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We study swimming of small spherical particles that regulate fluid flow on their surface
by applying tangential squirming strokes. We derive translational and rotational velocities
for any given stroke which is not restricted by axial symmetry as assumed usually. The
formulation includes inertia of both the fluid and the swimmer, motivated by inertia’s
relevance for large Volvox colonies. We show that inertial contribution to mean speed
comes from dynamic coupling between translation and rotation, which occurs only for
strokes that break axial symmetry. Remarkably, this effect enables overcoming the scallop
theorem on impossibility of propulsion by time-reversible strokes. We study examples of
tangential strokes of an axisymmetric traveling wave and of asymmetric time-reversible
flapping. In the latter case, we find that the inertia-driven mean speed is optimized for
flapping frequency and the swimmer’s size, which fall well within the range of realistic
physical values for Volvox colonies. We conjecture that similarly to Paramecia, large
Volvox could use time-reversible strokes for inertia-driven swimming coupled with their
rotations.
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I. INTRODUCTION

Spherical microswimmers are a unique model of swimming at low Reynolds number which
is theoretically tractable. Its introduction is motivated by ciliated microorganisms [1,2] as well
as flagellated colonies of Volvox algae [3,4]. The interaction of these organisms with the fluid is
described by no-slip boundary conditions on a nearly spherical time-dependent envelope of the tips
of cilia or flagella whose motion is actuated by the swimmer (squirming). This boundary velocity
sets the fluid in motion, which applies propulsion force on the swimmer [1–17]. Due to smallness
of the Reynolds number, the fluid motion can be described by linear, steady or unsteady, Stokes
equations. The linearity and the spherical shape offer the possibility of a detailed solution connecting
microscopic motions of the actuated envelope with the swimmer’s motion as a whole.

Previous treatments mostly neglected inertias of both the fluid and the swimmer and assumed
axially symmetric swimming strokes as in the original formulation [1,2]. This leads to substantial
simplifications in the coupled system of the Navier-Stokes equations (NSEs) governing the flow and
the Newton equations governing the swimmer’s motion. We first consider the neglect of fluid inertia
for which the convective and time-derivative terms of the NSE are dropped. The convective term
in the equations, giving the flow derivative along the streamline, is negligible since the Reynolds
number (defined as the product of the swimmer’s size and velocity divided by the kinematic
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viscosity) is less than 0.1 even for largest Volvox colonies [10]. In contrast, the neglect of the
time-derivative term in the NSE requires careful consideration. If the fluid inertia is negligible,
then this term can be discarded and steady Stokes equations of the flow apply [1,2,18,19]. However,
this neglect is invalid for the largest Volvox colonies of hundreds of microns in size (Volvox comes
in aggregates of different numbers of cells and has a range of sizes) [3,10]. Indeed, the significance
of the inertia of the fluid is determined by the Roshko number Ro = στd , where σ is the frequency
of the periodic stroke and τd is the characteristic time of outward viscous diffusion of momentum
from the sphere (sometimes Ro is called the oscillatory Reynolds number [6,20]). This time is
proportional to the squared radius of the swimmer divided by the kinematic viscosity. Using the
experimentally observed value of σ = 203 rad/s [3], we have Ro ∼ 1 for a colony with a radius
of 100 μm. This would invalidate the neglect of inertia for Volvox since the typical size range is
between 1 and 500 μm. In fact, we demonstrate below that it is plausible that the definition of Ro
must be multiplied by a numerical factor of 1/9. Thus it is reasonable that for colonies smaller than
300 μm we can assume Ro � 1 (we observe that Ro has a fast quadratic dependence on the radius).
For these small colonies the momentum redistributes over the fluid before the swimmer moves the
flagella significantly. The flow is then steady Stokes flow determined by the instantaneous position
and velocity of the flagella. However, for colonies larger than 300 μm where Ro > 1, momentum
diffusion and swimming stroke are coupled nontrivially. This coupling is described by the unsteady
time-derivative term in the NSE whose inclusion is necessary. This term introduces memory where
the propulsion force is determined not only by an instantaneous stroke but also by its past values
[21–24]. Though this sometimes does not influence the time-averaged net propulsion velocity for
periodic strokes, it is relevant for nutrient uptake [17] and reaction to external stimuli [25]. It must
be stressed here that the 300-μm threshold is only an estimate. A detailed comparison between the
theory and the experiment is needed in order to decide which colonies can be considered inertialess
and which must be treated as inertial.

The second of the usually made assumptions is the neglect of a swimmer’s inertia, implying that
the motion occurs at zero force and torque. This is also invalid for large colonies where the timescale
of the viscous drag is comparable to the period of the stroke. In fact, the densities of the swimmer
and of the fluid are very close, so the relevance of fluid and particle inertias is determined by the
same parameter Ro. Finally, the third assumption of the axially symmetric stroke, in the traditional
form without the swirl [10], allows us to use the general solution for axially symmetric flow. This
assumption includes zero rotation, thus removing the characteristic rotation of Volvox that gave it
its name. The rotational velocity was included without destroying the symmetry by introducing an
axisymmetric swirl component [10]. In this framework there is no coupling between translation
and rotation (in sharp contrast with the coupled rotation and translation considered here). Thus,
even though introduction of the axisymmetric swirl helps fit the rotational velocity, it does not help
fit the translational velocity that is independent of the parameters of the swirl. Consequently, the
existing discrepancy between theoretical predictions for the swimming velocity and the data cannot
be resolved by the axisymmetric swirl [10]. An axially symmetric stroke also restricts the motion to
a straight line, which is not always the case [13]. This stroke can be unsuitable for the description
of physical phenomena as in the case of a phototaxis where a complex interaction between rotation
and translation regulates the turning of the colony towards a light source [13,26].

The three assumptions considered above can be invalid, either because Ro ∼ 1 or because of
asymmetry of the strokes. A few previous works relaxed some of the assumptions. Reference
[16] studied the limit case of an inertial heavy (called dense in [16]) swimmer in inertialess
fluid, disregarding the rotation of a tangential squirmer. In [17] the equation of motion for the
translational velocity of an inertial tangential squirmer in inertial flow was developed using the
unsteady reciprocal theorem. However, the equation was solved only for the axially symmetric case
where neither inertia changes the time-averaged velocity and the motion is pure axial translation
without rotation. This results in oscillatory terms that give nonzero transient motion for a maneuver
starting from rest, but no net propulsion in the steady state [6]. On the other hand, the stroke
symmetry assumption was relaxed in [12–15], where inertial effects were not considered.
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In this work we relax all three assumptions above, which are negligible inertias of the fluid and
the swimmer and the axisymmetric swimming strokes. These assumptions do not necessarily hold
in practice. The Roshko number is not small for large colonies where the net force is nonzero and the
stroke can depend on the azimuthal angle as in phototaxis [13,26]. In contrast, we continue using
the assumption of small Reynolds number which is satisfied in practice (finite-Reynolds-number
corrections become relevant for sizes close to 1 mm [27,28]). To make the arising problem tractable
we make a simplifying assumption that the swimming stroke is tangential. This assumption does not
hold for Volvox, however it could be that the discovered qualitative phenomenon has relevance for
motion of the algae. Namely, we demonstrate that the interplay of the fluid and swimmer’s inertia
with a tangential asymmetric stroke gives a different mechanism of swimming. In particular, it is
usually believed that tangential squirmers that maintain a constant spherical shape cannot swim
by a time-reversible stroke; the time-averaged velocity is zero [6,16,17]. However, this conclusion
was made only for an axially symmetric stroke that involves no rotation. We demonstrate that an
asymmetric time-reversible tangential stroke that does involve rotation can generate self-propulsion
via nonlinear rotation-translation coupling. The net swimming velocity considered as a function of
inertia parameter Ro reduces to zero as Ro → 0, in accord with the scallop theorem [18]. As we
show below, the leading-order term at Ro � 1 is proportional to a time-averaged vector product
of instantaneous translational and rotational velocities at Ro = 0. This result is independent of the
details of the stroke. We present a concrete example of a time-reversible stroke with nonzero average
nondimensional propulsion speed at any Ro > 0. The nondimensional speed decays for small and
large values of Ro and reaches a maximum at an intermediate value. This value falls within feasible
physical values of large Volvox colonies. Thus the discovered phenomenon might have relevance
for these algae. For a small swimmer size with negligible inertia, our formulas for translational and
rotational velocity of an inertial spherical tangential squirmer in inertial fluid in terms of an arbitrary
swimming stroke reduce to those of [29] for an inertialess squirmer in inertialess fluid.

We demonstrate that inertia changes the swimming velocity, obtained by neglecting inertia,
directly by producing additive correction and indirectly by changing the rotation velocity. The direct
contribution has a zero time average. Thus the scallop theorem implies that a swimmer who does
not rotate or whose rotation axis is aligned with the translational velocity could not swim by a
time-reversible stroke as was found in [6,16,17] by direct calculation. It must be stressed though
that translation during one period in these cases can be nonzero. The indirect influence through the
rotation can change the net velocity through the nonlinear interplay of the stroke and the spatial
rotation (rotation-translation coupling). This makes the motion quite different from the inertialess
case and enables overcoming the scallop theorem.

In the next section we demonstrate that insight into the motion can be obtained by separating
the flow into the inertialess component due to the swimming stroke and the inertial friction
component. The former describes the motion of an inertialess swimmer in inertial fluid and causes
the corresponding translational and swimming velocities. The frictional component describes that,
due to inertia, the swimmer has finite (frequency-dependent) relaxation times and lags behind the
velocity of the inertialess component.

II. FLOW AS THE SUM OF INERTIALESS SWIMMING AND INERTIAL COMPONENTS

In this section we introduce decomposition of the flow. One component of the flow describes the
result of force- and torque-free swimming of an inertialess swimmer in inertial fluid. This flow is
of separate interest. The other component describes the propulsion force (and torque) that acts to
produce frequency-dependent relaxation of the swimmer’s velocity to the velocity of the inertialess
swimmer.

We consider tangential squirmers that have the constant shape of a sphere with radius a. The
swimming stroke produces in the body-fixed coordinate frame a purely tangential motion of the
spherical surface at velocity vvvb(x, t ). Thus, at time t the velocity of the material point whose
coordinate in the body-fixed frame is x is vvvb(x, t ), where the domain of definition of vvvb is |x| = a and
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x · vvvb(x) = 0. Here, in parallel with assumptions of Volvox modeling [3], we assume that the fluid
does not change the flagella motion and vvvb(x, t ) is a given quantity determined by the biology of the
organism. We stress that vvvb(x, t ) is Eulerian and not a Lagrangian flow field. In the often-used (cf.
[1,10]) Lagrangian description, one would describe the swimming stroke by running coordinates of
material points θ (t ) = θ0 + f1(θ0, φ0, t ) and φ(t ) = φ0 + f2(θ0, φ0, t ), where fi(θ0, φ0, t ) are given
(small) functions characterizing the strokes as displacement fields of material points. Here θ0 and φ0

are initial positions of the point on the sphere as in the usual Lagrangian description of the motion
of the fluid [24]. The velocity vvvb(x, t ) is implicitly given by

vvvb(θ0 + f1, φ0 + f2, t ) = aθ̂∂t f1 + a sin(θ0 + f1)φ̂∂t f2, (1)

where θ̂ and φ̂ are unit vectors in the directions of growth of polar and azimuthal angles, respectively.
Solving the equation for all θ0 and φ0, one can find vvvb(x, t ) in terms of fi (in practice this involves
expansion in the smallness of fi; see, e.g., [29]). Since both vvvb and fi are determined by the stroke
kinematics and not by the interaction with the fluid we consider them as equivalent descriptions
which are assumed as given. Thus we will provide swimming velocities in terms of vvvb(x, t ), which
can then be rewritten in terms of fi by solving Eq. (1).

We now consider the description of the stroke in the rest frame of the fluid. The fluid frame
coordinate of a material point with body-fixed coordinate xb can be written as x0(t ) + R(t )xb. Here
x0(t ) is the position of the swimmer’s center in the frame of the fluid and the rotation matrix R(t )
is orthogonal (the axes of the two frames can be made to coincide by translation of the origin
and rotation). For definiteness we assume that at t = 0 the frames coincide so that x0(0) = 0 and
Ri j (0) = δi j . The equation of the time derivative of the orthogonal matrix R(t ) has the general form
Ṙi j = εikl	kRl j , which defines the angular velocity vector �. Using � and the center velocity vvv =
dx0/dt , we can write the fluid frame velocity of the material point with coordinate x0(t ) + x, where
|x| = a. This is given by the time derivative of x0(t ) + R(t )xb that equals vvv + � × x + Rvvvb(RTx, t ).
This defines the no-slip boundary condition for the fluid flow u(x − x0(t ), t ) that we count from the
center of the swimmer. Using the assumption that the Reynolds number is small, we find that the
flow u(x, t ) obeys unsteady Stokes equations

∂t u = −∇p + ν∇2u, ∇ · u = 0, u(∞) = 0, (2)

where p is the pressure (minus the hydrostatic pressure) divided by the fluid density ρ and ν is the
fluid kinematic viscosity [30]. The boundary conditions are vanishing for the flow at infinity and

u(|x| = a) = vvv + � × x + ub(x, t ), ub(x, t ) = Rvvvb(RTx, t )

on the swimmer’s surface. The surface flow ub(x, t ) in the frame of the fluid is derived from vvvb(x, t )
and is also tangential to the surface.

Force and torque on the swimmer. The flow determines the force F and the torque T applied on
the swimmer by the fluid via surface integrals of the stress tensor σ,

σ

ρ
= −pI + ν[∇u + (∇u)T], F =

∫
S
σ r̂ dS, T =

∫
S

r × σ r̂ dS,

where I is the identity matrix, the superscript T stands for the transpose, dS is an infinitesimal
element of the swimmer’s surface S, and r̂ is the unit vector in the radial direction. We consider the
swimmer as a ball having uniform mass density ρs neglecting small density changes due to local
deformations of the thin surface which represents short cilia or flagella. Thus, the swimmer has
mass ms = 4πρsa3/3 and constant moment of inertia J = 2msa2/5. For simplicity, the effects of
displacement of the center of mass from the sphere’s center (i.e., bottom heaviness; see, e.g., [26])
are not considered here. We have

ms
dvvv

dt
= F + (ms − mF )g, J

d�

dt
= T , (3)
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where g is the gravity acceleration and mF = 4πa3ρ/3 is the fluid mass displaced by the sphere.
We construct the flow which solves Eq. (2) as a superposition u = us + ur of the flow us for an
inertialess swimmer in inertial fluid and the flow ur for a rigid sphere. The former obeys

ρ∂t us = −∇ps + η∇2us, ∇ · us = 0, us(∞) = 0,

us(S) = vvvs(t ) + �s(t ) × x + ub(x, t ), Fs = T s = 0. (4)

The flow ur is the flow around a rigid sphere that moves with prescribed translational and angular
velocities vvv − vvvs(t ) and � − �s, respectively. Thus, it obeys

ρ∂t ur = −∇pr + η∇2ur, ∇ · ur = 0, ur (∞) = 0,

ur (S) = vvv(t ) − vvvs(t ) + [�(t ) − �s(t )] × x. (5)

Since us imposes zero force and torque on the swimmer, F and T are determined by ur . The force
F(t ) is the force [22,24] acting on a rigid sphere that moves with velocity vvv(t ) − vvvs(t ). This is given
by the Fourier representation

F(t ) = −6πηa
∫ ∞

−∞
f (δ − iωτd )[v̂vv(ω) − v̂vvs(ω)]e−iωt dω,

f (λ) = 1 + 3
√

λ + λ, τd = a2

9ν
, (6)

where δ is infinitesimal, so
√

δ − iω = √|ω|/2(1 − iω/|ω|). We designate Fourier transforms in
time by circumflexes. Similarly, the torque T is given by [24]

T (t ) = −
∫ ∞

−∞
T0(ω)[�̂(ω) − �̂

s
(ω)]e−iωt dω,

T0(ω) = 5J

3γ τd

(
1 − 3iωτd

1 + q(ωτd )

)
, q(ω) = 3

√
δ − iω, (7)

where γ = ρs/ρ is the specific gravity. Thus the force and the torque are determined by vvvs and �s,
respectively. This way of solution helps separate the effects caused by the inclusion of the inertia of
the fluid and of the swimmer.

III. INERTIALESS SWIMMING IN INERTIAL FLUID

In this section we derive translational and rotational velocities attained by an inertialess swimmer
in inertial fluid. We circumvent finding us by using the reciprocal theorem [16,17,23,29,30]

v̂vvs ·
∫

S
σ̂k r̂ dS + aεirn	̂

s
r

∫
S
σ̂ k

il r̂l r̂ndS = −
∫

S
ûsσ̂

k r̂ dS, (8)

where σk is the stress tensor of dual flow uk also obeying unsteady Stokes equations. We use
different dual flows for finding the translational and the rotational velocities.

A. Translational velocity

The dual flow, used for finding the translational velocity of the swimmer, is the solution of
unsteady Stokes equations whose Laplace transform obeys on the sphere ûk

i = δik and decays at
infinity. In time domain the flow uk describes the motion of the sphere that starts from rest at
t = 0 and has impulsive velocity uk

i (|x| = a, t ) = δ(t )δik (we do not keep dimensions here since
the corresponding dimensional factors disappear from the final formulas). Thus, at t < 0 there is no
flow and then the velocity jump at t = 0 creates a flow. At t > 0 the sphere is fixed at the origin
and the flow caused by the initial impulse decays. The Fourier transform is readily inferred from the
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Laplace transform provided in [23] (see also [31]). We have, on the surface of the sphere,

σ̂ k
il r̂l

3η
= iaωr̂i r̂k

6ν
− δik (1 + q(ωτd ))

2a
, (9)

with q(ω) defined in Eq. (7). We find, using this flow in Eq. (8), that

v̂vvs =
(

1 + iωτd

f (δ − iωτd )

)
v̂vvs

0, (10)

where vvvs
0 is the velocity of the inertialess swimmer in inertialess fluid [29], which using the

definitions in Eq. (2) reads

vvvs
0(t ) = −

∫
S

us(x, t )
dS

4πa2
= −R

∫
S
vvvb(x, t )

dS

4πa2
. (11)

The inverse Fourier transform of Eq. (10) gives

vvvs(t ) = vvvs
0(t ) − d

dt

∫ t

−∞
K

(
t − t ′

τd

)
vvvs

0(t ′)dt ′, (12)

where we have introduced

K (t ) =
∫

exp(−iωt )

f (δ − iω)

dω

2π
. (13)

We used above that ∫
iωτd v̂vv

s
0 exp(−iωt )

f (δ − iωτd )

dω

2π
= − d

dt

∫
K

(
t − t ′

τd

)
vvvs

0(t ′)dt ′. (14)

We demonstrate that the behavior of K (t ) is quite different from that of the t−1/2 memory kernel of
the force on a rigid sphere [21–24].

B. Memory kernel

We derive the memory kernel K (t ) in Eq. (12). We observe that f −1(z) is analytic in the complex
plane with a branch cut at the negative real semiaxis. Consequently, f −1(δ − iω), considered as
a function of the complex variable ω, is analytic outside the branch cut at (−i∞,−iδ). We find
K (t ) = 0 for t < 0 because the integration contour can be closed in the upper half plane producing
zero. This is necessary for causality; otherwise the instantaneous velocity in Eq. (12) would be
determined by future movements of the swimmer. When t > 0 we find, passing in Eq. (13) to the
integration variable λ = δ − iω, that

K (t ) =
∫

exp(−iωt )

f (δ − iω)

dω

2π
=

∫ δ+i∞

δ−i∞

exp(λt )

f (λ)

dλ

2π i
, (15)

that is, K (t ) is the inverse Laplace transform of 1/ f (λ). This conclusion could be reached directly
using the Laplace transform instead of the Fourier transform in the derivations. However, this change
would have other disadvantages. For use in the next section we consider the slightly more general
inverse Laplace transform

K̃ (t ) =
∫ δ+i∞

δ−i∞

exp(λt )

f̃ (λ)

dλ

2π i
, f̃ (λ) = 1 + 3

√
λ + κλ. (16)

The kernel K (t ) is obtained from K̃ (t ) by setting κ = 1. We use that

1

1 + 3
√

λ + κλ
= 1√

9 − 4κ

[
x2

λ + x2

√
λ

− x1

λ + x1

√
λ

]
,
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where −xi are roots of the quadratic polynomial 1 + 3x + κx2,

x1 = 3 − √
9 − 4κ

2κ
, x2 = 3 + √

9 − 4κ

2κ
. (17)

We use the known integral (cf. similar calculation in [6])∫ ∞

0
exp

( − λt + x2
i t

)
erfc(xi

√
t )dt = 1

λ + xi

√
λ

,

where analytic continuation is used to define the error function erfc(x) for complex x. We conclude
that

K̃ (t ) = 1√
9 − 4κ

[
x2 exp

(
x2

2t
)
erfc(x2

√
t ) − x1 exp

(
x2

1t
)
erfc(x1

√
t )

]
. (18)

This can be represented as the series

K̃ (t ) = 1√
9 − 4κ

[
x2 exp

(
x2

2t
) − x1 exp

(
x2

1t
) + 2x2

1

√
t√

π

∞∑
k=0

(2t )kx2k
1

(2k + 1)!!
− 2x2

2

√
t√

π

∞∑
k=0

(2t )kx2k
2

(2k + 1)!!

]
,

(19)

which is useful at small t . In contrast to the memory kernel for the force on the rigid sphere, which
has square root divergence at zero, K̃ (t ) has a finite value of 1/κ at t = 0. When t is large we can
use

K̃ (t ) = 1

π
√

9 − 4κ

[ ∞∑
k=0

(−1)k�(k + 3/2)

t k+3/2x2(k+1)
1

−
∞∑

k=0

(−1)k�(k + 3/2)

t k+3/2x2(k+1)
2

]
. (20)

The leading-order behavior at large times is given by the k = 0 term. We find, using x−2
1 − x−2

2 =
3
√

9 − 4κ , that K̃ (t ) ∼ 3t−3/2/
√

4π . This behavior is independent of κ because the leading-order
behavior of f̃ (λ) at small λ, given by [1 + 3

√
λ]−1, is independent of κ . Thus it holds also that

K (t ) ∼ 3t−3/2/
√

4π .
In the case of Volvox the density of the swimmer is approximately the density of the fluid, κ ≈ 3,

so
√

9 − 4κ ≈ i
√

3 and xi are complex conjugates of each other. We find

K̃ (t ) = 2Im
[
x2 exp

(
x2

2t
)
erfc(x2

√
t )

]
√

3
, x2 = 3 + i

√
3

6
. (21)

Finally, we find K (t ) by setting κ = 1 above, which gives

x2 = 3 + √
5

2
, x1 = 3 − √

5

2
,

(22)
K (t ) = 1√

5

[
x2 exp

(
x2

2t
)
erfc(x2

√
t ) − x1 exp

(
x2

1t
)
erfc(x1

√
t )

]
,

with the corresponding asymptotic forms and series. We see that, in contrast with the t−1/2 memory
kernel for the force that diverges at zero, K (0) is finite and equals one. Moreover, K (t ) is integrable
due to the K (t ) ∼ 3t−3/2/

√
4π behavior at large times. We have

∫ ∞
0 K (t )dt = 1/ f (λ = 0) = 1.

Thus K (t ) is similar to a δ function smeared over a scale of order one. The integral in Eq. (12)
is determined by |t − t ′| � τd , where τd is defined in Eq. (6). If Ro ≡ στd � 1 then τd is much
smaller than the swimming period 2π/σ and we can set vvvs

0(t ′) ≈ vvvs
0(t ) in the integrand. We find the

leading-order correction in the fluid inertia vvvs = vvvs
0 − τd dvvvs

0/dt . The correction is small, which is
consistent with the negligibility of the time-derivative term in the NSE at Ro � 1.
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C. Rotational velocity

The dual flow which we use in Eq. (8) to find the rotational velocity of the swimmer is the
solution of unsteady Stokes equations whose Laplace transform obeys on the sphere ûk

i = εiknxn

and decays at infinity. This is flow which is created by instantaneous rotation of the sphere at t = 0
with angular velocity given by the unit vector in the kth direction: uk

i (x = a, t ) = εiknxnδ(t ). This
flow can be obtained as a superposition of flows caused by rotation of the sphere at an angular
velocity that depends on time as exp[−iωt], found in [24]. We find [y = |x|/a and q = q(ωτd )]

uk
i (x, t ) = εiknxn

y3

∫
dω

2π
exp[−iωt − q(y − 1)]

1 + qy

1 + q
. (23)

If we use spherical coordinates with a polar axis in the kth direction then velocity has the only the
nonvanishing component uφ = v, where [24]

v = x sin θ

y3

∫
dω

2π
exp[−iωt − q(y − 1)]

1 + qy

1 + q
. (24)

The only nonzero component of σ k
il x̂l on the surface S is [24]

σ k
φr

η
=

(
∂v

∂x
− v

x

)∣∣∣∣
S

= − sin θ

(
3δ(t ) +

∫
q2dω

2π (1 + q)
e−iωt

)
,

σ̂ k
il x̂l

η
= −εikl x̂l

[
3 + q2

1 + q

]
, (25)

where the second of Eqs. (25) is written in the form independent of the reference frame. We find,
using this in Eq. (8), that

�s(t ) = −
∫

S

3x × us(x, t )dS

8πa4
= −R

∫
S

3x × vvvb(x, t )dS

8πa4
. (26)

This formula is identical to the formula for rotational swimming velocity at zero inertia [29], which
has a remarkable consequence, as explained below.

D. Irrelevance of fluid inertia for mean velocity and the scallop theorem

The above formulas imply that the mean swimming velocity of an inertialess swimmer in inertial
fluid does not differ at all from the mean velocity of an inertialess swimmer in inertialess fluid.
Indeed, we observe that the last term in Eq. (12) is the time derivative of a bounded function. Thus
it gives no contribution to the time-averaged velocity. In other words, the time-averaged velocity
obeys

〈vvvs〉 = − 1

4πa2

〈
R

∫
S
vvvb(x, t )dS

〉
, (27)

where the angular brackets stand for the time average [cf. with v̂vvs(ω = 0) = v̂vvs
0(ω = 0) in Eq. (10)].

However, the angular velocity is the same as at zero fluid inertia [see Eq. (26)]. Thus R and surface-
averaged −Rvvvb for inertial fluid do not differ from those for inertialess fluid. The mean swimming
velocity is independent of the fluid inertia as long as vvvb can be considered as given.

We conclude that the fluid inertia adds only oscillatory motions that produce no net propulsion
but can be relevant for nutrient uptake [17]. Correspondingly, the scallop theorem stating that net
propulsion is impossible for time-reversible strokes when neglecting the inertia both of the fluid and
of the swimmer [18] can be extended to include the fluid inertia. This is in agreement with concrete
calculations of [6,16,17].
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IV. INCLUDING INERTIA OF THE SWIMMER

We now also incorporate the inertia of the swimmer. We found vvvs and thus we can write the
force in Eq. (3) which would reproduce the equation of motion derived in [17]. The derivation here
provides different insight into the structure of the flow around the swimmer. Our use of this equation
is completely different from its use in [17] described previously.

A. Translational velocity with inertia

It is simpler to find the solution directly in Fourier space. Performing a Fourier transform of
Eq. (3) and using Eq. (6), we obtain

−iωv̂vv = − f (δ − iωτd )[v̂vv − v̂vvs]

2γ τd
+ 2πδ(ω)(γ − 1)g

γ
, (28)

where we used that initial conditions on velocity in the remote past are forgotten. We obtain the
swimmer’s velocity by solving for v̂vv and introducing κ = 1 + 2γ ,

v̂vv(ω) =
(

1 + iκωτd

f̃ (δ − iωτd )

)
v̂vvs

0 + 4πδ(ω)(γ − 1)gτd , (29)

with f̃ defined in Eq. (16) and where the last term is sedimentation velocity. We find, using similarity
to Eqs. (10)–(12),

vvv(t ) = vvvs
0(t ) − κ

dxi(t )

dt
+ 2(γ − 1)gτd , (30)

where we have introduced the inertial displacement xi(t ),

xi =
∫ t

−∞
K̃

(
t − t ′

τd

)
vvvs

0(t ′)dt ′, (31)

with K̃ from Eq. (16). The propulsion velocity given by Eqs. (30) and (31) reduces to that for the
inertialess swimmer in Eqs. (10)–(12) by taking γ → 0 and κ → 1. This is because K (t ) is K̃ (t ) at
κ = 1. For Volvox γ ≈ 1 (see [3]) and κ ≈ 3, so inertia of the swimmer causes a finite change of
the swimmer’s velocity.

We demonstrated in the preceding section that K̃ (t ) is roughly a δ function smeared over t ∼ 1.
Thus we find, by performing consideration similar to that after Eq. (12),

vvv ≈ vvvs
0 − κτd

dvvvs
0

dt
, Ro � 1. (32)

The inertial displacement xin(t ) is bounded and does not contribute the time-averaged velocity

〈vvv〉 = − 1

4πa2

〈
R

∫
S
vvvb(x, t )dS

〉
+ 2(γ − 1)gτd , (33)

where we used Eqs. (11) and (30). This has the same form as the average velocity of an inertialess
swimmer in inertialess fluid [29]. This also agrees with the average velocity of the inertialess
swimmer in inertialess fluid given by Eq. (27) with sedimentation velocity included. Thus inertia
can result in a difference only by changing the rotation matrix R. This has a useful consequence, as
explained below.

B. Irrelevance of inertia for mean speed at axial symmetry

The case of axially symmetric squirmers is much studied and evokes separate interest. In this
case the vectors of translational and angular velocities are parallel, so the swimmer propagates as a
screw (see [10] for an example). Then R has no effect in Eq. (33) and can be dropped. The classical
swimming theory neglecting inertia applies to the average velocity. We conclude that inertial axially
symmetric tangential squirmers obey the scallop theorem as was observed in [6,16,17].
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C. Metachronal wave

We consider the metachronal wave as an example of axially symmetric swimming. This stroke is
believed to describe Volvox with a good approximation [10]. Similarly to [29], we consider only the
tangential part described by the time t position of the polar angle θ as a function of the position θ0

near which the oscillation occurs as θ (t, θ0) = θ0 + ε cos(kθ0 − σ t ). Our consideration disregards
radial and azimuthal displacements. The parameters that fit experiment are k = 4.7, σ = 203 rad/s,
and ε ≈ 0.06 (see details in [10]). For this stroke there is no rotation and the stroke has only a
θ component vbθ (t, θ = θ (t, θ0)) = a∂tθ (t, θ0) [cf. Eq. (1)]. We have to order ε such that θ0 =
θ (t, θ0) − ε cos (kθ (t, θ0) − σ t ), which on taking the derivative gives

vbθ (t, θ ) ≈ aσε sin[kθ − σ t − kε cos(kθ − σ t )], (34)

which neglects terms of order ε3 and higher. Expanding Eq. (34) in the same order,

vbθ (t, θ, φ) ≈ aσε sin(kθ − σ t ) − akσε2 cos2(kθ − σ t ). (35)

The axial symmetry dictates that vvvs
0(t ) points in the vertical direction. We obtain, designating this

component by vs
0(t ) and using vbz = −vbθ sin θ , that

vs
0(t ) = 1

2

∫ π

0
vbθ sin2 θdθ = 1

4

∫ π

0
vbθ [1 − cos(2θ )]dθ.

We find, using Eq. (35) and the integrals∫ π

0
sin(kθ − σ t ) sin2 θ dθ = 4 sin(πk/2) sin(πk/2 − σ t )

k(4 − k2)
,

∫ π

0
cos2(kθ − σ t ) sin2 θ dθ = π

4
+ sin(πk) cos(πk − 2σ t )

4k(1 − k2)
,

that the swimming velocity neglecting inertia obeys

vs
0(t ) = aσε

(
2 sin(πk/2) sin(πk/2 − σ t )

k(4 − k2)
− πkε

8
− ε sin(πk) cos(πk − 2σ t )

8(1 − k2)

)
, (36)

up to order ε2. The time average is determined by the only term which does not oscillate 〈vs
0(t )〉 =

−πaσkε2/8, reproducing result of [29].
We now consider the inertial corrections. We have, by a Fourier transform of Eq. (36),

v̂s
0

aσε f̃ (δ − iωτd )
= 2iπ sin(πk/2)

k(4 − k2)

(
exp(−iπk/2)δ(ω + σ )

f̃ (δ + iστd )
− exp(iπk/2)δ(ω − σ )

f̃ (δ − iστd )

)

− πε sin(πk)

8(1 − k2)

(
exp(iπk/2)δ(ω − σ )

f̃ (δ − iστd )
+ exp(−iπk/2)δ(ω + σ )

f̃ (δ + iστd )

)
, (37)

where we did not write the δ(ω) term which does not contribute to the correction. We observe that

f̃ (δ ± iστd ) = 1 ± iκ Ro

9
+

√
Ro

2
(1 ± i), (38)

so f̃ (δ + iστd ) and f̃ (δ − iστd ) are complex conjugates. Using Eq. (29) and performing an inverse
Fourier transform of Eq. (37), we find the formula for velocity including inertia of both the fluid and
the swimmer

vvv(t ) = vvvs
0(t ) + 2(γ − 1)gτd − aεκ Ro

d

dt

(
2 sin(πk/2)

k(4 − k2)

× Im

[
exp(iπk/2 − iσ t )

f̃ (δ − iRo)

]
− Re

[
ε sin(πk) exp(iπk/2 − iσ t )

8(1 − k2) f̃ (δ − iRo)

])
, (39)
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where Im and Re stand for the imaginary and real parts, respectively. It can be concluded that inertia
does not change the time-average value of vvv(t ) for this stroke, whereas oscillations of vvv(t ) contain
an inertial correction (cf. [17]).

D. Rotational velocity with inertia

The rotational velocity of an inertial swimmer obeys J�̇ = T . The Fourier transform gives

�̂(ω) = �̂
s
(ω) + iJω�̂

s
(ω)

T0(ω) − iJω
= �̂

s
(ω)

1 − iJωT −1
0 (ω)

, (40)

where we used Eq. (7). This solves for the swimmer’s rotation implicitly with �s from Eq. (26). In
the time domain,

�(t ) = �s(t ) − d

dt

∫ t

−∞
Kr

(
t − t ′

τd

)
�s(t ′)dt ′, (41)

where, using Eq. (7), we have introduced the kernel

Kr (t ) =
∫ ∞

−∞

dω

2π

exp(−iωt )

5{1 − 3iω/[1 + q(ω)]}/3γ − iω
. (42)

We assume that 5/3γ ∼ 1, so this equation gives that the characteristic time of variations of Kr (t )
is O(1). We observe that

∫ ∞
0 Kr (t )dt is finite and given by the Fourier transform at zero frequency,

which is 3γ /5. We conclude that Kr (t ) decays over time of order one. In the limit of small Roshko
number in the leading order we can set �s(t ′) ≈ �s(t ) in the integrand, finding

�(t ) ≈ �s(t ) − 3τs

10

d�s(t )

dt
, Ro � 1, (43)

where τs = 2γ τd is the Stokes time. This formula describes smaller organisms.

E. Inertia changes mean swimming speed via translation-rotation coupling

The inertia of the swimmer, in contrast with the fluid inertia, changes the rotation of the swimmer.
Thus, generally, inertia changes R and the net propulsion velocity. This translational-rotational
coupling can produce qualitative and quantitative changes in the swimming.

The changes can be considered using Eqs. (30) and (41) describing the propagation of an inertial
swimmer in the inertial fluid. Rotation decouples from translation and can be considered separately.
In contrast, translation depends on rotation via the rotation matrix R obeying Ṙi j = εikl	kRl j [see,
e.g., Eq. (33)]. The system of Eqs. (30) and (41) describing the translation-rotation coupling is
nonlocal in time, having memory described by the kernels K̃ (t ) and Kr (t ). It becomes local in the
limit of small inertia Ro � 1 [see Eqs. (32) and (43)]. Another limit where the equations become
local is that of heavy swimmers whose density is much higher than that of the fluid, γ  1, as
explained below.

F. Heavy swimmers

We consider the limit of heavy (called dense in [16]) swimmers whose density is much higher
than the density of the fluid, γ  1. In this limit κ ≈ 2γ → ∞ and we can neglect 3

√
λ in f̃ (λ) =

1 + 3
√

λ + κλ [we observe that we cannot neglect the first term in f̃ (λ) that is relevant at λ � 1/κ].
Thus Eq. (29) becomes

v̂vv(ω) = v̂vvs
0

1 − iωτs
+ 2πδ(ω)gτs, (44)
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where we observed that in this limit κτd is the Stokes time τs = 2γ τd . An inverse Fourier transform
gives

dvvv

dt
= −vvv − vvvs

0

τs
+ g. (45)

This reproduces the equation for heavy spherical swimmers derived in [16]. The limit of small inertia
στs � 1 is found by writing vvv = vvvs

0 − τsv̇vv + gτs and making the first iteration of the right-hand side

vvv ≈ vvvs
0 − τs

dvvvs
0

dt
+ gτs. (46)

This agrees with Eq. (32). Similar consideration holds for the angular velocity. We have, from
Eq. (40),

�̂(ω) = �̂
s
(ω)

1 − (3iωγ τd/5){1 − 3iωτd/[1 + q(ωτd )]}−1
, (47)

where we have used the definition of T0(ω) in Eq. (7). We observe that in the limit of high γ the
characteristic frequency ωc that defines the inverse Fourier transform of �̂(ω) obeys ωcτd ∼ γ −1.
This is obtained by the demand that the prefactor in the denominator is of order one. We find, by
observing that at these frequencies {1 − 3iωτd/[1 + q(ωτd )]}−1 ≈ 1, that

�̂(ω) ≈ �̂
s
(ω)

1 − 3iωτs/10
, (48)

where we have used 2γ τd = τs. Performing an inverse Fourier transform,

d�

dt
= −10(� − �s)

3τs
. (49)

We find, by combining the above system of equations on coupled translational and rotational degrees
of freedom,

τs
dvvv

dt
+ vvv = − 1

4πa2
R

∫
vvvb(x, t )dS,

dRil

dt
= εins	nRsl ,

3τs

10

d�

dt
+ � = − 3

8πa4
R

∫
x × vvvb(x, t )dS. (50)

This system was obtained in [16] from steady Stokes equations. Setting τs = 0 recovers the often-
used formulation of Stone and Samuel [29], where inertia of the fluid and the swimmer is neglected
[29]. In this case the reciprocal theorem holds, showing that if the swimming stroke is time reversible
then no net self-propulsion occurs over the stroke’s period. The limit of small inertia στs � 1 for
rotational velocity is found by writing � = �s − 3τs�̇/10 and making the first iteration of the
right-hand side. This reproduces Eq. (43).

V. TRANSLATIONAL-ROTATIONAL COUPLING AT SMALL INERTIA

In this section we analyze the previously derived equations of motion at small Roshko number.
We demonstrate that the leading-order correction in Ro to the mean swimming velocity is
proportional to the cross product of translational and rotational swimming velocities at Ro = 0. Thus
the swimming velocity is given via the swimming stroke vvvb(x, t ). Our starting point is Eqs. (32)
and (43),

vvv = vvvs
0 − κτd

dvvvs
0

dt
, �(t ) = �s(t ) − 3τs

10

d�s(t )

dt
. (51)
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These velocities depend on inertia directly through the corrections linear in Ro ∝ τd and indirectly
through the rotation matrix [see Eq. (11)]. We use, to study the rotation matrix, that

dRi j

dt
= Rilεl p j	

b
p, �b = RT�(t ), (52)

where we have introduced angular velocity in the body-fixed frame �b, with RT the matrix transpose
of R. This equation can be obtained from Ṙi j = εikl	kRl j using the rotational invariance of the
Levi-Cività tensor, which implies that εt p j = εikl Rit RkpRl j for any orthogonal R. Indeed, this identity
gives Rqtεt p j = εqklRkpRl j , and using this in Ṙi j = εikl RkpRl j	

b
p results in Eq. (52). We find, using

Eqs. (26) and (51), that in linear order in Ro,

�b = −
∫

S

3r × vvvb(r, t )dS

8πa4
+ 3γ τd

5

d

dt

∫
S

3r × vvvb(r, t )dS

8πa4
+ 3γ τd

5
�b ×

(∫
S

3r × vvvb(r, t )dS

8πa4

)
,

(53)

where we have used RT(� × �s) = �b × (RT�s). Iterating this equation (which contains �b on
both sides), we find that in linear order in Ro the last term can be dropped,

�b = −
∫

S

3r × vvvb(r, t )dS

8πa4
+ 3τs

10

d

dt

∫
S

3r × vvvb(r, t )dS

8πa4
. (54)

Thus, �b, in contrast with �, is completely determined by vvvb(x, t ) and is independent of R. This is
why we use it to find R in Eq. (52). We rewrite the equation as

dR
dt

= R
(

W − 3τs

10

dW
dt

)
, (55)

where we have introduced the antisymmetric matrix W such that

Wl j = −εl p j

(∫
S

3r × vvvb(r, t )dS

8πa4

)
p

. (56)

We look for the solution of Eq. (55) to linear order in Ro. The zeroth-order solution R0 obeys
Ṙ0 = R0W . We look for a solution in the form R = (1 + δR)R0, where δR ∝ Ro. We have

dδR
dt

= −3τs

10
R0

dW
dt

RT
0 = −3τs

10

d

dt

[
R0W RT

0

]
, (57)

where we observed that

d

dt

[
R0W RT

0

] = R0
dW
dt

RT
0 , (58)

which is readily verified using antisymmetry W T = −W . We conclude, by integrating Eq. (57) from
0 to t with δR(0) = 0 [implied by Ri j (0) = δi j], that

δR = −3τs

10
R0[W (t ) − W (0)]RT

0 . (59)

We observe that δR is an antisymmetric matrix as it must be by the orthogonality of R. We can
write, using Eq. (56),

δRik = 3τs

10
(R0)il (R0)k jεl p j

(∫
S

3r × [vvvb(r, t ) − vvvb(r, t = 0)]dS

8πa4

)
p

, (60)

which gives, using (R0)r pεrki = (R0)il (R0)k jεl p j , that

δRik = 3τs

10
εikr

[
	ss

r (t ) − 	ss
r (0)

]
. (61)
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We introduced the Stone-Samuel angular velocity of an inertialess swimmer in inertialess fluid

�ss(t ) = −R0

∫
S

3r × vvvb(r, t )dS

8πa4
. (62)

We find the swimmer’s velocity using this rotation matrix from Eqs. (11) and (51),

vvv = vvvss − κτd
dvvvss

dt
+ 3τs

10
vvvss × [�ss(t ) − �ss(0)], (63)

where we have used Eq. (61) and introduced the Stone-Samuel velocity of an inertialess swimmer
in inertialess fluid [29]

vvvss = −R0

∫
S
vvvb(x, t )

dS

4πa2
. (64)

The velocities vvvss and �ss are vvvs
0 and �s in Eqs. (11) and (26) with rotational matrix R obtained

neglecting the inertia. The appearance of �ss(0) is not because of infinite memory but rather because
the rotation matrix that transforms velocities from the body-fixed frame to the fluid frame has a
reference orientation at t = 0. Thus, the leading-order correction to the swimming velocity in inertia
of both the fluid and the swimmer is derived simply from the zeroth-order velocities, obtained
neglecting the inertia. For a time-reversible stroke the scallop theorem [18] guarantees that 〈vvvss〉 = 0
so that the average velocity 〈vvv〉tr of a swimmer with time-reversible stroke obeys

〈vvv〉tr = 3τs

10
〈vvvss × �ss〉 + o(Ro). (65)

The right-hand side is nonzero for an asymmetric stroke, demonstrating the breakdown of the scallop
theorem due to inertia. We stress that this is the leading-order result in Ro, which does not imply
that time-reversible strokes for which vvvss and �ss are parallel cannot swim by inertia. In fact, these
strokes can be relevant for Volvox and nonzero swimming velocity can appear in higher-order terms.

We observe that Eqs. (63) and (65) hold also for heavy swimmers with στs � 1. Thus we
conclude that in this case the scallop theorem breaks down. In contrast, [16] claimed that the scallop
theorem holds also for heavy swimmers with a time-reversible tangential stroke. This is because
they did not consider the rotational-translational coupling for this system.

VI. SWIMMING AT ARBITRARY INERTIA UNDER A TIME-REVERSIBLE STROKE

The observations made in the preceding section persist to higher Ro. We illustrate this by
considering swimming due to the general asymmetric stroke given by

θ (t, θ0, φ0) = θ0 + εy(σ t ) + cεh(φ0)y(σ t ), (66)

where h(φ0) and y(σ t ) are some functions, c is a constant, and ε represents the small amplitude of
this type of cilia motion. Below the results of general calculations will be evaluated numerically for
h(φ0) = cos(φ0) and y(σ t ) = cos(σ t ), where the stroke becomes

θ (t, θ0, φ0) = θ0 + ε cos(σ t ) + cε cos(φ0) cos(σ t ). (67)

Importantly, the last term induces asymmetry that causes oscillatory rotation in the ŷ direction,
which in turn gives nonzero net displacement. Qualitatively, equal strength time-reversible rowers
are located along each longitude and the strength of the rowers depends on the azimuthal angle φ

(see Fig. 1).
We demonstrate below that the results obtained for any asymmetry function h(φ0) do not differ

from those for h(φ0) = cos φ0. In contrast, the use of different y(t ) can give quantitatively (but
not qualitatively) different answers. We consider the nongravitational component of velocity and
include gravity later.
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z

x y

FIG. 1. Illustration of the asymmetric stroke in Eq. (67) on a sphere. The arrows denote oscillation
amplitudes of the tangential velocity distribution which are directed along longitudes and vary with φ along
latitudes. For c = 0, the swimmer only oscillates in pure translation along the symmetry axis z. For c �= 0
there is an additional oscillatory rotation about the y axis due to asymmetry and the inertial rotation-translation
coupling generates nonzero net translation along the x axis.

The asymmetry function h(φ0) describes how different the motion of cilia at different azimuthal
angles is. It is a periodic function with period 2π and zero average whose Fourier series is

h(φ0) =
∞∑

n=1

[an cos(nφ0) + bn sin(nφ0)]. (68)

We define constant c in Eq. (66) so that a2
1 + b2

1 = 1. We assume that the modulation is of order
one, so c is also of order one. The function y characterizes a periodic swimming stroke and has the
Fourier series representation

y(σ t ) =
∞∑

n=1

[cn cos(nσ t ) + dn sin(nσ t )], (69)

so σ is the swimming stroke frequency. For motion given by Eq. (66) the swimming stroke vvvb has
only a θ component given by vbθ (θ, φ) = aεσ [1 + h(φ)c]y′(σ t ). Thus,

vbz = −aεσ [1 + h(φ)c]y′(σ t ) sin θ,

vbx = aεσ [1 + h(φ)c]y′(σ t ) cos φ cos θ,

vby = aεσ [1 + h(φ)c]y′(σ t ) sin φ cos θ. (70)

It is then found that

vvvs ≡ −
∫

S
vvvb(x, t )

dS

4πa2
= π

4
aεσy′(σ t )ẑ,

p̂ = a1ŷ − b1x̂,

�s ≡ −
∫

S

3r × vvvb(r, t )dS

8πa4
= −3cεσy′(σ t )

4
p̂,

(71)
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where a1 and b1 are defined in Eq. (68). We observe that p̂ is a unit vector aligned with the constant
rotation axis in the x-y plane. Using the reference frame rotated in the plane so that the p̂ has only a
y component, we find

vvvs = π

4
aεσy′(σ t )ẑ, �s = −3cεσy′(σ t )

4
ŷ, (72)

which is identical to what we would obtain using h(φ0) = cos(φ0) in Eq. (66).
We start from considering the case of Ro � 1 where Eq. (65) holds. We observe that

vvvss × �ss = R0(vvvs × �s) = 3πacε2σ 2[y′(σ t )]2

16
R0x̂. (73)

In the leading order in ε the matrix R0 is a unit matrix since 	s ∝ ε. We find, from Eq. (65),

〈vvv〉tr = 9πacε2σ 2γ τd

80
〈[y′(σ t )]2〉x̂. (74)

This gives, for the stroke given by Eq. (67) with y(σ t ) = cos(σ t ), that

〈vvv〉tr = πacε2σγα2

80
x̂, (75)

where we have defined α2 = 9στd/2. Returning to the case of arbitrary Ro, we have, from Eq. (40),
that

�̂(ω) = (R�s)(ω)

1 − iJωT −1
0 (ω)

= −3cεσ

4

[y′(σ t )Rŷ](ω)

1 − iJωT −1
0 (ω)

, (76)

where in this formula we designate the Fourier transform of some function q(t ) by (q)(ω). We
observe that since the rotation is around the y axis Rŷ = ŷ. We find

�̂(ω) = 3iπcεωŷ
4

∞∑
n=1

(
cn[δ(ω + nσ ) + δ(ω − nσ )]

1 − iJωT −1
0 (ω)

− idn[δ(ω + nσ ) − δ(ω − nσ )]

1 − iJωT −1
0 (ω)

)
, (77)

where we have used Eq. (69). The inverse Fourier transform gives

�(t ) = 3cεσ ŷ
4

∞∑
n=1

[
ncnIm

(
exp(inσ t )

1 + iJnσT −1
0 (−nσ )

)
− ndnRe

(
exp(inσ t )

1 + iJnσT −1
0 (−nσ )

)]
, (78)

where we have used T0(−ω) = T ∗
0 (−ω). Introducing the rotation angle ψ (t ) = ∫ t

0 	(t ′)dt ′, we find

ψ (t ) = 3cε

4

∞∑
n=1

[
cnRe

(
1 − exp(inσ t )

1 + iJnσT −1
0 (−nσ )

)
+ dnIm

(
1 − exp(inσ t )

1 + iJnσT −1
0 (−nσ )

)]
. (79)

We have that, up to quadratic order in ε,

R(t )vvvs(t ) = π

4
aεσy′(σ t )ψ (t )x̂ + O(ε3). (80)

We find for the time-average velocity, using that it equals the time average of R(t )vvvs(t ) giving
〈vvv〉 = πaεσ 〈y′(σ t )ψ (t )〉x̂/4, that

〈vvv〉 = −3πcaε2σ x̂
16

∞∑
n=1

(
cnRe

〈
exp(inσ t )y′(σ t )

1 + iJnσT −1
0 (−nσ )

〉
+ dnIm

〈
exp(inσ t )y′(σ t )

1 + iJnσT −1
0 (−nσ )

〉)
.
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We find, performing the time averaging,

〈vvv〉 = 3πcaε2σ x̂
32

∞∑
n=1

Re

(
i
(
c2

n + d2
n

)
1 + iJnσT −1

0 (−nσ )

)
. (81)

We observe that

Re

(
i

1 + iJnσT −1
0 (−nσ )

)
= Re

[(
T0(−nσ )

Jnσ
+ i

)−1
]
.

We have, from Eq. (7), that

T0(−nσ )

Jnσ
= 15

2γα2
n

+ 5i

γ (1 + αn + iαn)
, (82)

where we introduced αn = 3
√

n Ro/2. We find

〈vvv〉 = U0aσ x̂ + 2(γ − 1)gτd ,

U0 = 3πcε2

32

∞∑
n=1

(
c2

n + d2
n

)
Re

[(
15

2γα2
n

+ i + 5i

γ (1 + αn + iαn)

)−1
]
, (83)

where we introduced the velocity U0 that determines displacement in body sizes per stroke and
included the sedimentation velocity due to gravity. The corresponding formula for the case of
Eq. (67) is obtained by setting all cn and dn to zero except for c1 = 1, which gives

U = 3πcε2

32
Re

[(
15

2γα2
+ i + 5i

γ (1 + α + iα)

)−1
]
, (84)

with α = 3
√

Ro/2 defined after Eq. (75). This formula reproduces Eq. (75) in the small-Roshko-
number limit. We study U as a function of the free parameters of the swimming stroke γ , σ , and a.
Writing Eq. (84) explicitly as a real-valued function gives

U =
∣∣∣∣ 15

2γα2
+ 5α

γ (1 + 2α + 2α2)
+ i + 5i(1 + α)

γ (1 + 2α + 2α2)

∣∣∣∣
−2 3πcε2

32

(
15

2γα2
+ 5α

γ (1 + 2α + 2α2)

)
.

We find that dimensionless velocity factorizes as

U = 3πcε2

32
Ũ (γ , α), (85)

where the dimensionless function Ũ of two dimensionless numbers γ and α is

Ũ = γ (1 + 2α + 2α2)[15(1 + 1/α + 1/2α2) + 5α]/D, (86)

with the denominator D,

D = [15(1 + 1/α + 1/2α2) + 5α]2 + [γ (1 + 2α + 2α2) + 5(1 + α)]2. (87)

Figure 2 shows a log-log plot of U as a function of Roshko number Ro for γ = 1, where
sedimentation velocity vanishes. Interestingly, the speed U vanishes at the limits Ro → {0,∞} and
attains a maximum at an intermediate value of Ro ≈ 2.8 (vanishing at Ro → 0 is due to the scallop
theorem [18] and at Ro → ∞ due to large mass). This can be interpreted either as an optimal
flapping frequency σ or as an optimal body radius a for a fixed frequency. Remarkably, setting
physical values of σ = 200 rad/s and ν = 10−6 m2/s for Volvox in water gives an optimal radius of
a ≈ 355 μm, which falls well within the size range of large Volvox colonies [3].

We also observe that the dependence on the density of the swimmer has the form U (γ ) =
γ /(b2γ

2 + b1γ + b0), where bi are functions of Ro only. The corresponding definitions of bi can
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FIG. 2. A log-log plot of nondimensional speed U as a function of Roshko number Ro. The maximum is
reached at Ro ≈ 2.8.

be readily obtained from Eq. (86). Elementary calculus of U ′(γ ) = 0 gives that U , considered as a
function of the density of the swimmer, has a maximum at an optimal density ratio of

γ ∗ = 5
√

(3/2α2 + 3/α + 3 + α)2 + (1 + α)2

1 + 2α + 2α2
. (88)

While for physical values of Volvox the optimal value is γ ∼ 10, this value results in a high
sedimentation velocity in Eq. (33), which can hardly be overcome by the strokes. Therefore,
Volvox typically tend to a density ratio of nearly neutral buoyancy (γ = 1.003; cf. [3]) for which
sedimentation is nonzero yet small and the above optimum has fewer implications.

We consider Eq. (84) at size in the range 100–500 μm that is typical for Volvox and at fixed σ (the
period of flagella motion depends weakly on the size). We find that the dimensionless swimming
velocity depends on the dimensionless parameters of the stroke as ε2 times an order one constant
c times a numerical factor. This type of parametric dependence is quite universal. For instance,
for the stroke θ = θ0 + ε cos(nθ0 − ωt ) considered in [29] we have U ∝ nε2. The same stroke
combined with small radial deformations is considered to model Volvox (see, e.g., [10]). The radial
deformations do not cause a strong change in the parametric dependence: We have U ∝ ε2 with the
proportionality coefficient depending on n and the ratio of amplitudes of angular and radial motions.
We conclude that the flapping stroke prescribed by Eq. (66) generates a swimming velocity that is
quite similar to that for irreversible strokes. This is of course because inertia is of order one Ro ∼ 1,
so the scallop theorem’s breakdown is of order one. Since the radial displacements would probably
not destroy the phenomenon, this way of self-propulsion could be used by Volvox to reach velocities
similar to those achieved by irreversible strokes. This way of swimming, if realized, could be done
during turns toward or away from external stimuli such as light in phototaxis [13,26]. It might also
occur in emergency cell swimming similar to the escape of Paramecia from a heat source where
a time-reversible stroke was observed [25,32]. Whether this type of swimming is really used by
Volvox or other microswimmers for the actual motion is to be decided by future observations from
experimental measurements.
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VII. SUMMARY AND DISCUSSION

We have studied the motion of inertial squirmers using the unsteady Stokes equation. Using
the reciprocal theorem, we derived the swimmer’s translation and rotation under any given stroke
of tangential deformation. Our analysis extends the well-known work [29] of Stone and Samuel
from the inertialess to the inertial case. It also generalizes previous works on inertial squirmers
[17] which considered only axisymmetric strokes where rotation is either zero or decoupled from
translation [10]. As a consequence, we showed that an asymmetric time-reversible stroke can lead
to net propulsion through dynamic coupling between rotation and translation. For small inertia this
coupling is described by the vector product of inertialess translational and rotational velocities.
If the product has a nonzero time average, then the net propulsion velocity is finite even for a
time-reversible stroke. For a model of the asymmetric stroke, the normalized swimming speed is
maximized for intermediate values of an O(1) Roshko number which falls well within the realistic
range of large Volvox colonies. For Ro → 0, our results reduce to those of the inertialess swimmer
in [29]. For Ro → ∞, U decays as 1/

√
Ro. We conjecture that swimming optimization at Ro ∼ 1

can be one of the reasons for the cutoff in size of Volvox colonies at a ≈ 500 μm [3].
We now briefly discuss some limitations of our work and suggest possible directions for future

extension. Our current work is limited to tangential strokes, whereas Volvox strokes involve also
a radial component, which must be included in future extensions of the analysis for a realistic
description. For axisymmetric strokes, time-reversible deformation with nonzero radial component
can lead to net propulsion of inertial squirmers [6,16]. Nevertheless, inclusion of the radial
stroke seemingly would not destroy the asymmetric swimming mechanism displayed here. Indeed,
considering surface deformations as a sum of radial and tangential displacements, we would find
the sum of the corresponding contributions also in the swimming velocity. The velocity would
include also the terms due to the coupling of radial and tangential deformations. There seems to be
no reason why the terms involving radial displacements would cancel the terms due to tangential
displacements, destroying the effect described here. Of course only the complete calculation
can fully prove this point, which is left as an open challenge. Also left for future work is the
comparison of the two mechanisms of swimming (our mechanism and axisymmetric time-reversible
deformation with nonzero radial component) using a full solution of the flow in the vicinity of
the deforming boundary for general strokes. The general solution will also enable calculation of
mechanical energy dissipation, which will give another criterion for stroke optimization.

We did not consider here the effects of bottom heaviness (center-of-mass displacement from the
sphere’s center). This could produce coupling between rotation, caused by the gravitational torque,
and inertial translation similar to that considered in this work. The study of this coupling is of
interest and left for future work. Finally, a longer-term goal is to use these improvements to the
theoretical model in order to match it with experimental measurements of swimming Volvox. This
will help in quantifying the true contribution of inertial effects to Volvox motion.

Large organisms often use time-reversible strokes for swimming while small ones do not,
since they obey the scallop theorem [18]. When inertia becomes not completely negligible the
time-reversible stroke becomes a possible way of swimming and it can be used as in the case of
Paramecia [25,32]. It seems of interest to study how the efficiency of the time-reversible stroke
improves with growing inertia of the organisms and for which the time-reversible stroke becomes
advantageous. Our work provides a step in this direction of study.

Our main discovery in this work is that the spherical squirmer model contains strokes in which
swimming can occur by inertial coupling of rotation and translation. In this context the following
question arises: Is the spherical squirmer model, possibly with inclusion of the most general small
deformations of the shape and the effects of inertia, able to shed light on the reasons for the rotation
of Volvox in nature? Currently, the only attempt at incorporation of the Volvox rotation in the theory
is done with the help of an axisymmetric (independent of the azimuthal angle) swirl [10]. In this
frame rotation and translation are uncoupled, leaving the reasons for rotation unclear. The authors
of [10] proposed that the modeling of Volvox interaction with the fluid by a continuous boundary
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whose shape is fully controlled by the swimmer can be invalid. In fact, our work demonstrates that
not all the phenomena that can be captured by the model are exhausted. The possibility of coupling
rotation to translation can give new reasons for rotating (as it did in the study of phototaxis [13,26]).
Unfortunately, the stroke introduced in this work is currently detached from the data and more fully
time-resolved measurements of strokes of real Volvox are needed for progress. The challenge of a
proper theoretical understanding of Volvox rotation remains open and requires further work.
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