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We present measurements of temperature fluctuations in turbulent rotating Rayleigh-
Bénard convection. The temperature variance exhibits power-law dependence on the fluid
height outside the thermal boundary layers irrespective of the rotating rates. Rotations
increase the magnitudes of temperature variance, but reduce the skewness and kurtosis,
leading to Gaussian-like temperature distributions. We derive a general theoretical ex-
pression for all statistical moments of temperature in terms of the dynamical properties
of the thermal plumes, based on the findings that both the amplitude and time width of
thermal plumes are log-normally distributed. Our model replicates the statistical properties
of the temperature fluctuations and reveals the physical origin of their rotation dependence.
Rotations increase the temperature amplitude of thermal plumes by virtue of the Ekman
pumping process, but reduce the variations of the plume amplitude in time, presumably
through the suppression of turbulent mixing between the plumes and the ambient fluid.
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I. INTRODUCTION

Large temperature fluctuations are a prominent feature of thermally driven turbulence in which
one observes local fluid temperatures with large deviations from their mean values [1,2]. The
statistical properties of temperature fluctuations, such as their probability distribution functions,
the scalings of their power spectra and the corresponding structure functions, and so forth, are
fundamental characterizations of turbulent thermal flows [3–8].

In turbulent thermal convection, the large excursions of local fluid temperature are often ascribed
to thermal disturbances of coherent flow structures [9–11]. Thermal plumes, one of the primary
coherent structures in thermal convection, have been shown to produce pronounced temperature
fluctuations as they erupt from the thermal boundary layers (BLs) intermittently. Since thermal
plumes carry heat across the convective fluid, their motions and dynamical interactions with the
background turbulence play a crucial role in determining the distribution of energy dissipation and
local heat transport. In a recently developed theory [12], Grossmann and Lohse treated the role
of plumes explicitly, taking into account their contributions to the thermal dissipation as detached
thermal boundary layers. Understanding the dynamical and statistical properties of thermal plumes
and their influences on the fluid temperature fluctuations is important for further investigations of
the flow dynamics and the turbulent transport processes in thermal convection systems.

In many geophysical and astrophysical systems, turbulent convection is strongly influenced by
the background rotations [13–15]. In a paradigmatic laboratory model for studying rotationally
influenced convection flows in a rotating Rayleigh-Bénard convection (RBC) system, it has been
elucidated that the influences of rotational friction and thermal forcing may have a profound effect
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on the morphology of the turbulent flow structures [16,17]. For certain parameter regimes, thermal
plumes are stretched into columnar vortices through the Ekman pumping process, which extracts
efficiently fluid from the thermal BLs, leading to noticeable enhancement of the global heat transport
[16–20]. However, there remain the natural questions of how the local fluid temperature responds to
the substantial variations of the plume structures under the rotational constraints and whether new
information of the coherent flow structures can be extracted and revealed by the statistical properties
of temperature fluctuations. Recent experiments report that deliberate rotations change the primary
features of the local fluid temperatures in terms of stronger but more symmetrically distributed
fluctuations outside the thermal BLs [21–23].

In this paper we present experimental studies of temperature fluctuations and thermal plume
dynamics in turbulent rotating RBC. Results of the vertical temperature profiles reveal that the
temperature variance σ 2 exhibits a power-law dependence on the fluid height outside the thermal
BL, irrespective of the strength of the applied rotations. The background rotations, however, reduce
the decreasing rates of σ 2 toward the interior fluid and give rise to greater thermal disturbances.
Rotations reduce the high-order statistical moments (skewness and kurtosis), indicating a Gaussian-
like temperature distribution. We derive in general a theoretical expression for the statistical
moments of temperature fluctuations, based on the experimental findings that both the probability
density functions (PDFs) of the plume amplitude and the time width are dictated by log-normal
distributions. Our model is shown to be capable of replicating the rotation dependence of the
temperature fluctuations. We suggest that, on one hand, rotations enhance the temperature amplitude
of the thermal plumes in the mixing zone by virtue of the Ekman pumping process and result
in a larger magnitude of temperature variance. On the other hand, rotations provide dynamical
constraints to suppress the turbulent mixing of the plumes with the ambient fluid and reduce the
variations of the plume amplitude in time, leading to smaller values of skewness and kurtosis and
more symmetrical fluid temperature distributions.

II. EXPERIMENTAL SETUP

The experiment was performed in a cylindrical convection sample that had a diameter of
D = 24.00 cm and a height L = 24.00 cm, yielding an aspect ratio 1.00. The Rayleigh number Ra =
αg�T L3/κν covered the range 3.8 × 108 � Ra � 4.3 × 109 (g is the gravitational acceleration, α is
the thermal expansion coefficient, ν is the viscosity, κ is the thermal diffusivity, and �T the applied
temperature difference). Deionized water at a mean temperature of 20.00 ◦C was used as the working
fluid. The Prandtl number Pr = ν/κ = 6.70 remained constant. Constructions of the convection
sample and its auxiliary thermal-protection facilities have been described before [24–26]. The
whole apparatus was built on a rotating table. We used rotating rates up to 1.05 rad/s. The inverse
Rossby number 1/Ro = 2�

√
L/αg�T varied in the range 0.0 � 1/Ro � 8.0, where noticeable

enhancement of heat transport was observed [16,25]. Local fluid temperature was measured using
a hermetically sealed glass-encapsulated thermistor with a diameter of 0.38 mm and a response
time of 30 ms. As shown in the inset of Fig. 1(a), the thermistor was guided to moved along the
central line of the sample by a stainless steel capillary mounted on a translational stage. Before the
temperature measurements were performed, the thermistor was calibrated in a separate calibration
facility with a precision of a few millidegrees Kelvin [24].

III. RESULTS AND DISCUSSION

A. Statistical properties of temperature fluctuations

Figure 1(a) shows a time trace of the fluid temperature T (t ) measured outside the thermal BL
above the bottom plate for Ra = 4.22 × 109 and 1/Ro = 0.0. In this example, one sees clearly that
the time series consists of intermittent spikes when T (t ) rises abruptly above the background of
steady fluctuations. The intensity of fluctuations in T (t ), characterized by the temperature variance
σ 2 ≡ 〈[T (t ) − 〈T 〉]2〉, is depicted as a function of the fluid height z for several values of Ro in
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FIG. 1. (a) Time series of the fluid temperature measured at height z = 24λ for Ra = 4.22 × 109 and
1/Ro = 0.0. The thickness of the thermal BL λ is determined by the position of the maximum temperature
variance. Red spikes are recognized as plume signals. The inset shows a schematic of the movable temperature
probe mounted in a rotating RBC apparatus. Also shown are PDFs of (b) the normalized plume amplitude
A/�T and (c) the plume time width w/t0. Here t0 = √

L/αg�T is the free-fall time. The solid curves show
log-normal distributions.

Fig. 2(a). In the mixing zone outside the thermal BL (λ � z � 24λ), our nonrotating data [black
circles in Fig. 2(a)] show that with an increasing fluid height σ (z) decreases and follows a power
function σ (z) = σ0(z/λ)−β . These results are consistent with previous experiments [27–29] and a
recent theoretical model [29], but disagree with other measurements in which logarithmic profiles
of σ (z) are observed [30–32]. When rotations are applied such similar behavior is maintained in the
profile of σ (z), irrespective of the rotating rates.

Fitting power-law functions to the data of σ (z) outside the thermal BL, we obtain the decay rates
β of σ (z) toward the center fluid for all applied rotating rates. Figure 2(b) shows the results of
β(1/Ro) for various Ra. Starting from the nonrotating value of 0.62, β decreases with increasing
rotation rates until it reaches a minimum of 0.23 at 1/Ro ≈ 5.0 and then approaches asymptotically
0.25 ± 0.02 in the fastest rotating regime of the present study, indicating a greater level of thermal
fluctuation resulting from stronger rotations. It can be seen that the data of β(1/Ro) for different
values of Ra are superimposed on each other on one universal curve, suggesting that the decay rate
of σ (z) is determined by Ro but independent of Ra. The data of σ (z)/σ0 inside the thermal BL
(z � λ) appear to be independent of the applied rotations.

The properties of the thermal fluctuations under deliberate rotations are investigated further
through measurements of their high-order statistical moments, the temperature skewness (Sk ≡
〈[T (t ) − 〈T 〉]3〉/σ 3) and kurtosis (Ku ≡ 〈[T (t ) − 〈T 〉]4〉/σ 4). Figures 3(a) and 3(b) depict profiles
of Sk(z) and Ku(z) for various rotating rates. Despite the increase of the temperature variance in the
mixing zone, the magnitudes of both Sk and Ku decrease under stronger rotations. These findings
imply that fluctuations of the fluid temperature are varying more symmetrically in time and the
resultant PDFs are closer to a Gaussian distribution. Inside the thermal BLs (z � λ), Sk is negative
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FIG. 2. (a) Normalized temperature standard deviation σ/σ0 for various 1/Ro. Data are for 1/Ro = 0.0
(black circles), 0.37 (pink hexagons), 0.49 (orange diamonds), 1.46 (blue squares), 3.17 (green down triangles),
and 4.88 (red up triangles). The inset shows the thermal boundary layer thickness λ as a function of 1/Ro. The
error bars present the standard deviation. (b) Results for the exponent β as a function of 1/Ro for various
Ra. (c) Theoretical results (open symbols) of σ/σ0 compared with the experimental data (closed symbols).
(d)–(f) Statistical properties of the thermal plumes: vertical profiles of the (d) plume amplitude 〈A〉/〈A〉0,
(e) occupation time fraction τ/τ0, and (f) exp(SA). The results in (a), (c), and (d)–(f) are for Ra = 4.22 × 109.
Here σ0, 〈A〉0, and τ0 denote respective values measured at z = λ. The straight lines are power-law fittings.

with its magnitude dependent on the rotating rates. However, the magnitude of Ku is close to 3.0
and independent of the Rossby number, which reveals a Gaussian-like temperature distribution.

B. Statistical properties of thermal plumes

The power-law profile of temperature fluctuation σ (z) in free convection was first proposed
under the assumption that heat flux remains a constant along a vertical axis [33]. As the thermal
plumes serve as the basic element of heat transport, we suggest that the dynamics properties of
the thermal plumes determine the profile of σ (z). Here we analyze the temperature signals and
consider the contributions to the temperature fluctuations by the plume disturbance and by the
background turbulence separately. In our analysis, we identify the thermal plume signals [the red
spikes in Fig. 1(a)] from the background turbulence [blue curves in Fig. 1(a)], following a three-
step algorithm. A similar approach has been employed in earlier studies of turbulent convection
in Ref. [34].

(i) Sections of time series with rapidly varying temperature Tr (t ) are identified as plume signals
if the rate of temperature variation within Tr (t ) satisfies the criterion dT > ησ . Here dT = [T (t +
dt ) − T (t )] is the temperature increment during the time interval dt = 1/ f with the data sampling
frequency in the experiment f = 13 Hz. In the present work we use a threshold value η = 0.25.

(ii) The local temperature maximum Tm at the moment t = tm in the section of Tr (t ) is identified
as the maximum plume temperature [Fig. 4(a)].

(iii) Two moments ti and te around tm with ti < tm and te > tm when the temperature reaches
minima are identified as the initial time and ending time of the plume signal, respectively. Sections

023501-4



TEMPERATURE FLUCTUATIONS RELEVANT TO THERMAL- …

FIG. 3. Experimental results of (a) Sk(z) and (b) Ku(z) for Ra = 4.22 × 109 and various Ro; representative
error bars are included. Dashed lines show Sk = 0 and Ku = 3. Theoretical predictions of (c) Sk and (d) Ku as
functions of exp(SA) and τ are compared with the experimental data (closed circles). Values of Sk and Ku are
presented by the coloration. Black circles denote 1/Ro = 0.0 and red circles 1/Ro = 4.88. The solid curves
are spline fittings to the experimental data.

of the temperature time series between ti and te [such as the red curve in Fig. 4(a)] are defined as the
plume signals T̃p(t ).

Based on this analysis, two dynamical characters of the plume signals are captured, that is, the
plume temperature amplitude A and time width w. The plume time width is defined as the time
interval between ti and te, w ≡ te − ti. We take the smaller value of T (ti) and T (te) as the minimum
plume temperature Tn and define the plume amplitude as A ≡ Tm − Tn. Figures 1(b) and 1(c) present
the PDFs of the amplitude A and time width w for three values of Ro. Both A and w have log-normal
distributions over the range of Ro studied. Log-normal distributions of these dynamical properties of
thermal plumes have been previously observed in nonrotating RBC [34–36], which may arise from
fragmentation processes as a consequence of the plume-bulk interaction [36]. It is remarkable that
such a rule of distribution still dictates these plume properties under strong background rotations, in
which the plume morphology and the turbulent bulk fluctuation may have been largely modified. It
can be clearly seen in Figs. 1(b) and 1(c) that increasing the rotating rates enlarges the mean values
of A and w, but reduces the half-width of the distributions of P(A) and P(w).

Rotations impact as well the shape of the temperature traces of thermal plumes. For a more
quantitative description of the plume’s temperature signal, we compose ensembles of plume signals.
Figure 4(b) shows an example of the plume ensemble in which the peaks of each plume trace
Tp(t ) are overlaid with the temperature and time span normalized by A and w individually, T ∗ =
(T − Tn)/A and t∗ = (t − tm)/w. The ensemble average of all temperature traces G(t∗), shown by
the black dotted line, typifies on average the shape of the thermal plumes measured at a certain fluid
height and a rotating rate. We further characterize the function G(t∗), extracting a set of plume-shape
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FIG. 4. (a) Example of the temperature signal captured from a thermal plume. The red curve is identified as
the plume signal T̃p(t ); the blue curves present the background fluid temperature. (b) Ensemble of temperature
signals of thermal plumes (red curves). The black dotted line shows the ensemble average of the plume
temperature G(t∗). The temperature signals are taken with Ra = 4.22 × 109 and 1/Ro = 1.46 at a fluid height
z = 22λ.

parameters α1, α2, . . ., with the nth-order parameter defined as

αn =
∫

Gn(t∗)dt∗. (1)

Here the integration is taken over the time span of G(t∗). The plume-shape parameters appear to
be weakly dependent on both the fluid height and the Rossby number. Results for α2 are shown in
Fig. 5(a).

C. Theoretical model for the statistics of temperature fluctuations

We have seen that despite the diversities in the temperature signals of thermal plumes shown
Fig. 4(b), they possess similar dynamical properties from a statistical point of view. The temperature
amplitude and time width of the plumes are both log-normally distributed. In addition, the
temperature traces of the plumes are characterized by a common shape function G(t∗) and the
plume-shape parameters in Eq. (1). These observations suggest that simple theoretical expressions,
in terms of the aforementioned general properties of the thermal plumes, are capable of describing
the statistics of the temperature fluctuations. In the following, we derive a series of mathematical
formulas to reveal the connections between the turbulent fluctuations in temperature and the
dynamical properties of plumes and predict the statistical moments of the temperature fluctuations
presented in Sec. III A.

FIG. 5. Vertical profiles of (a) the plume-shape parameter α2 and (b) the ratio between 〈wA〉 and 〈w〉〈A〉
for Ra = 4.22 × 109 and various Rossby numbers.
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Our experimental data reveal that the thermal fluctuations associated with the turbulent back-
ground are by far smaller than those associated with thermal plumes and that their contribution
to high-order moments of temperature is negligible. We ignore their influence on the statistical
properties of temperature fluctuations. In our theoretical treatment, we separate the temperature
time series into two parts T (t ) = Tp(t ) + Tb, where the background temperature Tb is considered as a
constant (i.e., the mean background temperature) and Tp(t ) = T̃p(t ) − Tb presents the relative plume
temperature. After this approximation, we express the nth-order central moment of temperature as
follows:

〈(T − 〈T 〉)n〉 = 〈(Tp − 〈Tp〉)n〉 =
n∑

l=0

(−1)n−lCl
n

〈
Tp

l
〉〈Tp〉n−l . (2)

Here the binomial expansion is applied; Cl
n is the binomial coefficient. We consider a time series that

consists of np plumes, and within the time span of the ith plume we sample mi discrete temperature
data points. The nth-order mean value of Tp is

〈
T n

p

〉 = 1

N

np∑
i=1

mi∑
j=1

(Ti j )
n, (3)

where Ti j is the temperature of the jth sampling point of the ith plume and N is the number of total
sampling points. Since for a given Rossby number and a fluid height the shape of the plume signals
can be approximated by their ensemble average G(t∗), we determine the nth-order average of the
ith plume, replacing in Eq. (3) the summation over j by integration in time:

mi∑
j=1

(Ti j )
n = wiA

n
i

mi∑
j=1

(Ti j/Ai )
n/wi = f wiA

n
i

∫ (te−tm )/wi

(ti−tm )/wi

Gn(t∗)dt∗ = f wiA
n
i αn. (4)

We have applied in the last identity of Eq. (4) the definition of the plume-shape parameters αn

[Eq. (1)]. Since the mean temperature amplitude 〈A〉, the time width 〈w〉, and the plume-shape
parameter αn, which present the mean properties of the thermal plumes, are independent of the
individual plume dynamics, we show in the following that the nth-order moment of temperature
can be expressed simply in terms of these quantities. Based on Eqs. (3) and (4), the nth-order mean
value of Tp is given by

〈
T n

p

〉 = 1

N

np∑
i=1

f wiA
n
i αn = f αn

N

np∑
i=1

wiA
n
i = np f αn〈wAn〉/N. (5)

The plume-shape parameter αn is the ensemble average of all plumes and is thus taken as a constant
in the summation in Eq. (5). Our measurements further reveal that the plume amplitude A and
time width w are independent, in the sense that the ratio of 〈wA〉 to 〈w〉〈A〉 is close to unity
(approximately equal to 1.1) and is nearly independent of the fluid depth or the Rossby number
[Fig. 5(b)]. For this reason we assume that A and w are statistically uncorrelated and approximate
that 〈wAn〉 = 〈w〉〈An〉. Introducing the occupation time fraction of plumes τ = np f 〈w〉/N , we
simplify Eq. (5) as

〈
T n

p

〉 = αnτ 〈An〉. (6)

Substituting Eq. (6) into Eq. (2) yields a general expression of any nth-order moment of temperature

〈(T − 〈T 〉)n〉 =
n∑

l=1

(−1)n−lCl
nτ

n−l+1αl (α1)n−l〈Al〉〈A〉n−l + (−α1τ 〈A〉)n. (7)
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TABLE I. Fitting power exponents of four variables τ , 〈A〉, exp(SA), and α2 for Ra = 4.22 × 109 and
various 1/Ro. Theoretical predictions of βth = (2βA + βτ + βS + βα2 )/2 according to Eq. (9) are compared
with the experimental results βexpt. The last two columns are the mean plume amplitude 〈A〉 and plume time
width 〈w〉 measured at z = 10λ. The uncertainties in determining β are shown in parentheses.

1/Ro βA βτ βS βα2 βth βexpt 〈A〉 〈w〉
0.00 0.49 0.51 −0.10 −0.13 0.63(±0.05) 0.57(±0.02) 1.47 1.42
0.49 0.41 0.28 −0.08 −0.16 0.43(±0.05) 0.38(±0.02) 1.67 2.02
1.46 0.34 0.24 −0.03 −0.15 0.37(±0.04) 0.31(±0.04) 1.72 2.50
2.20 0.24 0.26 −0.03 −0.10 0.31(±0.05) 0.29(±0.03) 1.69 2.67
3.17 0.21 0.28 −0.01 −0.10 0.30(±0.04) 0.24(±0.04) 1.92 3.02
4.88 0.15 0.30 −0.00 −0.05 0.20(±0.07) 0.24(±0.02) 2.19 3.23

As a consequence of Eq. (7), the temperature variance σ 2 can be derived as the second-order
moment (n = 2)

σ 2 = (
τα2〈A2〉 − τ 2α2

1〈A〉2). (8)

Mathematically, since the PDFs of the temperature amplitude A follow a log-normal distribution,
any nth-order mean of A can be expressed as

〈An〉 =
∫ ∞

−∞
P(A)AndA = 〈A〉nexp

(
n(n − 1)SA

2

)
. (9)

Here SA ≡ 〈[ln(A) − 〈ln(A)〉]2〉 denotes the variance of ln(A), which reveals the fluctuating mag-
nitude of the plume amplitude. Using Eq. (9), one can simplify the expression of the temperature
variance

σ 2 = τ 〈A〉2[α2exp(SA) − α2
1τ

]
. (10)

Given by the profiles of τ , α1,2, A, and SA, we present in Fig. 2(c) results of σ 2 for three rotating
rates predicted by Eq. (10). One sees that the theoretical predictions agree with the experimental
data. Evaluations of the various components in Eq. (10) suggest that the leading term dominates
and σ 2 is mainly determined by τ 〈A〉2α2exp(SA). Figures 2(d)–2(f) depict the statistical results of
the vertical profiles of 〈A〉, τ , and exp(SA). In the mixing zone these variables can be well described
by power functions of the fluid height [hence SA(z) is a logarithmic function]. The second-order
plume-shape parameter α2, however, appears to be weakly dependent on z, as shown in Fig. 5(a).
The best-fit exponents (βA, βτ , βS, βα2 ) for several Ro are listed in Table I. Our prediction of the
exponent of the temperature standard deviation βth = (2βA + βτ + βS + βα2 )/2 is shown to be in
good accord with the experimental data. Comparisons of the magnitudes of these exponents suggest
that under the impact of rotation it is the increased mean plume amplitude 〈A〉 that mainly gives
rise to a smaller decaying exponent β and stronger thermal fluctuations in the mixing zone. The
increasing of the plume occupation time τ and the decreasing of SA play a less important part in
determining the rotation dependence of σ (z).

Although the temperature variance outside the thermal BL is intensified under rotations, the
magnitudes of higher-order moments (Sk and Ku) are substantially reduced [Figs. 3(a) and 3(b)].
The explanation of this opposite trend can be unified from our previous viewing of rotation-induced
variations of the plume dynamics. Theoretical expressions for Sk and Ku can be obtained from
Eq. (7):

Sk = τα3〈A3〉 − 3τ 2α1α2〈A2〉〈A〉 + 2α3
1τ

3〈A〉3

(
τα2〈A2〉 − τ 2α2

1〈A〉2
)3/2 , (11)

Ku = τα4〈A4〉 − 4τ 2α1α3〈A3〉〈A〉 + 6α2
1α2τ

3〈A〉2〈A2〉 − 3α4
1τ

4〈A〉4

(
τα2〈A2〉 − τ 2α2

1〈A〉2
)2 . (12)
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Applying the rule of log-normal distributions of A [Eq. (9)] and keeping the leading-order terms
in both the numerators and the denominators of Eqs. (11) and (12), respectively, one obtains the
approximated relations

Sk ≈ α3α
−3/2
2 τ−1/2exp(3SA/2), (13)

Ku ≈ α4α
−2
2 τ−1exp(4SA). (14)

Note that Eqs. (13) and (14) are coarse expressions of Sk and Ku. Nonetheless, they provide hints
to evaluate the main factors that lead to the declining of Sk and Ku under strong rotations. Since
the plume-shape parameters αn depend only weakly on the fluid height [see Fig. 5(a)], one sees
that values of Sk(z) and Ku(z) are mainly given by the plume occupation time fraction τ and the
variance SA and are independent of the plume amplitude A. Using the measured profiles of τ (z) and
SA(z), we depict in Figs. 3(c) and 3(d) our predictions of Sk and Ku as functions of τ and SA given in
Eqs. (13) and (14), which are compared to the experimental data. The values of Sk and Ku are both
correlated to τ and SA, for more ephemeral (smaller τ ) and erratic (larger SA) plume signals lead
to a higher level of asymmetry of temperature distribution. Figures 3(c) and 3(d) further reveal that
Sk and Ku are sensitively dependent on SA(z). The variance of the plume amplitude SA, however,
is significantly suppressed by the background rotations [Fig. 2(f)]. We suggest that this is the main
reason responsible for the reduction of the high-order moments of the temperature fluctuation under
strong rotations.

IV. CONCLUSION

Based on the present measurements and analysis, we infer that the prominent effects of rotation
on thermal plumes are as follows. First, the rotational friction adjacent to the nonslip boundaries
of the sample leads to the Ekman pumping process, in which the thermal plumes erupt more ener-
getically from the BLs towards the interior fluid, resulting in greater plume amplitudes [Fig. 2(d)].
Our theoretical analysis suggests that this is the main factor that leads to the rotation-enhanced
thermal fluctuations. Moreover, under strong rotations, as the thermal plumes are stretched into
columnar vortical plumes, the mixing with the exterior flows through turbulent entrainment can be
significantly reduced [37,38]. Thus the applied rotations provide a dynamical constraint to enhance
the stability of the plume structure, as indicated by the observed suppression of the variance in
the plume amplitude SA [Fig. 2(f)]. This enables thermal plumes to impinge further into the fluid
interior, with PDFs of temperature closer to a Gaussian distribution.

In summary, the present work combines high-precision measurements of the fluid temperature
and in-depth analysis of the plume dynamics in turbulent rotating convection. We developed a theo-
retical approach of extracting the signals of coherent flow structures to reveal the physical origin of
the statistical features of thermal fluctuations. We remark that the phenomenon that strong rotations
reduce the turbulent mixing of coherent structures (including plumes, vortices, and density currents)
with the ambient fluid and suppress their instabilities has been observed in laboratory experiments
[39–41] and in field observations of oceanographic flows [42]. Although the various fluid systems
are different in nature, the rotation-enhanced stability of the coherent flow structures may influence
the turbulent thermal fluctuations in a variety of rotating flows through a similar principle proposed
in this work. Challenges remain in future studies to further understand in general how fluctuations in
turbulent flows are determined by coherent structures and extend the present investigation to broader
parameter ranges relevant to natural flows in oceanographic and geophysical systems.

ACKNOWLEDGMENTS

We are grateful to R. Ecke and W. Ying for helpful discussions. This work was supported by
the National Science Foundation of China through Grants No. 11572230, No. 11772235, and No.
1561161004.

023501-9



DING, LI, YAN, AND ZHONG

[1] L. P. Kadanoff, Turbulent heat flow: Structures and scaling, Phys. Today 54(8), 34 (2001).
[2] D. Lohse and K.-Q. Xia, Small-scale properties of turbulent Rayleigh-Bénard convection, Annu. Rev.

Fluid Mech. 42, 335 (2010).
[3] F. Heslot, B. Castaing, and A. Libchaber, Transition to turbulence in helium gas, Phys. Rev. A 36, 5870

(1987).
[4] B. Castaing, G. Gunaratne, F. Heslot, L. Kadanoff, A. Libchaber, S. Thomae, X. Z. Wu, S. Zaleski, and G.

Zanetti, Scaling of hard thermal turbulence in Rayleigh-Bénard convection, J. Fluid Mech. 204, 1 (1989).
[5] T. H. Solomon and J. P. Gollub, Sheared Boundary Layers in Turbulent Rayleigh-Bénard Convection,

Phys. Rev. Lett. 64, 2382 (1990).
[6] E. D. Siggia, High Rayleigh number convection, Annu. Rev. Fluid Mech. 26, 137 (1994).
[7] J. A. Glazier, T. Segawa, A. Naert, and M. Sano, Evidence against ultrahard thermal turbulence at very

high Rayleigh numbers, Nature (London) 398, 307 (1999).
[8] S. Q. Zhou and K.-Q. Xia, Scaling Properties of the Temperature Field in Convective Turbulence,

Phys. Rev. Lett. 87, 064501 (2001).
[9] A. Belmonte and A. Libchaber, Thermal signature of plumes in turbulent convection: The skewness of

derivative, Phys. Rev. E 53, 4893 (1996).
[10] S. Q. Zhou and K.-Q. Xia, Plume Statistics in Thermal Turbulence: Mixing of an Active Scalar,

Phys. Rev. Lett. 89, 184502 (2002).
[11] E. S. C. Ching, H. Guo, X. D. Shang, P. Tong, and K.-Q. Xia, Extraction of Plumes in Turbulent Thermal

Convection, Phys. Rev. Lett. 93, 124501 (2004).
[12] S. Grossmann and D. Lohse, Fluctuations in turbulent Rayleigh-Bénard convection: The role of plumes,

Phys. Fluids 16, 4462 (2004).
[13] G. Glatzmaier, R. Coe, L. Hongre, and P. Roberts, The role of the Earth’s mantle in controlling the

frequency of geomagnetic reversals, Nature (London) 401, 885 (1999).
[14] M. S. Miesch, The coupling of solar convection and rotation, Solar Phys. 192, 59 (2000).
[15] G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics (Cambridge University Press, Cambridge, 2006),

p. 745.
[16] J.-Q. Zhong, R. J. A. M. Stevens, H. J. H. Clercx, R. Verzicco, D. Lohse, and G. Ahlers, Prandtl-,

Rayleigh-, and Rossby-Number Dependence of Heat Transport in Turbulent Rotating Rayleigh-Bénard
Convection, Phys. Rev. Lett. 102, 044502 (2009).

[17] R. J. A. M. Stevens, H. J. H. Clercx, and D. Lohse, Heat transport and flow structure in rotating Rayleigh-
Bénard convection, Eur. J. Mech. B 40, 41 (2013).

[18] Y. Liu and R. E. Ecke, Heat Transport Scaling in Turbulent Rayleigh-Bénard Convection: Effects of
Rotation and Prandtl Number, Phys. Rev. Lett. 79, 2257 (1997).

[19] R. P. J. Kunnen, H. J. H. Clercx, and B. J. Geurts, Heat flux intensification by vortical flow localization in
rotating convection, Phys. Rev. E 74, 056306 (2006).

[20] R. P. J. Kunnen, H. J. H. Clercx, and B. J. Geurts, Breakdown of large-scale circulation in turbulent
rotating convection, Europhys. Lett. 84, 2008 (2008).

[21] J. E. Hart, S. Kittelman, and D. R. Ohlsen, Mean flow precession and temperature probability density
functions in turbulent rotating convection, Phys. Fluids 14, 955 (2002).

[22] R. P. J. Kunnen, B. J. Geurts, and H. J. H. Clercx, Experimental and numerical investigation of turbulent
convection in a rotating cylinder, J. Fluid Mech. 642, 445 (2010).

[23] Y. Liu and R. E. Ecke, Local temperature measurements in turbulent rotating Rayleigh-Bénard convection,
Phys. Rev. E 84, 016311 (2011).

[24] J.-Q. Zhong, S. Sterl, and H.-M. Li, Dynamics of the large-scale circulation in turbulent Rayleigh-Bénard
convection with modulated rotation, J. Fluid Mech. 778, R4 (2015).

[25] S. Sterl, H.-M. Li, and J.-Q. Zhong, Dynamical and statistical phenomena of circulation and heat transfer
in periodically forced rotating turbulent Rayleigh-Bénard convection, Phys. Rev. Fluids 1, 084401 (2016).

[26] J.-Q. Zhong, H.-M. Li, and X.-Y. Wang, Enhanced azimuthal rotation of the large-scale flow through
stochastic cessations in turbulent rotating convection with large Rossby numbers, Phys. Rev. Fluids 2,
044602 (2017).

023501-10

https://doi.org/10.1063/1.1404847
https://doi.org/10.1063/1.1404847
https://doi.org/10.1063/1.1404847
https://doi.org/10.1063/1.1404847
https://doi.org/10.1063/1.1404847
https://doi.org/10.1146/annurev.fluid.010908.165152
https://doi.org/10.1146/annurev.fluid.010908.165152
https://doi.org/10.1146/annurev.fluid.010908.165152
https://doi.org/10.1146/annurev.fluid.010908.165152
https://doi.org/10.1103/PhysRevA.36.5870
https://doi.org/10.1103/PhysRevA.36.5870
https://doi.org/10.1103/PhysRevA.36.5870
https://doi.org/10.1103/PhysRevA.36.5870
https://doi.org/10.1017/S0022112089001643
https://doi.org/10.1017/S0022112089001643
https://doi.org/10.1017/S0022112089001643
https://doi.org/10.1017/S0022112089001643
https://doi.org/10.1103/PhysRevLett.64.2382
https://doi.org/10.1103/PhysRevLett.64.2382
https://doi.org/10.1103/PhysRevLett.64.2382
https://doi.org/10.1103/PhysRevLett.64.2382
https://doi.org/10.1146/annurev.fl.26.010194.001033
https://doi.org/10.1146/annurev.fl.26.010194.001033
https://doi.org/10.1146/annurev.fl.26.010194.001033
https://doi.org/10.1146/annurev.fl.26.010194.001033
https://doi.org/10.1038/18626
https://doi.org/10.1038/18626
https://doi.org/10.1038/18626
https://doi.org/10.1038/18626
https://doi.org/10.1103/PhysRevLett.87.064501
https://doi.org/10.1103/PhysRevLett.87.064501
https://doi.org/10.1103/PhysRevLett.87.064501
https://doi.org/10.1103/PhysRevLett.87.064501
https://doi.org/10.1103/PhysRevE.53.4893
https://doi.org/10.1103/PhysRevE.53.4893
https://doi.org/10.1103/PhysRevE.53.4893
https://doi.org/10.1103/PhysRevE.53.4893
https://doi.org/10.1103/PhysRevLett.89.184502
https://doi.org/10.1103/PhysRevLett.89.184502
https://doi.org/10.1103/PhysRevLett.89.184502
https://doi.org/10.1103/PhysRevLett.89.184502
https://doi.org/10.1103/PhysRevLett.93.124501
https://doi.org/10.1103/PhysRevLett.93.124501
https://doi.org/10.1103/PhysRevLett.93.124501
https://doi.org/10.1103/PhysRevLett.93.124501
https://doi.org/10.1063/1.1807751
https://doi.org/10.1063/1.1807751
https://doi.org/10.1063/1.1807751
https://doi.org/10.1063/1.1807751
https://doi.org/10.1038/44776
https://doi.org/10.1038/44776
https://doi.org/10.1038/44776
https://doi.org/10.1038/44776
https://doi.org/10.1023/A:1005260527450
https://doi.org/10.1023/A:1005260527450
https://doi.org/10.1023/A:1005260527450
https://doi.org/10.1023/A:1005260527450
https://doi.org/10.1103/PhysRevLett.102.044502
https://doi.org/10.1103/PhysRevLett.102.044502
https://doi.org/10.1103/PhysRevLett.102.044502
https://doi.org/10.1103/PhysRevLett.102.044502
https://doi.org/10.1016/j.euromechflu.2013.01.004
https://doi.org/10.1016/j.euromechflu.2013.01.004
https://doi.org/10.1016/j.euromechflu.2013.01.004
https://doi.org/10.1016/j.euromechflu.2013.01.004
https://doi.org/10.1103/PhysRevLett.79.2257
https://doi.org/10.1103/PhysRevLett.79.2257
https://doi.org/10.1103/PhysRevLett.79.2257
https://doi.org/10.1103/PhysRevLett.79.2257
https://doi.org/10.1103/PhysRevE.74.056306
https://doi.org/10.1103/PhysRevE.74.056306
https://doi.org/10.1103/PhysRevE.74.056306
https://doi.org/10.1103/PhysRevE.74.056306
https://doi.org/10.1209/0295-5075/84/24001
https://doi.org/10.1209/0295-5075/84/24001
https://doi.org/10.1209/0295-5075/84/24001
https://doi.org/10.1209/0295-5075/84/24001
https://doi.org/10.1063/1.1446457
https://doi.org/10.1063/1.1446457
https://doi.org/10.1063/1.1446457
https://doi.org/10.1063/1.1446457
https://doi.org/10.1017/S002211200999190X
https://doi.org/10.1017/S002211200999190X
https://doi.org/10.1017/S002211200999190X
https://doi.org/10.1017/S002211200999190X
https://doi.org/10.1103/PhysRevE.84.016311
https://doi.org/10.1103/PhysRevE.84.016311
https://doi.org/10.1103/PhysRevE.84.016311
https://doi.org/10.1103/PhysRevE.84.016311
https://doi.org/10.1017/jfm.2015.400
https://doi.org/10.1017/jfm.2015.400
https://doi.org/10.1017/jfm.2015.400
https://doi.org/10.1017/jfm.2015.400
https://doi.org/10.1103/PhysRevFluids.1.084401
https://doi.org/10.1103/PhysRevFluids.1.084401
https://doi.org/10.1103/PhysRevFluids.1.084401
https://doi.org/10.1103/PhysRevFluids.1.084401
https://doi.org/10.1103/PhysRevFluids.2.044602
https://doi.org/10.1103/PhysRevFluids.2.044602
https://doi.org/10.1103/PhysRevFluids.2.044602
https://doi.org/10.1103/PhysRevFluids.2.044602


TEMPERATURE FLUCTUATIONS RELEVANT TO THERMAL- …

[27] A. Belmonte, A. Tilgner, and A. Libchaber, Temperature and velocity boundary layers in turbulent
convection, Phys. Rev. E 50, 269 (1994).

[28] C. Sun, Y.-H. Cheung, and K.-Q. Xia, Experimental studies of the viscous boundary layer properties in
turbulent Rayleigh-Bénard convection, J. Fluid Mech. 605, 79 (2008).

[29] Y. Wang, W. Xu, X. He, H. Yik, X. Ping, J. Schumacher, and P. Tong, Boundary layer fluctuations in
turbulent Rayleigh-Bénard convection, J. Fluid Mech. 840, 408 (2018).

[30] R. L. J. Fernandes and R. J. Adrian, Scaling of velocity and temperature fluctuations in turbulent thermal
convection, Exp. Therm. Fluid Sci. 26, 355 (2002).

[31] G. Ahlers, E. Bodenschatz, D. Funfschilling, S. Grossmann, X. He, D. Lohse, R. J. A. M. Stevens, and R.
Verzicco, Logarithmic Temperature Profiles in Turbulent Rayleigh-Bénard Convection, Phys. Rev. Lett.
109, 114501 (2012).

[32] Q. Zhou and K.-Q. Xia, Thermal boundary layer structure in turbulent Rayleigh-Bénard convection in a
rectangular cell, J. Fluid Mech. 721, 199 (2013).

[33] C. H. B. Priestley, Convection from a large horizontal surface, Aust. J. Phys. 7, 176 (1954).
[34] S.-Q. Zhou, Y.-C. Xie, C. Sun, and K.-Q. Xia, Statistical characterization of thermal plumes in turbulent

thermal convection, Phys. Rev. Fluids 1, 054301 (2016).
[35] Q. Zhou, C. Sun, and K.-Q. Xia, Morphological Evolution of Thermal Plumes in Turbulent Rayleigh-

Bénard Convection, Phys. Rev. Lett. 98, 074501 (2007).
[36] J. Bosbach, S. Weiss, and G. Ahlers, Plume Fragmentation by Bulk Interactions in Turbulent Rayleigh-

Bénard Convection, Phys. Rev. Lett. 108, 054501 (2012).
[37] K. R. Helfrich, Thermals with background rotation and stratification, J. Fluid Mech. 259, 265 (1994).
[38] K. Julien, S. Legg, J. Mcwilliams, and J. Werne, Plumes in rotating convection. Part 1. Ensemble statistics

and dynamical balances, J. Fluid Mech. 391, 151 (1999).
[39] H. J. S. Fernando and C. Y. Ching, Effects of background rotation on turbulent line plumes, J. Phys.

Oceanogr. 23, 2125 (1993).
[40] M. G. Wells, in Particle-Laden Flow: From Geophysical to Kolmogorov Scales, edited by B. J. Geurts, H.

Clercx, and W. Uijttewaal (Springer, Berlin, 2007), Vol. 11, p. 331.
[41] C. Cenedese and C. Adduce, Mixing in a density-driven current flowing down a slope in a rotating fluid,

J. Fluid Mech. 604, 369 (2008).
[42] See, for instance, C. Cenedese and C. Adduce, A new parameterization for entrainment in overflows,

J. Phys. Oceanogr. 40, 1835 (2010) and references therein.

023501-11

https://doi.org/10.1103/PhysRevE.50.269
https://doi.org/10.1103/PhysRevE.50.269
https://doi.org/10.1103/PhysRevE.50.269
https://doi.org/10.1103/PhysRevE.50.269
https://doi.org/10.1017/S0022112008001365
https://doi.org/10.1017/S0022112008001365
https://doi.org/10.1017/S0022112008001365
https://doi.org/10.1017/S0022112008001365
https://doi.org/10.1017/jfm.2018.68
https://doi.org/10.1017/jfm.2018.68
https://doi.org/10.1017/jfm.2018.68
https://doi.org/10.1017/jfm.2018.68
https://doi.org/10.1016/S0894-1777(02)00147-4
https://doi.org/10.1016/S0894-1777(02)00147-4
https://doi.org/10.1016/S0894-1777(02)00147-4
https://doi.org/10.1016/S0894-1777(02)00147-4
https://doi.org/10.1103/PhysRevLett.109.114501
https://doi.org/10.1103/PhysRevLett.109.114501
https://doi.org/10.1103/PhysRevLett.109.114501
https://doi.org/10.1103/PhysRevLett.109.114501
https://doi.org/10.1017/jfm.2013.73
https://doi.org/10.1017/jfm.2013.73
https://doi.org/10.1017/jfm.2013.73
https://doi.org/10.1017/jfm.2013.73
https://doi.org/10.1071/PH540176
https://doi.org/10.1071/PH540176
https://doi.org/10.1071/PH540176
https://doi.org/10.1071/PH540176
https://doi.org/10.1103/PhysRevFluids.1.054301
https://doi.org/10.1103/PhysRevFluids.1.054301
https://doi.org/10.1103/PhysRevFluids.1.054301
https://doi.org/10.1103/PhysRevFluids.1.054301
https://doi.org/10.1103/PhysRevLett.98.074501
https://doi.org/10.1103/PhysRevLett.98.074501
https://doi.org/10.1103/PhysRevLett.98.074501
https://doi.org/10.1103/PhysRevLett.98.074501
https://doi.org/10.1103/PhysRevLett.108.054501
https://doi.org/10.1103/PhysRevLett.108.054501
https://doi.org/10.1103/PhysRevLett.108.054501
https://doi.org/10.1103/PhysRevLett.108.054501
https://doi.org/10.1017/S0022112094000121
https://doi.org/10.1017/S0022112094000121
https://doi.org/10.1017/S0022112094000121
https://doi.org/10.1017/S0022112094000121
https://doi.org/10.1017/S0022112099005236
https://doi.org/10.1017/S0022112099005236
https://doi.org/10.1017/S0022112099005236
https://doi.org/10.1017/S0022112099005236
https://doi.org/10.1175/1520-0485(1993)023<2125:EOBROT>2.0.CO;2
https://doi.org/10.1175/1520-0485(1993)023<2125:EOBROT>2.0.CO;2
https://doi.org/10.1175/1520-0485(1993)023<2125:EOBROT>2.0.CO;2
https://doi.org/10.1175/1520-0485(1993)023<2125:EOBROT>2.0.CO;2
https://doi.org/10.1017/S0022112008001237
https://doi.org/10.1017/S0022112008001237
https://doi.org/10.1017/S0022112008001237
https://doi.org/10.1017/S0022112008001237
https://doi.org/10.1175/2010JPO4374.1
https://doi.org/10.1175/2010JPO4374.1
https://doi.org/10.1175/2010JPO4374.1
https://doi.org/10.1175/2010JPO4374.1

