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Using volumetric velocity data from a turbulent laboratory water flow and numerical
simulations of homogeneous, isotropic turbulence, we present a direct experimental and
numerical assessment of Kolmogorov’s first refined similarity hypothesis based on three-
dimensional measurements of the local energy dissipation rate εr measured at dissipative
scales r. We focus on the properties of the stochastic variables VL = �u(r)/(rεr )1/3 and
VT = �v(r)/(rεr )1/3, where �u(r) and �v(r) are longitudinal and transverse velocity
increments. Over one order of magnitude of scales r within the dissipative range, the dis-
tributions of VL and VT from both experiment and simulation collapse when parametrized
by a suitably defined local Reynolds number, providing conclusive experimental evidence
in support of the first refined similarity hypothesis and its universality.
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Obtaining a universal statistical description of hydrodynamic turbulence has been a widely
pursued yet elusive objective within fluid mechanics. Kolmogorov’s refined similarity hypotheses
represent one such seminal attempt [1], which underpins the modern understanding of intermittency
in small-scale turbulence [2]. This phenomenon directly influences, among others, the efficiency
of rain formation in clouds [3], the production of pollutants in combustion processes [4], and
the propagation of sound and light through the atmosphere [5,6]. In this Rapid Communication,
we overcome previous technical limitations to provide a quantitative and direct experimental
assessment of the validity of the first refined similarity hypothesis with back-to-back comparisons
against numerical simulations to examine their universality.

The similarity hypotheses describe turbulent flows in terms of velocity differences, or increments,
�u = u(x, t ) − u(x′, t ) between simultaneously measured pairs of points in the flow, where the
spatial separation r = x − x′ is much smaller than the energy injection scale L. In their simplest
formulation, known as K41 [7], the distribution of velocity increments is prescribed by the scale
r = |r|, the average rate of kinetic energy dissipation 〈ε〉, and the fluid kinematic viscosity ν.
Laboratory and numerical experiments now widely confirm departures from the K41 scaling [2,8,9].
The essence of this deviation was first articulated by Landau [10], who remarked that while the
increment distribution may plausibly uniquely depend upon a temporally localized average of the
energy dissipation rate ε(x, t ) = ν�i, j (∂ui/∂x j + ∂u j/∂xi )2/2, the distribution law of �u must
depend upon the fluctuation of this local average over time, which may in turn depend upon the
whims and fancies of the largest-scale motions that feed the turbulence its energy.
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Landau’s criticisms are accounted for in the refined similarity scaling [1,11], known as K62, by
substituting 〈ε〉 for a local dissipation rate εr ,

εr (X , r, t ) = 6

πr3

�
|y|�r/2

dy ε(X + y, t ), (1)

which is a spatial average of the instantaneous energy dissipation field over a sphere whose poles are
defined by x and x′, centered at X = (x + x′)/2 with diameter r [12]. This permits a characteristic
velocity scale Ur ≡ (rεr )1/3 to be constructed local to the position, scale, and time defined by
(X , r, t ). The two postulates of refined similarity [1], known as K62, can then be formulated as
follows for some randomly oriented r such that r � L [13,14]: (i) The distribution of V = �u/Ur

depends only upon the local Reynolds number Rer = Urr/ν and (ii) is independent of Rer when
Rer � 1.

Fifty-six years hence, the experimental evidence for K62 is far from conclusive and has focused
exclusively on the second postulate applied to a single component of V parallel to r [13,15–
18]. Early reports [13,15,16] offered tentative support for the second postulate. However, closer
inspection has revealed that the available experimental data are inconsistent with the implications
of combining the second K62 postulate with three plausible models for the distribution of εr

[18]. The discrepancy lies in the use of two simplifications used to obtain εr experimentally,
wherein volume averaging is replaced by one-dimensional (1D) line averaging and a 1D surrogate
ε′ = 15ν(∂u1/∂x1)2 is substituted for ε. The use of the surrogate ε′ severely distorts the available
experimental evidence, since its use weakens the dependence between �u and (rεr )1/3 [19] and the
dependence all but disappears when other plausible surrogates for ε are used [17,20]. One or both of
these simplifications have also been employed in numerical studies on the K62 postulates [19–22].
Two notable exceptions are Refs. [14,23]. These have provided the first evidence for K62 scaling
obtained by direct numerical simulation (DNS) of the Navier-Stokes equations using 3D averages
and argue that previous numerical evidence disfavoring the K62 postulates [22] stems from the
inappropriate use of 1D averaging. The question therefore arises whether the same distribution of
V found in numerical experiments can also be found in nature, which invariably lacks the statistical
symmetries of such simulations that may influence both the distribution of V and its scaling [14].

In the following, we address the deficiencies of previous experiments by directly examining the
first K62 postulate without resorting to surrogates. This is achieved using a recently developed
technique [24] to make volumetric velocity measurements capable of directly measuring εr in a
volume large enough to test the first K62 postulate across a decade of scales. We complement these
data with back-to-back comparisons against direct numerical simulations of homogeneous, isotropic
turbulence [25] to test the universality of the statistics of V .

We measured the turbulence in a 1 cm3 measurement volume near the mean-field stagnation
point of a von Kármán swirling water flow [26,27] using scanning particle image velocimetry (PIV)
[24]. This volume is small in comparison to the characteristic size of the energy containing motions
L = u′3/〈ε〉 ≈ 77 mm, where u′2 = 〈u′

iu
′
i〉/3 is the mean-square velocity fluctuation. The Taylor

microscale Reynolds number was Rλ ≈ 200. The working fluid, de-ionized water, was seeded with
6-μm-diameter polymethyl methacrylate (PMMA) microspheres with specific gravity 1.22, which
are 35 times smaller than the Kolmogorov length scale η = (ν3/〈ε〉)1/4 ≈ 210 μm and act as passive
flow tracers. The flow was illuminated with a 4.7η-thick laser light sheet from a 90-W, pulsed,
Nd:YAG (yttrium aluminium garnet) laser, which was rapidly scanned across the measurement
volume 250 times per second using a galvanometer mirror scanner. A pair of Phantom v640
high-speed cameras recorded the forward-scattered light at ±45◦ to the sheet at 15 kHz with a
resolution of 512 × 512 pixels. Each was equipped with 200-mm focal length macrolenses and 2×
teleconverters, providing 1 : 2 optical magnification and a spatial resolution of 20 μm per pixel.
For each sample, we stored five scans with 54 consecutive images each, corresponding to a spacing
between parallel laser sheets of 1.3η.
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The distribution of tracers was tomographically reconstructed in a discretized volume of 521 ×
513 × 515 voxels using the method described in Ref. [24]. The scanning method enabled us to make
reconstructions with a high seeding concentration of around 1 particle per (1.4η)3. Reconstructions
from sequential scans were cross correlated with a multipass PIV algorithm described in Ref. [24]
with an interrogation window size of 3.2η and corrections applied to account for the finite
acquisition time. This yielded volumetric measurements of the velocity field in a (42η)3 volume
on a regular grid with spacing 0.8η, from which we obtained the full velocity gradient tensor and
hence the dissipation field using a least-squares finite difference stencil [28]. We gathered samples
at 4.5-s intervals during the continuous operation of the experimental facility for 11 days. The water
temperature was maintained at 21.2 ± 0.5 ◦C by a heat exchanger, the seeding concentration was
maintained at 24-h intervals, and the scanning PIV calibration accuracy was maintained using the
method in Ref. [29]. This yielded 2 × 105 statistically independent volumetric snapshots of the
velocity and dissipation fields.

We complement our experimental data set with statistics obtained from publicly available
DNS of forced, homogeneous isotropic turbulence lasting 66 large eddy turnover times [25].
The pseudospectral simulation solved the incompressible Navier-Stokes equations on a grid of
10243 collocation points in a triply periodic domain with a fixed energy injection rate forcing
and maximum resolvable wave number kmaxη = 2. While the Taylor microscale Reynolds number
Rλ ≈ 315 has been surpassed by other works, the long duration of this simulation allowed us to
gather well-converged statistics. Velocity gradients were evaluated spectrally to obtain ε. The local
dissipation rate εr (1) was obtained using the spectral method in Ref. [30]. Following Ref. [23],
triplets of longitudinal �u(X , r, t ) = �u · r̂ and transverse �v(X , r, t ) = �u · (e j × r̂) velocity
increments were evaluated for r̂ oriented in each of the three principal grid directions ei (i 
= j) over
separations r/η of 3.0, 5.9, 8.9, 11.8, 17.8, 23.7, and 32.6, corresponding to logarithmically spaced,
even multiples of the grid spacing. Statistics were evaluated for each grid point in 66 snapshots of
the flow field spaced evenly in time over the simulated time interval.

In contrast to the numerical simulation data, the data from our von Kármán mixing tank exhibit
a statistical axisymmetry aligned with the axis of the counter-rotating disks [31–33]. We therefore
adopt a careful definition of our statistical ensemble of �u(X , r, t ), �v(X , r, t ), and εr (X , r, t ) in
order to recover the isotropic scaling behavior. For a single point X near the mean-flow stagnation
point, we evaluate the longitudinal and transverse velocity increments over 2940 orientations of
the separation vector r uniformly spaced over the surface of a sphere of diameter r. Numerically,
this is achieved using a cubic spline interpolation of the velocity and dissipation field at scales r/η
chosen from the geometric series 1.5, 2.1, . . . , 36.2. Statistics are then gathered over each of the
2 × 105 realizations of the flow. This angle averaging of statistics is directly related to the SO(3)
decomposition [34,35], which enables the recovery of isotropic scaling properties in flows with
statistical anisotropies [36,37].

To test the first K62 postulate, we consider the conditional expectations of the form

〈r|�u|/ν|Rer〉 = 〈|VL||Rer〉Rer, (2)

〈r|�v|/ν|Rer〉 = 〈|VT ||Rer〉Rer . (3)

Under the first K62 postulate, these conditional averages should only depend upon Rer .
Figure 1(a) shows the conditional average (2) of the magnitude of the longitudinal velocity

increment given the local Reynolds number based on Ur . At comparable scales r/η, the experimental
and numerical data are in close, quantitative agreement. For each curve with fixed r and ν, we are
effectively examining the conditional expectation of |�u| for different local characteristic velocity
scales Ur . At small Rer the data are in close agreement with the scaling |�u|r ∼ Re3/2

r , which
is expected from a Taylor series expansion at small r [19]. At larger Rer , the scaling approaches
|�u|r ∼ Rer , which is expected from the second K62 postulate. If the first postulate holds exactly,
given that r � L, we should expect that (2) only depends on Rer . Instead, we notice that a systematic
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FIG. 1. Scaling of (a) longitudinal and (b) transverse velocity increment magnitude, for fixed scale r/η,
given the local Reynolds number Rer . Symbols , , , , , , , , , show experimental data at
ten scales r logarithmically spaced between 1.5η and 36.2η. Solid lines show data from DNS at comparable
scales. Inset: Conditional average magnitudes of 〈|VL||Rer〉 and 〈|VT ||Rer〉. (a) Longitudinal velocity increment.
(b) Transverse velocity increment.

dependence upon the scale r is retained, which becomes less significant as the local Reynolds
number is increased.

In contrast, Fig. 1(b) shows the equivalent conditional average (3) for the transverse velocity
increments. Again, there is excellent agreement between numerics and experiment. Good collapse
across scale r is observed for Rer � 10. At smaller Rer , the collapse across the scale is less
compelling. This may be anticipated from a consideration of the limiting behavior of VT at small
r. Based on a Taylor series expansion of �v with orientation averaging, we obtain 〈V 2

T |Rer〉 =
Rer/20 + Rer〈
/ε|Rer〉/12, where 
 is the enstrophy 
 = ν(∇ × u)2. It follows that in the limit
of r → 0, 〈
|ε〉 must scale linearly with ε for 〈V 2

T |Rer〉 to depend only upon Rer . Such a linear
scaling has been shown to hold in relatively active dissipative regions ε > 〈ε〉 of homogeneous
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FIG. 2. Conditional distribution of dimensionless longitudinal increments VL (left panels) and transverse
increments VT (right panels) at different scales r/η given a fixed local Reynolds number. In each pair of
panels, the local Reynolds number, number of experimental curves, and minimum and maximum scales r/η
are respectively (a), (b) 14.6, 5, 4.3, and 17.8, (c), (d) 38.1, 4, 8.8, and 25.4, and (e), (f) 99.5, 3, 17.8, and
36.2. The local Reynolds number at each scale is matched to within 5% of the nominal value. Lines show (- -)
experimental and (—) DNS data. Symbols and color denote scale r/η. Markers are as in Fig. 1.

isotropic turbulence, but breaks down for ε � 〈ε〉 [38]. The discrepancy may be resolved as the
Taylor microscale Reynolds number is increased [39].

As a detailed, direct test of the first postulate, Fig. 2 shows the conditional distribution of VL

and VT given the local Reynolds number over different spatial scales r. For both longitudinal
and transverse increments, we observe good, quantitative agreement between experimental and
numerical data at comparable scales r/η and matched local Reynolds numbers. We first consider
the longitudinal velocity increment. The left panels of Fig. 2 demonstrate that the distribution of
VL largely collapses across scales when conditioned upon the local Reynolds number. The collapse
improves as the local Reynolds number is made larger. The scale dependence of the conditional
distribution of VL appears to be stronger in our data than the numerical simulation results of
Iyer et al. [23]. This may be due to the smaller scale separation r/L achieved in the present
experimental study. We offer an additional remark that, when Ur is instead based on local averages
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of the pseudodissipation φ = νAi jAi j , an improved collapse is observed for the longitudinal velocity
increment.

The right panels of Fig. 2 show the equivalent conditional distribution for the transverse velocity
increment. For fixed Rer , the transverse increments show an improved collapse across the scale in
comparison to their longitudinal counterparts. This confirms the approximate validity of the first
refined similarity hypothesis for transverse velocity increments.

The application of scanning PIV has allowed us to directly examine the first K62 postulate
in a laboratory flow using three-dimensional local averages of the dissipation, thereby resolving
the surrogacy issue which has confounded previous experimental investigations. We have comple-
mented our experimental analysis with back-to-back comparisons against high-resolution DNS of
homogeneous isotropic turbulence. We observe that the distributions of VL and VT and their average
magnitudes are in close agreement between both flows when the local Reynolds number and scale
are matched. The first postulate is shown to approximately hold for both longitudinal and transverse
increments, with improved agreement found for larger local Reynolds numbers. Our study provides
unambiguous experimental evidence to demonstrate that a detailed, universal description of high
Reynolds number turbulence may at last be within grasp.

We thank M. Wilczek and C. C. Lalescu for their helpful comments. The authors gratefully
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