PFE feedback loop illustrated in Fig. 2(b). Note that in the previous case of moderate-amplitude
streaks, subsequent iterations were not necessary and accurate results were obtained after one run
of the PFE over the streamwise domain. The high number of iterations required for convergence is
indicative of the significant role nonlinear terms play in the more challenging case of high-amplitude
streaks. In Fig. 6(b), we compare the result from the final iteration [solid lines in Fig. 6(a)] with the
result of DNS and nonlinear PSE. We see that the PFE capture the initial algebraic growth, inhibition
of growth, and general trend in the saturation of amplitudes.

023901-13



RAN, ZARE, HACK, AND JOVANOVIĆ

FIG. 6. (a) The rms amplitudes of the streamwise velocity components for various harmonics with ω = 0
and β = 0.4065 after the first (· · · ), third (−−), and seventh (−) run of the PFE. The MFD, first, and second
harmonics are shown in black, blue, and red, respectively. (b) The rms amplitudes resulting from DNS (�),
nonlinear PSE (◦), and PFE (−). The evolution of the fundamental harmonic due to linear PSE is shown by the
thin solid line.

Nonlinear interactions generate an appreciable MFD that alters the mean flow profile and
hampers the growth of the principal harmonic in comparison to the single-mode computation of
linear PSE [cf. thin blue line in Fig. 6(b)]. Previous studies have reported the stabilizing effect
of nonlinearity on the evolution of unsteady streaks [57] and the boundary layer response to
perturbations [58,59]. In Fig. 6(b), while a discrepancy is observed in the prediction of the MFD,
dominant trends in the shape and amplitude of velocity profiles are consistently captured in the
streamwise domain, and the final amplitudes are in close agreement with the result of nonlinear
PSE. However, both nonlinear PSE and PFE seem to underpredict the growth of the fundamental
harmonic and MFD. Figures 8 and 9 show the streamwise velocity component of the MFD and
first harmonic at x = 1700 and x = 2400, which correspond to the largest error in matching the
MFD and the end of the longitudinal domain. Finally, as the cross-plane contour plots of Fig. 7
demonstrate, the PFE provide good predictions for the spatial structure of the streaks that are
comprised of various harmonics.

FIG. 7. Cross-plane contours of the streamwise velocity of the higher-amplitude streaks at x = 2400,
which is comprised of all harmonics in the spanwise direction; (a) DNS and (b) PFE.
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FIG. 8. (a) The streamwise velocity component of the MFD; and (b) the magnitude of the streamwise
component of the first harmonic at x = 1700 resulting from DNS (�) and PFE (−).

In the present case study, nonlinear interactions play a crucial role in the growth of high-
amplitude streaks. The PFE capture the nonlinear interactions by allowing spanwise modulations
to the base state and extending the state variable q̂ over multiple harmonics in the spanwise
direction. Subsequent iterations of the PFE feedback loop [Fig. 2(b)] refine our predictions of
nonlinear interactions on a sweep-by-sweep basis, i.e., by treating the base flow as a streamwise
varying parameter in each individual PFE run, and only updating it for the next run. This is in
contrast to nonlinear PSE in which nonlinear interactions are captured by explicitly converging over
the corresponding nonlinear terms at each step of the streamwise progression. Regardless of how
nonlinear interactions are captured, our results demonstrate the difficulty in accurately capturing the
correct growth of these optimal streaks [cf. Fig. 6(b)]. While the approximation used by the PFE
framework may be seen as a limitation, the encouraging performance of the PFE warrants future
study into improving the predictive capability of models that capture harmonic interactions through
iterative refinement of the base state instead of explicitly evaluating nonlinear terms.

VI. COMPARISON WITH NONLINEAR PSE

In contrast to the nonlinear PSE, which treat the interaction between various modes as a forcing,
the PFE introduced in Eq. (7) account for a subset of dominant interactions between the primary and

FIG. 9. (a) The streamwise velocity component of the MFD; and (b) the magnitude of the streamwise
component of the first harmonic at x = 2400 resulting from DNS (�) and PFE (−).
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secondary modes while maintaining the linear progression of the governing equations. Compared to
the nonlinear PSE, the implementation and evaluation of the PFE is thus less complex as the explicit
evaluation of the nonlinear terms and the commonly used transforms between physical and Fourier
domains are avoided. More specifically, at each downstream location, the PSE can be viewed as a
predictor-corrector algorithm that iterates over nonlinear terms. As the amplitudes of the harmonics
grow, these iterations may fail to converge and the PFE does not rely on them. There have been
previous efforts to suppress the feedback from secondary to primary modes and to maintain the
marching of the nonlinear PSE through the transitional region; see, for example, Ref. [37], Sec.
3.4.3. The framework advanced in the current paper allows for the formal investigation of such
effects by limiting the interactions within the PFE framework to a subset of dominant harmonics of
the base flow. While in practice we observe that the PFE alleviate challenges that may arise from
nonlinear interactions, a rigorous proof of convergence for the PFE iterations is deferred to future
research.

The computational cost of the PSE is dominated by the inner iterations that are required to
evaluate nonlinear terms at each step of the marching procedure. In contrast, the PFE are advanced
by inverting a sparse matrix of higher dimension at each step; the worst-case complexity analysis
for dense matrices would suggest that the PFE need more operations per iteration. However, our
computational experiments show that even without exploiting the sparse structure of the matrices,
our PFE computations require approximately the same amount of time to converge as nonlinear
PSE computations. Further improvement of the computational efficiency of our method in a way
that would lead to a fair comparison to the PSE is out of the scope of the current work.

VII. CONCLUDING REMARKS

We have combined ideas from Floquet decomposition and the linear PSE to develop the
parabolized Floquet equations, which can be used to march primary and secondary instability modes
while accounting for dominant mode interactions. Our modeling framework involves two steps:
(i) the linear PSE are used to march the primary disturbances in the streamwise direction; (ii) the
PFE are used to march velocity fluctuations around the modulated base flow profile while capturing
weakly nonlinear effects and the interaction of modes. The developed framework can account for
secondary instabilities as fluctuations around a modulated base flow that includes primary modes
generated in step (i). The PFE involve a linear marching of various harmonics and can be used as
a tool to decipher the role of individual harmonics in the spatial evolution of the fluctuation field.
Furthermore, subsequent iterations of the PFE, in which the base flow modulation results from the
previous PFE computation, can provide a corrective sequence that improve the quality of prediction.
To demonstrate the utility of the proposed modeling framework, we have examined the secondary
instability analysis of the H-type transition scenario and the evolution of streamwise streaks. Our
computational experiments demonstrate good agreement with DNS and nonlinear PSE.

We note that the overall performance of the proposed method relies on the reasonable prediction
of the evolution of primary disturbances using linear PSE. In cases where the linear PSE give a poor
prediction, an additional source of white or colored stochastic excitation can be used to replicate
the effect of nonlinearities and improve the outcome of linear PSE; see Ref. [44], Sec. IV. For this
purpose, the spatiotemporal spectrum of stochastic excitation sources can be identified using the
recently developed theoretical framework outlined in Refs. [13,60]. This methodology can also be
used to improve the accuracy of results when nonlinear interactions are of critical importance in the
evolution of multimodal dynamics. Implementation of such ideas to further improve the predictive
capability of the proposed method is a topic for future research.

In the PFE framework, nonlinear interactions are captured via the interplay between the state
and periodic base flow. The equilibrium configuration in Fig. 2(b) provides the means to better
approximate nonlinear interactions through iterative refinement of the base state. While this
configuration implies that the PFE framework is inherently nonlinear, each run of the PFE is linear
and is thus well suited for feedback control design using the tools from linear systems theory. More
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FIG. 10. Block diagram illustrating the inclusion of control into the PFE loop. The controller uses the
fluctuation field resulting from previous PFE iterations to dictate the control signal f that perturbs the flow
dynamics.

specifically, the modes that are marched using PFE modulate the base state as a streamwise varying
parameter in subsequent PFE runs and thus should not be assumed as variables that violate the
premise of linearity. Based on the fluctuation field generated at each sweep of PFE, an optimal
control strategy can be synthesized to perturb the dynamics of subsequent PFE runs; see schematic
in Fig. 10. While both the control strategy and dynamics are simultaneously updated, convergence
of the fluctuation field q̂ would ensure that the final control design is indeed optimal. Analyzing the
performance of this design strategy and providing theoretical justification for convergence calls for
additional in-depth examination.
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APPENDIX A: OPERATORS FOR H-TYPE TRANSITION

For the case study considered in Sec. IV, the operators Ln,m and Mn,m in LF and MF from Eq. (7)
are of the form:

Ln,0 =

⎡
⎢⎣

�n − ∂yVB ∂y UB 0 i[(n + 0.5)αr + γ ]
0 �n + ∂yVB 0 ∂y

0 0 �n iβ

i[(n + 0.5)αr + γ ] ∂y iβ 0

⎤
⎥⎦,

Ln,−1 =

⎡
⎢⎣

�n− − ∂yVT ∂y UT 0 0
iαrVT �n− + ∂yVT 0 0

0 0 �n− 0
0 0 0 0

⎤
⎥⎦,

Ln,+1 =

⎡
⎢⎣

�n+ − ∂yV
∗
T ∂y U ∗

T 0 0
−iαrV

∗
T �n+ + ∂yV

∗
T 0 0

0 0 �n+ 0
0 0 0 0

⎤
⎥⎦,
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and

Mn,0 =

⎡
⎢⎣

�n 0 0 I

0 �n 0 0
0 0 �n 0
I 0 0 0

⎤
⎥⎦,

Mn,−1 =

⎡
⎢⎣

UT 0 0 0
0 UT 0 0
0 0 UT 0
0 0 0 0

⎤
⎥⎦,

Mn,+1 =

⎡
⎢⎣

U ∗
T 0 0 0

0 U ∗
T 0 0

0 0 U ∗
T 0

0 0 0 0

⎤
⎥⎦,

where

�n = − 1

Re
(∂yy − {[(n + 0.5)αr + γ ]2 + β2}) + i[(n + 0.5)αr + γ ]UB

−i(n + 0.5)αrc + VB∂y,

�n− = i[(n + 1.5)αr + γ ]UT + VT ∂y,

�n+ = i[(n − 0.5)αr + γ ]U ∗
T + V ∗

T ∂y,

�n = UB − 2 i

Re
[(n + 0.5)αr + γ ].

APPENDIX B: OPERATORS FOR STREAMWISE STREAKS

For the case study considered in Sec. V, the operators Ln,m and Mn,m in LF and MF from Eq. (7)
are of the form:

Ln,0 =

⎡
⎢⎢⎢⎢⎣

�n − ∂y VB ∂y UB 0 i α

0 �n + ∂y VB 0 ∂y

0 0 �n i n β

i α ∂y i n β 0

⎤
⎥⎥⎥⎥⎦,

Ln,−1 =

⎡
⎢⎢⎢⎢⎣

i α US,1 ∂y US,1 i β US,1 0

0 i α US,1 0 0

0 0 i α US,1 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦, (B1a)

Ln,+1 =

⎡
⎢⎢⎢⎢⎣

i α U ∗
S,1 ∂y U ∗

S,1 −i β U ∗
S,1 0

0 i α U ∗
S,1 0 0

0 0 i α U ∗
S,1 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦,
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and

Mn,0 =

⎡
⎢⎢⎢⎣

UB − 2 i α
Re 0 0 0

0 UB − 2 i α
Re 0 0

0 0 UB − 2 i α
Re 0

I 0 0 0

⎤
⎥⎥⎥⎦,

Mn,−1 =

⎡
⎢⎢⎢⎣

US,1 0 0 0

0 US,1 0 0

0 0 US,1 0

0 0 0 0

⎤
⎥⎥⎥⎦, (B1b)

Mn,+1 =

⎡
⎢⎢⎢⎣

U ∗
S,1 0 0 0

0 U ∗
S,1 0 0

0 0 U ∗
S,1 0

0 0 0 0

⎤
⎥⎥⎥⎦,

where

�n = − 1

Re
[∂yy − α2 + (nβ )2] + (−i ω + i α UB + VB ∂y ).

Note that consistent with nonlinear PSE, the boundary conditions on the MFD require special
treatment; see Ref, [39]. Following [61–63], which showed that the streamwise pressure gradient is
the main contributor to the residual ellipticity in the PSE, we remove the pressure gradient from the
streamwise velocity momentum [Mn,0(1, 4) = 0] to ensure that the streamwise marching procedure
is well-posed.

In subsequent PFE runs, the second harmonic and MFD also augment the base flow [cf. Eq. (15)]
and UB and VB in Eqs. (B1a) and (B1b) denote the combination of the Blasius profile and the MFD.
Interactions with the second harmonic generated from previous PFE runs are facilitated by the
off-diagonal operators:

Ln,−2 =

⎡
⎢⎢⎢⎣

i α US,2 ∂y US,2 2i β US,2 0

0 i α US,2 0 0

0 0 i α US,2 0

0 0 0 0

⎤
⎥⎥⎥⎦,

Ln,+2 =

⎡
⎢⎢⎢⎣

i α U ∗
S,2 ∂y U ∗

S,2 −2i β U ∗
S,2 0

0 i α U ∗
S,2 0 0

0 0 i α U ∗
S,2 0

0 0 0 0

⎤
⎥⎥⎥⎦,

and

Mn,−2 =

⎡
⎢⎣

US,2 0 0 0
0 US,2 0 0
0 0 US,2 0
0 0 0 0

⎤
⎥⎦, Mn,+2 =

⎡
⎢⎢⎣

U ∗
S,2 0 0 0
0 U ∗

S,2 0 0
0 0 U ∗

S,2 0
0 0 0 0

⎤
⎥⎥⎦.

APPENDIX C: GRID CONVERGENCE AND DEPENDENCE ON THE NUMBER OF HARMONICS

We examine the influence of the wall-normal grid resolution (Ny) and the number of harmonics
(N ) considered in the PFE progression on the convergence of results obtained in Secs. IV and V. To
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quantify convergence, the kinetic energy of the most important mode, i.e., the (1, 1)-subharmonic
mode in H-type transition and the MFD of streaks are computed at various streamwise locations
and stored in the vector E. The total energy in Tables I and II denotes the aggregate kinetic energy
in the streamwise direction and is computed using the Euclidean norm of the vector E, i.e., ‖E‖2.
To quantify grid independence, we use the relative error ‖E − Er‖2/‖Er‖2, where Er is the kinetic
energy obtained by refining resolution (in Ny or in the number of harmonics).

TABLE I. Convergence of results in the study of H-type transition.

number of harmonics (N ) number of collocation points (Ny) total energy of (1,1) mode relative error (%)

2 40 0.15818 15.6
2 80 0.18266 0.54
2 160 0.18366 · · ·
2 80 0.18266 0.31
3 80 0.18209 0.0008
4 80 0.18209 · · ·

TABLE II. Convergence of results in the study of laminar streaks.

number of harmonics (N ) number of collocation points (Ny) total energy of MFD mode relative error (%)

3 40 1.5375 × 10−3 0.6
3 80 1.5471 × 10−3 0.002
3 160 1.5471 × 10−3 · · ·
3 80 1.5471 × 10−3 0.01
4 80 1.5473 × 10−3 0.005
5 80 1.5472 × 10−3 · · ·
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[10] M. R. Jovanović and B. Bamieh, Modelling flow statistics using the linearized Navier-Stokes equations, in
Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, FL (IEEE, Piscataway, 2001),
pp. 4944–4949.

023901-20

https://doi.org/10.1146/annurev.fluid.39.050905.110153
https://doi.org/10.1146/annurev.fluid.39.050905.110153
https://doi.org/10.1146/annurev.fluid.39.050905.110153
https://doi.org/10.1146/annurev.fluid.39.050905.110153
https://doi.org/10.1006/jcph.1993.1210
https://doi.org/10.1006/jcph.1993.1210
https://doi.org/10.1006/jcph.1993.1210
https://doi.org/10.1006/jcph.1993.1210
https://doi.org/10.1017/S0022112095003284
https://doi.org/10.1017/S0022112095003284
https://doi.org/10.1017/S0022112095003284
https://doi.org/10.1017/S0022112095003284
https://doi.org/10.1017/S0022112009006624
https://doi.org/10.1017/S0022112009006624
https://doi.org/10.1017/S0022112009006624
https://doi.org/10.1017/S0022112009006624
https://doi.org/10.1063/1.858894
https://doi.org/10.1063/1.858894
https://doi.org/10.1063/1.858894
https://doi.org/10.1063/1.858894
https://doi.org/10.1063/1.1398044
https://doi.org/10.1063/1.1398044
https://doi.org/10.1063/1.1398044
https://doi.org/10.1063/1.1398044
https://doi.org/10.1017/S0022112005004295
https://doi.org/10.1017/S0022112005004295
https://doi.org/10.1017/S0022112005004295
https://doi.org/10.1017/S0022112005004295


MODELING MODE INTERACTIONS IN BOUNDARY LAYER …

[11] Y. Hwang and C. Cossu, Linear non-normal energy amplification of harmonic and stochastic forcing in
the turbulent channel flow, J. Fluid Mech. 664, 51 (2010).
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