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We present high-resolution simulations of the instability and subsequent breakdown
of standing waves, or seiches, in a fluid continuously stratified in the vertical direction.
It is well known that such waves can evolve to form nonlinear, dispersive wave trains.
When the initial dimensionless amplitude is large, it is possible that a stratified shear
instability develops, possibly at the same time as dispersive wave trains. While both
dispersion and shear instability serve to move energy from large to small scales, they
are fundamentally different. The development into wave trains is nondissipative in nature,
and in the asymptotic limit of small but finite amplitude seiches may be described by
variants of the Korteweg–de Vries (KdV) equation. Shear instability, on the other hand,
yields Kelvin-Helmholtz billows, which in turn provide one of the basic archetypes of
transition to turbulence, with greatly increased rates of mixing and viscous dissipation.
We discuss how the two phenomena vary as the aspect ratio of the tank and the height
of the interface between lighter and denser fluids are changed, highlighting cases where
the two phenomena coexist. A quantitative accounting for the evolution of the horizontal
modewise decomposition of the kinetic energy of the system in addition to the creation
of a semianalytical model of the evolution of the fundamental mode is presented. Finally,
the mixing is characterized during the evolution of the seiche, illustrating a fundamental
transition that occurs as the aspect ratio is decreased.

DOI: 10.1103/PhysRevFluids.4.014802

I. INTRODUCTION

The majority of temperate lakes are density stratified throughout a significant portion of the
calendar year [1]. While the true interior of a lake is continuously stratified, a reasonable idealization
is of two isothermal layers, of thicknesses h2 (lower) and h1 (upper), separated by a sharp interface.
This interface provides a wave guide, with a reduced gravity proportional to the density change
across the layer. This is typically two orders of magnitude smaller than at the air-water interface
and hence waves in the interior, or internal waves, are much larger in amplitude and more slowly
propagating than waves on the surface. It has been known since as far back as 1904 [2] that the
isothermal surfaces in Loch Ness oscillate with a period dependent on physical parameters such as
the lake’s length and depth. A century of observational work has led to the basic understanding of
internal seiches as driven by the wind in the following manner. A sustained period of wind leads
to water “piling up” on the downwind side of the lake. While the change in water depth is small,
the resulting pressure gradient is large enough so that the compensating displacement of the interior
isotherms from their rest height is large (on the order of several meters). When the wind ceases,
the sloping internal interface begins to oscillate, yielding large-amplitude standing waves [3]. The
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standing waves created via the above processes break down into propagating wave trains, which in
turn transport material and energy.

Observations of large-amplitude wave trains in lakes have been reported at a wide variety of
geographic locations. Lake Kinneret, Israel, has received consistent sampling by multiple groups.
Ostrovsky et al. [4] provided evidence that the smaller internal wave dynamics induced by a seiche
in the lake can mix hypolimnetic and epilimnetic waters while Boegman et al. [5] provided a
conceptual model of the fate of shoaling internal solitary waves and their ramifications for the
bottom boundary layer. Specifically, Boegman et al. [5] proposed that due to surface wind forcing,
horizontal currents were induced which degenerated into trains of solitary waves, which then shoal
on the boundaries of the lake and energize the bottom boundary layer. This process has ramifications
for the biomass of the lake because of the vertical transport of organic material that might otherwise
not have any way to reach the surface. Large-amplitude trains of internal solitary-like waves (ISWs)
have been reported in Lake Constance [6–8]. Strong seasonality [8], episodes of turbulence [6], and
internal wave overturning in open water were reported [7]. Finally, MacIntyre et al. [9] characterized
the nonlinear steepening of internal seiches after the cessation of sustained winds in Mono Lake,
finding that over steep slopes (10%) roughly 80% of the water column was turbulent. A very
different type of internal motion was documented by Henderson and Deemer [10], who observed
vertical propagation of energy in Lake Lacmas, USA, due to internal seiche motion. While the
vertical propagation was unique, the bulk behavior was consistent with other observations. Namely,
interaction with boundaries drives turbulence production [11] and dissipation of the internal waves
themselves. In the bottom boundary layer, enhanced turbulence drives chemical exchange [12].

Internal waves in lakes have been simulated using a variety of numerical models and at different
levels of detail. Basin-scale models, for larger lakes especially, typically make the hydrostatic
approximation. This is expedient numerically but a priori removes short wave dispersion, which
is a well-known aspect of internal waves, from consideration. Nonhydrostatic modeling of an
entire basin is possible, but resolution demands are extreme (see the rightmost column in Table 1
of Ref. [13]). Layered models based on the classical shallow water equations have no way to
remove energy at the smallest scales (i.e., they are derived from the inviscid Euler equations), so
various modifications must be made in order to faithfully represent physical phenomena on small
scales. In classical hydraulics, the analogy between the shallow water equations and the equations
of gas dynamics is often exploited, with the nonlinear hyperbolic theory of shocks providing a
means to locally dissipate energy. On the lake scale, it is finite-wavelength dispersion that is
more important to represent. One common method of simulating this phenomenon is to employ
a weakly nonhydrostatic correction to the pressure [14–17]. This allows for a balance between
nonlinear and dispersive terms that is otherwise impossible in shallow water theory and allows for
the development of coherent wave trains, including Kelvin waves in circular domains under the
f -plane approximation. Regardless of the detailed methodology, numerical modeling of lake-scale
motions requires both parametrizations of physical processes (e.g., energy input from wind) and
compromises on physical representation of unresolved scales (e.g., eddy viscosity).

Laboratory experiments provide an alternative means to gain information about internal seiches,
though at Reynolds numbers that are considerably lower than those in the field. In a laboratory
setting, a seiche can be generated by stably stratifying a long and narrow tank of water and
adiabatically tilting it to some angle. Once any transient wave motion has ceased, the tank can be
quickly returned to its original position and a realization of a tilted density interface is created. Since
there is no force to balance buoyancy, the density interface begins to oscillate. The energy injected
into the system by this action allows for relatively easy manipulation of the seiche amplitude and
hence access to portions of parameter space in which large-scale oscillations coexist with smaller
scale features such as shear instabilities.

A series of experiments using the methodology described in the previous paragraph were carried
out by Horn et al. [18] in order to attempt to quantify different mechanisms responsible for
the degeneration of large-scale interfacial gravity waves in lakes under the influence of different
amounts of wind stress. In practice, the wind stress was parameterized through the dimensionless
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amplitude, W−1 = η0/h1 (the ratio between the initial amplitude and the upper layer depth also
known as the inverse Wedderburn number [15,18–20]), of the initial basin-scale wave. The authors
employed several different methods of data collection for their experiments. They attached three
wave gauges to the side of a 6-m-long tank in order to measure interface displacement and recorded
photographs to visually classify different degeneration mechanisms. They performed a time-scaling
analysis to determine where in parameter space different degeneration mechanisms were expected
to dominate. They compared the findings to field data and found that most lakes underwent a
steepening of the initial basin-scale wave and formed what they labeled “solitons.” Internal solitary
waves are, in fact, not solitons in the mathematical sense [21], and the trains of solitary-like waves
that form in the experiments are not expected to exhibit soliton behavior when colliding with end
walls and other waves.

The timescales, determined mostly via termwise balances in linear and weakly nonlinear theories,
allowed for an ad hoc method for determining whether or not a particular mechanism was expected
to dominate the degeneration of the seiche. In reality, the asymptotic expressions used for the
various estimates do not have clear upper bounds on applicability in terms of seiche amplitude.
Moreover, estimates based on different modes of breakdown, e.g., wave train formation versus
shear instability, may not be theoretically consistent with one another. For example, internal solitary
waves are based on long-wave theory [22], while the linear theory of shear instability is based on the
finite-wavelength Taylor-Goldstein equation [23]. Thus, the estimates of timescales for the different
mechanisms can really only be used in a small number of circumstances.

The data from the above study was analyzed further in Horn et al. [19] and Boegman et al.
[20]. Horn et al. [19] derived a weakly nonlinear model of the interactions that solitary waves
undergo in a closed basin. Where the initial assumption usually made is one of unidirectional
propagating waves, Horn et al. [19] instead developed their model by allowing for bidirectional
propagation for the subset of the cases in Horn et al. [18] with 0.15 < η0/h2 < 0.6 (the bottom
layer h2 was used here because Horn et al. [19] instead chose to test their model against waves
of elevation rather than waves of depression). Their model qualitatively agreed with the data
from Horn et al. [18]. In Boegman et al. [20], the authors used the data from wave gauges to
determine how the initial nonlinearity of the wave determined how energy was cascaded to small
wavelengths through the emergence of a nonlinear surge. The surge serves as one possible link
between large-scale oscillations, small-scale features, and wave propagation. The authors quantified
the temporal distribution of available potential energy in different component horizontal wave
modes and determined that the proportion of available potential energy brought to smaller scales by
the nonlinear surge scaled with the nondimensional grouping αη0/c0, where α is the nonlinearity
coefficient in the Korteweg–de Vries (KdV) equation [22,24,25], c0 is the wave speed, and η0 is
the initial amplitude of the wave. It is worth noting that scalings based on the KdV equation also
typically make the two-layer stratification assumption, since it is only in this case that closed-form
expressions for the propagation speed, nonlinearity, and dispersion coefficients are available.

In this paper, high-resolution numerical simulations of the evolution of large-amplitude internal
standing waves are discussed. The simulations are performed at the laboratory scale, but the length
of the tank is systematically increased (decreasing the aspect ratio) since the disparity between
laboratory dimensions and field scales is large. The primary goals are (i) to present detailed
examples of large-amplitude wave train formation hitherto unavailable in the literature, (ii) to
quantify the budget of energy in different horizontal component modes as large-amplitude seiches
evolve in different combinations of aspect ratio and dimensionless amplitude, and (iii) quantify the
fluid mixing as the aspect ratio and dimensionless amplitude are varied, focusing on cases where
shear instabilities and wave trains coexist. The remainder of the paper is organized as follows. The
methods section outlines the governing equations, as well as the numerical and analysis methods
used. The results section first outlines how the breakdown into nonlinear, dispersive wave trains and
shear instability varies as the aspect ratio of the tank and the location of the interface between lighter
and denser fluid are varied. In particular, examples of cases where the two phenomena coexist are
highlighted. A quantitative accounting for the mode-by-mode evolution of the kinetic energy of
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the system is presented, as well as a semianalytical model of the evolution of the fundamental
mode. Finally, using a well-known methodology from the literature, the mixing of fluid during the
evolution of the seiche is characterized, illustrating a fundamental transition that occurs as the aspect
ratio is decreased. The final section provides a discussion of the results and conclusions as well as
suggestions for future work.

II. METHODS

A. Governing equations and numerical methods

Simulations are performed using the (psuedo)–spectral parallel incompressible Navier-Stokes
solver (SPINS) [26]. The equations of motion that are solved are the incompressible Navier-Stokes
equations under the Boussinesq approximation which are stated below:

∂u
∂t

+ u · ∇u = −∇p

ρ0
− ρ

ρ0
gk + ν∇2u, (1)

∂ρ

∂t
+ u · ∇ρ = κ∇2ρ, (2)

∇ · u = 0. (3)

The unit vectors i and k are the unit vectors in the horizontal and positive upward directions,
respectively. ν is the kinematic viscosity, g is the gravitational acceleration, ρ0 is the reference
density in the Boussinesq approximation, and ρ(x, z, t ) is the density anomaly. Finally, u =
[u(x, z, t ), w(x, z, t )] is the velocity field and p = p(x, z, t ) is the pressure field. All of the cases
are run on a uniform grid with, no normal flow [Eqs. (4) and (5)], and free-slip boundary conditions
[Eqs. (6) and (7)]. The normal derivatives of the density field are specified at the boundary for
computational purposes [Eqs. (8) and (9)]. By specifying the normal derivatives along the boundary,
a cosine transform can be used to calculate the derivatives of the density field. These are described
mathematically as

u(0, z) = u(L, z) = 0, (4)

w(x, 0) = w(x,H ) = 0, (5)

uz(x, 0) = uz(x,H ) = 0, (6)

wx (0, z) = wx (L, z) = 0, (7)

ρx (0, z) = ρx (L, z) = 0, (8)

ρz(x, 0) = ρz(x,H ) = 0. (9)

The numerical scheme employed uses third-order Adams-Bashforth time stepping with a
dynamically varying time step, and spatial derivatives are computed spectrally. The model has been
thoroughly validated on a wide range of test cases [26] and has been used in many other studies
[27–32], and the present simulations have been validated against past results on Kelvin-Helmholtz
billows in a parallel shear flow. A grid-halving study was performed, and it was determined that the
present resolution is adequate for the results presented in this paper.

The timescaling is determined through estimates for the period of oscillation from a numerical
solution of the Taylor-Goldstein equation for the stratification at hand. Two-layer theory and weakly
nonlinear theory based on the KdV equation both give results within a few percent and thus the
scaling for period is not unique. Finally, the horizontal lengths are nondimensionalized by L (the
length of the domain) and vertical lengths by H (vertical extent of the domain).

The initial condition is taken to be a quiescent fluid with a density perturbation, given mathemat-
ically as

ρ(x, z) = ρ0 + 1

2
(ρ1 − ρ2) tanh

(
z − [z0 + η(x)]

h

)
, (10)
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FIG. 1. Schematic of the initial condition indicating each of the layer depths (h1 and h2), the total depth
(H ), the length (L), amplitude (η0), and pycnocline mean depth (z0). The density interface is drawn as a single
curve. Here, h1 and h2 are the mean upper and lower depths of the fluid.

where η = η0 cos( πx
L

) and u(x, z, 0) = 0. A schematic of the initial condition is given in
Fig. 1.

The relevant parameters used are h for the pycnocline half-width and the amplitude of the
displacement of the density surface, η0, with respect to the average depth of the pycnocline, z0.
z = 0 is at the bottom, while z = H is at the top of the domain shown in Fig. 1. z0 is the distance
from the domain bottom to the mean depth of the density interface.

Parameters that change across trials are in Table I and parameters that do not change are in
Table II. The initial condition is chosen for mathematical simplicity and to facilitate a modal
breakdown of energetics. As such, it only approximately represents the state that the density
interface would take in a tilted-tank experiment. Numerical experiments have been performed on a
version of the linear interface and the qualitative agreement with the results below was excellent.
Quantitative differences will be described in a separate publication. Indeed, in a lake, the interface

TABLE I. Table containing all cases considered in this paper. Cases are characterized by depth above
middepth in mm (e.g., a prefix of 15 means that the average depth of the pycnocline is 15 mm above H/2),
amplitude with Q < P < L (smallest to largest), the pycnocline half-width in mm, and finally tank length
specified after the underscore (1m is a tank length of 1 meter, etc.).

Case Nx × Nz z0 (m) η0 (m) L (m) η0/h1 H/L

Q5-1m 2048 × 512 0.125 0.05 1 0.4 0.25
P5-1m 2048 × 512 0.125 0.065 1 0.52 0.25
L5-1m 2048 × 512 0.125 0.0825 1 0.66 0.25
15L5-1m 2048 × 512 0.14 0.0825 1 0.75 0.25
25L5-1m 2048 × 512 0.15 0.0825 1 0.825 0.25
Q5-2m 4096 × 512 0.125 0.05 2 0.4 0.125
P5-2m 4096 × 512 0.125 0.065 2 0.52 0.125
L5-2m 4096 × 512 0.125 0.0825 2 0.66 0.125
15L5-2m 4096 × 512 0.14 0.0825 2 0.75 0.125
25L5-2m 4096 × 512 0.15 0.0825 2 0.825 0.125
Q5-4m 8192 × 512 0.125 0.05 4 0.4 0.0625
P5-4m 8192 × 512 0.125 0.065 4 0.52 0.0625
L5-4m 8192 × 512 0.125 0.0825 4 0.66 0.0625
15L5-4m 8192 × 512 0.14 0.0825 4 0.75 0.0625
25L5-4m 8192 × 512 0.15 0.0825 4 0.825 0.0625
Q5-8m 16384 × 512 0.125 0.05 8 0.4 0.03125
P5-8m 16384 × 512 0.125 0.065 8 0.52 0.03125
L5-8m 16384 × 512 0.125 0.0825 8 0.66 0.03125
15L5-8m 16384 × 512 0.14 0.0825 8 0.75 0.03125
25L5-8m 16384 × 512 0.15 0.0825 8 0.825 0.03125
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TABLE II. Unchanged physical parameters for the cases in Table I. ν is the kinematic viscosity, κ is the
coefficient of heat diffusion, Sc is the Schmidt number (the ratio of kinematic viscosity to diffusivity), h is the
half-width of the pycnocline, �ρ is the density difference between upper and lower layers as a percentage of
the total density difference, ρ0 is the constant density of the fluid, and H is the total depth.

ν (m2/s) κ (m2/s) Sc h (m) �ρ ρ0 (kg/m3) H (m)

1 × 10−6 1.4 × 10−7 7 0.005 0.02 1000 0.25

shape can be much more complicated than a linear tilt. This is due to spatiotemporal variations in
wind forcing and influences of bottom topography and lake shape. For example, Fig. 3 of Henderson
and Deemer [10] shows temperature measurements from an acoustic Doppler profiler in Lacmas
Lake in Washington state, USA. It can clearly be seen in their figure that the different isotherms do
not have the same angle of tilt with respect to the surface.

Several different dimensionless numbers are typically used to characterize the setup. In the
nonlinear internal wave literature, the Reynolds number is often estimated as

Re = cH

ν
,

where c is an estimate of the internal wave speed, H is the total depth, and ν is the kinematic
viscosity. For a typical laboratory setup, Re ≈ 4 × 104, while for a typical lake, Re ≈ 4 × 107.
While this is a sizable disparity, in both cases viscous effects are essentially negligible. This
statement would need to be revisited in a detailed consideration of boundary layer effects, something
we do not pursue in the present paper. A second dimensionless parameter is the aspect ratio,

μ = H

L
.

For laboratory scales, μ varies over the range 0.03 < μ < 0.25 while in the field much smaller
values are typical, with μ ≈ 0.004 being a reasonable estimate for midsized lakes. The scaled
amplitude of the seiche provides a third dimensionless parameter, following the convention in Horn
et al. [18]. We refer to this as the inverse Wedderburn number, defined as

W−1 = η0

h1
.

These choices are consistent, albeit using somewhat different notation, with the theory of weakly
nonlinear internal waves as expressed in the KdV equation [33]. Weakly nonlinear theory performs
an asymptotic expansion in W−1 and μ, and hence organizing results by these two parameters
allows for our simulations to meaningfully connect with KdV theory. An alternative formulation
would define the Froude number as the ratio between a characteristic velocity and a characteristic
wave speed and use it to characterize instances of wave breaking or instability onset. This was done
in Horn et al. [18] along with a discussion of the gradient Richardson number, which is used to
characterize the possibility of linear instability of stratified, parallel shear flows. Both of these rely
on a priori estimates of velocity, which are not natural in the setting of the adjustment problem. A
final dimensionless parameter is Sc, the Schmidt number, defined as the ratio of kinematic viscosity
to diffusivity. For all simulations presented in this paper, this value is held constant at Sc = 7, the
value relevant for temperature-stratified fluids.

B. Energetics

The oscillation of the seiche is due to a transfer of available potential energy to kinetic energy
and back through the buoyancy flux [34]. These two quantities are defined and discussed below.

014802-6



NUMERICAL SIMULATIONS OF THE SHEAR …

1. Potential energy

In the field analog to the following numerical experiments, the stress on the surface due to the
wind provides an initial input of potential energy. The potential energy density, Ep, of a fluid is
defined as the following:

Ep = 1

HL

∫ L

0

∫ H

0
ρ(x, z, t )gzdzdx, (11)

where ρ(x, z, t ) is the full density field. Here, the integral in the y direction is taken to be 1 because
all cases are two dimensional and the density field is independent of that dimension. With the
continuously stratified model, the available potential energy density, Ea , can be calculated. The
Ea is the fraction of the total Ep available to be converted to kinetic energy, KE. This quantity is
calculated over time by simply performing the following operation:

Ea = 1

HL

∫ L

0

∫ H

0
[ρ(x, z, t ) − ρ̃(z, t )]gzdzdx. (12)

ρ̃(z, t ) is the adiabatically rearranged density field. The above equation brings about the notion
of the background potential energy, or Eb. The Eb is the potential energy of the fluid if it
were motionless and adiabatically rearranged to its stable state. Calculating the Eb can be a
computationally expensive process due to the determination of the stably stratified density field
at every step and may be hard to define in an open system. Since the systems that are considered in
this paper are all closed, this is not a problem. In this paper, the Eb is given by

Eb = 1

HL

∫ L

0

∫ H

0
ρ̃(z, t )gzdzdx. (13)

Thus, the concept of Ea in continuously stratified fluid is

Ea = Ep − Eb. (14)

Using the continuous representation of the Ea , a two-layer approximation can be created denoted
by E(2)

a . Using this model of the Ea , useful insights on how the Ea redistributes within the wave field
can be gained. The formula is derived by assuming an infinitely thin interface and making the rigid
lid approximation. In order to do this numerically, the average depth of the pycnocline is calculated
at every time output. The method removes any sort of wave breaking and instabilities (convective or
shear) that may occur and thus truly represents an approximation of the Ea . The equation for E(2)

a

is given by

E(2)
a = 1

2

g�ρρ0

HL

∫ L

0
η2(x)dx. (15)

Note here that since the simulations are two dimensional, the units of ρ0 are kg/m2 and �ρ is
unitless. These ensure that E(2)

a has the correct dimensions. In the experimental studies by Horn et al.
[18] and Boegman et al. [20], the primary method of analysis relies on the two-layer approximation
when characterizing various regimes of degeneration. In this paper, the two-layer representation
of the Ea is used to build a model of the rate of energy extraction from the fundamental mode
of the seiche. This model is built by using spectral analysis to partition potential energy into
different harmonics using Parseval’s theorem [35]. Thus, insight on the motion can be gained
by considering only the interface displacement and not the entire continuously stratified fluid.
The boundary conditions for the density field in a continuously stratified fluid [Eqs. (8) and (9)]
give the two layer analog of ∂η

∂x
|x=0,L = 0. This implies that η can be written in the following way:

η =
∞∑

n=1

η̂n cos(knx), (16)
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with wave number kn = nπ
L

and expansion coefficient η̂n. By replacing η2(x) in Eq. (15) with the
cosine series in Eq. (16) and simplifying the integral, the two-layer representation of the Ea in
Fourier space is

E(2)
a = 1

4

g�ρρ0

H

∞∑
n=1

η̂2
n. (17)

Now, individual harmonics can be discussed with respect to the Ea . In the numerical simulations
presented in this paper, the harmonic number is bounded above by the number of grid points in the
horizontal direction.

2. Kinetic energy

The kinetic energy, or more simply KE, in two dimensions with velocities homogeneous in the y

direction with no rotation in a Boussinesq fluid is given by

ϕk = 1
2ρ0[u(x, z, t )2 + w(x, z, t )2]. (18)

The vertical mean of the KE is computed simply by integrating the above equation vertically,

E
(p)
k = 1

H

∫ H

0

1

2
ρ0[u(x, z, t )2 + w(x, z, t )2]dz. (19)

The above description of the kinetic energy allows for the retention of horizontal and temporal
information while making the data easier to interpret. Alternatively, at the expense of spatial
information, information about the wave-number spectrum can be gained by transforming the above
quantity into wave-number space. This operation begins from the stream function representation of
the flow field,

ψ (x, z, t ) =
∞∑

n=1

an sin(knx)φn, (20)

from which the velocity field components are computed as u = ψz, and w = −ψx so that

u =
∞∑

n=1

an sin(knx)φ′
n(z),

w = −
∞∑

n=1

ankn cos(knx)φn(z).

To compute the KE, u and w are squared, summed together, and horizontally averaged over the
entire domain. Orthogonality allows for the simplification

1

2
ρ0

∫ L

0
u2 + w2dx = 1

2
ρ0

∞∑
n=1

[
a2

n(φ′
n)2 + (ankn)2(φn)2

]
, (21)

where the z dependence of the vertical structure function and its derivative has been suppressed. To
tidy up the notation, the following notation is introduced:

û2
n = a2

n(φ′
n)2, (22)

ŵ2
n = (ankn)2(φn)2, (23)
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and vertically averaging Eq. (21) then gives

E
(f )
k = 1

2

1

H

∫ H

0

1

2
ρ0

∞∑
n=1

(
û2

n + ŵ2
n

)
dz. (24)

This representation of the kinetic energy is a function of wave number and time as the fluid evolves.
The rate of change of the total pseudoenergy, kinetic plus available potential, in a continuously

stratified fluid can be written as [34]

d

dt
(KE + Ea ) = −ε − ϕ, (25)

where −ε represents the volume integrated losses due to momentum diffusion and −ϕ represents
the volume integrated losses to due to fluid mixing. Using Eqs. (19) [or equivalently (24)] and (12),
the total pseudoenergy is seen to decrease slowly due to viscous dissipation and mixing. For small-
amplitude seiches, it is conserved essentially exactly and in the most vigorous cases roughly 10%
of the initial pseudoenergy is lost to viscous dissipation and mixing over two periods. The two-layer
approximation of the Ea is used only as an a posteriori diagnostic and to build a semiquantitative
model of seiche decay rate.

C. Mixing characterization

There are different ways in which mixing of fluid layers can be quantified. Energetically
speaking, irreversible mixing of a fluid can be characterized by an increase in the Eb [34,36]. This
process makes potential energy inaccessible for oscillation and thus results in damping of the fluid
motion. This characterization of mixing is quantified by the energetic mixing characterization and
is referred to as ME :

ME = 1

Eb(0)

1

HL

∫ L

0

∫ H

0
ρ̃(z, t )gzdzdx − 1, (26)

where ρ̃(z, t ) is the adiabatically rearranged density field in Eq. (12).
Finally, the analysis below is based on making an approximation that the flow is independent of

variation in the spanwise (y) direction. This is a reasonable assumption if the spanwise dimension
of a tank in a laboratory for an analogous three-dimensional experiment is not large with respect
to the length. The dominant dynamics will then be approximately independent of the spanwise
dimension. Since all the simulations described below are two dimensional, missing are some
important mechanisms such as the vortex tilting and stretching mechanisms. These are known to
contribute to three-dimensional effects in the fluid flow and are unable to occur in two dimensions
[23]. However, in some circumstances, the coastal oceanography of fjords being an example, it is
reasonable to restrict analysis to two dimensions. As mentioned earlier, Horn et al. [18] used tank
dimensions (in units of meters) of (X, Y,Z) = (6.00, 0.30, 0.29) and Lamb and Nguyen [37] used a
two-dimensional, fully nonlinear, nonhydrostatic numerical model for calculating the energy flux of
an internal solitary wave reflecting off of a boundary. In both of these examples, dynamics studied
were all on length scales relevant to a laboratory.

As an aside, a local measure of scalar mixing can be defined in different ways. One could take
the approach of Ref. [38], where the scalar mixing is proportional to the time rate of change of the
square magnitude of the gradient of the scalar (e.g., the density field). A second possibility is to use
the sorted density field to define a background density and through this an available potential energy
[34]. Irreversible mixing has been characterized using this technique in a number of references, for
example, Refs. [37,39,40].
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FIG. 2. Snapshots of the density field, with the interface particularly prominent, for the L5-2m case.
Density fields taken at τ = 0.25, 0.7, 0.9, and 1.25.

III. RESULTS

The results section is broken up into six subsections. First, the evolution of the symmetric cases
where h1 = h2 = 0.5H is discussed at several representative domain lengths (and hence aspect
ratios). The first is L = 2 m (L5-2m) followed by L = 8 m (L5-8m). The reason these lengths
are chosen is that they show two different mechanisms responsible for the degeneration of the
seiche. Next, the quantitative breakdown of the energy into harmonics for these cases is discussed.
Following the discussion of the symmetric cases is a discussion of the skew cases (15L5-8m and
25L5-8m), where h1 �= h2. Again, this is followed by a detailed mode breakdown of the energy.
Following the analysis of the skew cases is a discussion of the KE and the Ea of several cases
compared to one another. This section concludes with a discussion of irreversible mixing. The
results in the following section are presented using perceptually uniform color maps as to avoid
instances of artificial gradients [41].

A. Symmetric cases: Qualitative aspects of evolution

First consider the L5-2m and L5-8m cases, both with equal layer depths. In Figs. 2 and 3, the
density interface at different nondimensional times is plotted to qualitatively compare the flow
evolution. In particular, the differences in the shape of the density interface as the tank length is
changed is of particular interest here.

Consider first Fig. 2, which shows the temporal evolution of the L5-2m case. The first panel,
(a) is at τ = 0.25, (b) is at τ = 0.7, (c) is at τ = 0.9, and (d) is at τ = 1.25. At early times,
the density interface is stable and there are two small-amplitude waves steepening on either side
of the node propagating inward from the sidewalls. As time moves forward, shear instabilities
form on the density interface as the wave oscillates. At later times, the shear instabilities have
completely collapsed, the pycnocline has noticeably widened, and there is evidence of a secondary
shear instability event. The instabilities in this case form at the node of the wave. This is not unlike
the results from Thorpe [42], who showed that there is vortex motion created at the node which
induces overturning (see their Fig. 14).

Next, when comparing L5-2m to the longer case L5-8m, there are some similarities at early times,
but fundamental differences at later times. The snapshots are taken at the same nondimensional
times. Early in the evolution, the density interface is qualitatively similar to that of the L5-2m case,
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FIG. 3. Snapshots of the density field, with the interface particularly prominent, for the L5-8m cases.
Density fields taken at τ = 0.25, 0.7, 0.9, and 1.25.

but instead of the shear instabilities seen in Fig. 2, the generation of higher harmonics takes place.
The evolution appears to begin with two counterpropagating waves originating from the left and
right walls propagating inward. They interact at the node and then continue to propagate outward
toward the opposite wall from where they originated with only a small amount of disruption at the
node.

Comparing Figs. 2 and 3, it is clear that the mode of degeneration is fundamentally different when
the length of the tank is increased. It appears that in the shorter cases (including L5-1m, which was
not shown), shear instabilities dominate the dynamics, while in the longer cases (including L5-4m,
not shown), the seiche develops into higher harmonics and coexists with smaller scale instabilities.

In Figs. 4 and 5, the vorticity field and KE field are shown for the L5-2m and the L5-8m cases
at τ = 0.9. In Fig. 4, the black lines denote two characteristic isopycnals, and in Fig. 5, the white
lines serve the same purpose. These figures serve to show that the vorticity at this time is mostly

FIG. 4. The vorticity field for the L5-2m (top) and L5-8m (bottom) cases at τ = 0.9.

014802-11



ANDREW GRACE, MAREK STASTNA, AND FRANCIS J. POULIN

FIG. 5. The KE field for the L5-2m (top) and L5-8m (bottom) cases at τ = 0.9.

induced by the oscillation of the wave, but there are small patches of vorticity induced in the opposite
direction. The shorter case, which shows signs of vigorous shear instability, contains many high
gradients of vorticity, while the longer case, which has a more stable pycnocline, has few high
gradients. This is, of course, due to the formation of high-density gradients in the L5-2m case,
which induces rotation of fluid particles and the apparent lack thereof in the L5-8m case. The KE
fields show that the spatial distribution of KE in the shorter of the two cases considered is mostly
near the node at this time, while in the longer of the two cases, some is transferred around the
domain due to the formation of the waves.

B. Symmetric cases: Quantitative analysis of degeneration

Figures 6(a) and 6(c) show the vertically averaged KE of the L5-2m and L5-8m cases,
respectively, as a function of time and space. Along the vertical axis is nondimensional time, and
along the horizontal axis is the horizontal dimension normalized by the length of the tank, x/L.
Figures 6(b) and 6(d) show a basic breakdown of the power spectral density [35] for the L5-2m case
and L5-8m cases respectively. The green line is the total KE density normalized by its maximum
value over the first two seiche periods, the red line represents the normalized KE in the first four
harmonics, and the blue line represents the normalized KE in every other harmonic for each case.

The horizontal distribution of the KE is apparent as both Figs. 6(a) and 6(c) show how it is
broken up into lobes. Where these two differ is that the KE in the longer of the two cases [Fig. 6(c)]
is redistributed into many higher harmonics, while the KE of the shorter of the two cases appears to
maintain a consistent distribution across the entire tank. There are also Kelvin-Helmholtz billows,
denoted by stationary vertical streaks, in this case, whereas there are not in the longer case. The
redistribution of energy is apparent in the PSD of each of these cases. For the shorter case [Fig. 6(b)],
the KE in the lowest harmonics is almost the same as the KE of all of the harmonics, while in the
longer case [Fig. 6(d)], there is a clear difference is how the higher harmonics are activated.

C. Skew cases: Qualitative aspects of evolution

The following section outlines the qualitative evolution of a case where the layer depths are no
longer equal, meaning that z0 has been changed. Snapshots of the 15L5-8m case are shown in Fig. 7.
By introducing the asymmetry between the layer depths, different kinds of motion are expected. A
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FIG. 6. [(a), (c)] Space-time plot for the vertically integrated KE normalized by the maximum for the
L5-2m and L5-8m cases, respectively. [(b), (d)] Green line represents the total KE normalized by the maximum.
The red line represents the energy stored in the first four harmonics, and the blue line represents the rest of the
energy for each case.

primary finding of weakly nonlinear theory (WNL) is that when the layer depths of a stratified fluid
are unequal, nonlinear steepening is expected to occur. In the limit of a two-layer stratification with
an infinitesimally thin interface separating the two layers, the rate at which steepening is expected
to occur is given by [22,24,25]

α = 3c0

2

(h1 − h2)

h1h2
. (27)

FIG. 7. Snapshots of the density field, with the interface particularly prominent, for the 15L5-8m case.
Density fields taken at τ = 0.25, 0.7, 0.9, and 1.25.
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FIG. 8. The vorticity field for the 15L5-8m (top) and 25L5-8m (bottom) cases at τ = 0.7.

Here, h1 = H − z0 and h2 = z0. Clearly, the rate of nonlinear steepening is proportional to the
disparity in layer depths, meaning that if these values are different, steepening should occur quickly,
while if they are close to one another, steepening should occur at a slower rate.

The snapshots of the density field for the 15L5-8m case (Fig. 7) are taken at the same
nondimensional times as the L5-2m and L5-8m cases. Almost immediately, a progressive surge
forms on the left-hand side of the domain. This surge propagates rightward and steepens, eventually
dispersing into a solitary wave train. The solitary waves propagate and trigger shear instabilities
which are then smoothed out by the passing wave which is different than the cases previously
discussed. A smaller effect present in both cases is the formation of shear instabilities within the
trough of the leading propagating wave. This sort of instability was pointed out by Grue et al. [43]
and studied by Barad and Fringer [44] and then by Carr et al. [45]. Troy and Koseff [46] showed
through a series of progressive wave-breaking experiments that the emergence of Kelvin-Helmholtz
instability within the wave is dependent on the ratio of timescales of the steepening of the
instabilities to the wave period of the waves being considered.

In Fig. 8, the vorticity field for the 15L5-8m and 25L5-8m cases at τ = 0.7 is shown for
comparison. As expected, the vorticity in confined between the characteristic isopycnals and is all
positive due to the large-scale oscillation of the seiche. However, the intense positive vorticity at the
peaks of the solitary waves due to their propagation across the domain. There are shear instabilities
that appear in the 25L5-8m case which create high-wave-number variations in the vorticity field
in the middle section of the tank, but the large-scale vorticity is very similar in character to the
15L5-8m case. The KE for these cases is qualitatively similar as well, shown in Fig. 9. Toward the
right-hand side of both cases, the KE has been redistributed into higher harmonics, while it is kept
as one large-scale structure to the left of the wave packet. The 15L5-8m case appears to form three
vertical bands of KE to the right of the node, while the 25L5-8m case appears to form only two.
As well, in the 25L5-8m case, the shear instabilities trigger to the left of the wave packet appear to
distribute the energy in even smaller scales.

D. Skew cases: Quantitative analysis of degeneration

The vertically averaged KE for the 15L5-8m and 25L5-8m cases is shown in Fig. 10. Immedi-
ately, the symmetry seen in Fig. 6 is lost due to the formation of the surge and the resulting solitary
waves. Lobes symmetric about the center of the tank are no longer formed. Instead, streaks across
the domain are formed due to the formation of the propagating wave packets. The dimensionless
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FIG. 9. The KE field for the 15L5-8m (top) and 25L5-8m (bottom) cases at τ = 0.7.

amplitude appears to affect how many propagating waves form in these cases. This qualitatively
agrees with the notion that, unlike nonlinear steepening, dispersive behavior is most prominent when
the layer depths are equal. Qualitative similarities are seen the PSD for each case. The disparity
between the low harmonic and total KE becomes noticeably different early on for both cases and
the small-scale KE subsequently increases.

These results share similarities with the results presented in Horn et al. [18] and Boegman et al.
[20]. Figure 2 in Horn et al. [18] shows in parameter space the dominant degeneration mechanism

FIG. 10. [(a), (c)] Space-time plot for the vertically integrated KE normalized by the maximum for
the 15L5-8m and 25L5-8m cases, respectively. [(b), (d)] Green line represents the total KE normalized by
the maximum. The red line represents the energy stored in the first four harmonics, and the blue line represents
the rest of the energy for each case.
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FIG. 11. The vertically averaged KE in each harmonic from modes 2 to 17. The first harmonic is ignored
because it composes most of the KE and thereby skews the plots. The horizontal axis is broken down by
half-period groupings. The vertical axis is normalized by the total KE for time average over each half period:
(a) L5-2m, (b) L5-8m, (c) 15L5-8m, and (d) 25L5-8m.

of the seiche. Much of the parameter space is occupied by what they label as “solitons,” meaning
that in most cases, solitary waves will occur and move energy around the basin. However, Figs. 2,
3, and 7 show that there is typically more than one instability that may occur over the course of the
early evolution of these waves. For instance, the only case where Horn et al. [18] saw KH billows
was the case with equal layer depths and a large initial amplitude, but clear billowing was seen in
three of the four cases discussed in this paper. The aspect ratio of the tank also appears to play an
important role in which degeneration appears (at least initially). The L5-2m and L5-8m cases have
the same relative layer depths and initial amplitude but clearly have different dominant degeneration
mechanisms. Since the results presented in this paper are numerical, the spatial representation of the
KE is more readily available than the spatial features of the Ea , so an effort is made to use both KE
and Ea in the following discussion in order to compare to the results of Horn et al. [18] and Boegman
et al. [20].

E. Comparison of energetics across cases

The above discussion is meant to be a qualitative analysis of a subset of representative cases.
Now, a quantitative discussion can be performed describing how they relate to one another as well
as other cases that were not shown above.

Figure 11 shows the KE per mode, time averaged over the first four half periods and then
normalized by the maximum KE over each half period (meaning the first grouping is scaled by
the maximum of the KE in the first half period of the seiche, etc.). Each grouping of bars represents
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FIG. 12. The logarithm of the decay parameter λ calculated via linear regression of the maximums of the
potential energy from the first harmonic, as a function of the dimensionless amplitude η0/h1 and aspect ratio
μ = H/L.

harmonics 2 to 17 from left to right. The first harmonics for each case have been removed from the
plots because they encompass the vast majority of the total KE. Figure 11(a) shows the results for
L5-2m, Fig. 11(b) shows results for L5-8m, Fig. 11(c) shows those for 15L5-8m, and Fig. 11(d)
shows those for 25L5-8m. Figure 11 illustrates that the way in which energy is passed to different
modes differs when the dimensionless amplitude and aspect ratio are changed. At reasonably large
aspect ratios, there appears to be a particular harmonic that has the most energy [the third harmonic
in Fig. 11(a)] and the amount of energy decays with higher harmonics. When the aspect ratio is
reduced, it appears as if certain harmonics are favored over others [third, fifth, seventh, and onward
in Fig. 11(b)], changing the small-scale behavior. It is worth briefly drawing an analogy with the
classical Stokes wave here [23]. The Stokes wave solution expands a finite-amplitude wave as a
trigonometric series in nondimensional amplitude and wave number. A standing Stokes wave could
be obtained by superimposing two counterpropagating Stokes waves. Typically, for surface waves
the first three terms of the approximating series are given in the expansion of the free surface. The
coefficients decrease monotonically, meaning that any nonmonotonicity in the bar graphs shown in
Fig. 11 can be taken as an indication that the motion in the simulations is more complex than a
Stokes wave. Upon increasing the dimensionless amplitude, the second harmonic is favored over
the rest; however, there appears to be a more even distribution over the higher harmonics. Thus, the
asymmetry present in the 15L5-8m and 25L5-8m cases appears to remove any bias to a certain set
of harmonics that may occur if the layer depths were equal.

Because the aspect ratio and the dimensionless amplitude of the initial condition appear to affect
which harmonics are excited with KE, it is of use to discuss how these changes are manifested in
the spatial distribution of the Ea of the seiche. Hypothetically speaking, the contribution of every
mode could be discussed, but more can be learned if only the lower harmonics are considered. This
can help build an understanding of which modes are excited during the evolution of the seiche. The
reason why the rate at which Ea is extracted from the first harmonic may be of interest is because
the large-scale oscillation of the seiche effectively forms the background state that the smaller scale
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FIG. 13. Fitting parameters for the model of λ(W−1, μ). Definitions are given in the text.

wave motion can extract energy from. Thus, a model for the Ea in the first harmonic is proposed as
follows:

Ẽ(2)
a = Ea (0)e−λτ cos2 (2πτ ), (28)

where Ea (0) is the initial Ea input and λ is an Ea decay rate. The cos2(·) is meant to emulate
the oscillatory nature of the Ea , but can be ignored if only the net losses of Ea are of interest. λ

is assumed to be a function of two nondimensional bulk parameters, W−1 and μ, these being the
dimensionless amplitude (or inverse Wedderburn number [15,18]) and the aspect ratio of the tank.
λ(W−1, μ) gives an empirical measure for how energy is extracted from the fundamental harmonic
of the seiche in W−1 − μ parameter space. This could give an indication of the timescale on which
the large-scale seiche degenerates into higher mode waves and how fast nonlinear effects become
present in the flow. λ = λ(W−1, μ) is computed by calculating the Ea of the fundamental mode of
oscillation of the seiche using n = 1 in Eq. (17) and finding the maxima and the times at which they
occur during the evolution of the seiche.

In Figs. 12(a) and 12(b), the rate of decay of the Ea in the first harmonic is shown. For all cases
with constant W−1, the decay rate of the first harmonic decreases with increasing aspect ratio. Thus,
Ea is extracted from the first harmonic at a higher rate for longer initial wavelengths than for shorter.
These results agree qualitatively with the plots of the density fields in Figs. 2 and 3 because of the
absence of higher mode deflections of the density interface in the L5-2m and the presence of them
in the L5-8m case. Physically, the breakdown of a seiche into nonlinear dispersive wave trains is

TABLE III. Dimensionless parameters which determine how λ changes in W−1 − μ parameter space.
Values for the parameters are under a 95% confidence interval.

Parameter k1 k0 r1 r0

Value 2.5 ± 0.14 −2.6 ± 0.10 8.6 ±1.5 −9.1 ± 0.96
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FIG. 14. How λ changes in (W−1, μ) parameter space. Each circle corresponds to a particular case run and
where it lies in the parameter space.

FIG. 15. Comparison of the model decay parameter (dashed line) and the calculated decay parameter
(dotted line) against the mode 1 contribution to the Ea (solid line) for two cases. The 25L5-8m case is in
black and the L5-2m case is in red. The oscillating component out of the model was removed because there is
no decay in mode 1 Ea built into the oscillating part.
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FIG. 16. The ME time series for every case in Table I. Panels (a)–(d) show the time series for the 1-m, 2-m,
4-m, and 8-m cases respectively, with the initial dimensionless amplitude denoted by different colors.

more efficient than small-scale shear instability or localized overturning at extracting energy from
the fundamental mode of the seiche. On the other hand, for all cases with constant aspect ratio,
the rate at which Ea is removed from the first harmonic increases with increasing dimensionless
amplitude. As the dimensionless amplitude becomes larger, the rate at which energy leaves the first
harmonic has a weaker dependence on the aspect ratio of the wave, denoted by the clustering of the
points of the aspect ratios, but as the dimensionless amplitude decreases, the variation of the rate of
change of Ea is reasonably large.

The results in Fig. 12 suggest a linear dependence of ln(λ) on both μ and W−1. Thus, the
following model is proposed:

ln(λ) = R1μ + R0, (29)

where R1 and R0 are constants only dependent on W−1. The constants of integration are calculated
via linear fits to the data and are plotted in Figs. 13(a) and 13(b). Both R1 and R0 are found to
depend nearly linearly on W−1. Because of the spread of the markers, R0 also depends weakly on
the aspect ratio, but not enough to warrant further analysis. Since both R1 and R0 are dominated by
variation W−1, the fit allows for a complete closed-form model of λ(W−1, μ), Eq. (29), as

R0 = k1W
−1 + k2 (30)

and

R1 = r1W
−1 + r2. (31)

The values for k1, r1, k2, and r2 under a 95% confidence interval are presented in Table III.
Figure 14 shows how λ changes in parameter space and where each of the cases performed for

this study lies in the model. From Fig. 14, the decay rate is seen to be lowest at high aspect ratios
and low dimensionless amplitudes, which agrees with the data from Figs. 12(a) and 12(b). The
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FIG. 17. The change in Eb as a percentage of the initial Eb plotted against μ. The change in Eb is taken
as the final value Eb of the fluid at τ = 2 minus the initial background potential energy of the pycnocline. The
points with the same marker shape are of equal W−1. Read left to write, the aspect ratios of columns of points
are μ = 0.03125, μ = 0.0625, μ = 0.125, and μ = 0.25. Filled markers are cases where Kelvin-Helmholtz
(or similar) billows are seen.

model also agrees with the notion that at high dimensionless amplitudes and low aspect ratios, Ea

is extracted from the first harmonic of the seiche fastest.
Plotted in Fig. 15 (see caption for details) is the potential energy calculated via Eq. (12) and the

decaying part of the model in Eq. (28) for the 25L5-8m case (black) and the L5-2m case (red). The
model predicts the extraction of the mode one energy reasonable well, overestimating the decay
parameter for 25L5-8m and underestimating for the L5-2m case. However, the model predicts the
large-scale extraction of mode 1 energy fairly well for two fundamentally different cases.

F. Interfacial mixing

Most cases considered in this paper exhibit mixing of fluid from the upper and lower layers,
resulting in interfacial widening. For instance, at later times, Figs. 2(d), 3(d), and 7(d) show that at
least part of the pycnocline has become wider due to mixing.

Figure 16 serves to show that when both shear instability and wave propagation are considered
together, there are multiple mixing events, resulting in a greater increase in the ME . These events are
seen as a change in concavity of the curve. Curves of this form are shown in Ref. [47] with respect to
the gain of potential energy due to KH billows and Holmboe waves. In this paper, Holmboe waves
are not explicitly considered. The ME increases for the smallest amplitude cases, W−1 = 0.4, 0.52,
for every aspect ratio are nearly linear, and in these cases no evidence of billowing is seen. The
curves for the larger amplitude cases, W−1 = 0.66, 0.75, and 0.825, increase at a higher rate and
are see to have more than one event in many cases. The curves appear to diverge somewhere between
τ = 0.5 and 1 after the bulk of the dispersive waves have formed. It appears that cases with multiple
billowing events caused by the formation of dispersive waves increase the Eb much faster. This is
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FIG. 18. A qualitative degeneration regime diagram for a laboratory-scale seiche. A “linear waves”
bubble is included to show that at small amplitudes, linear theory is sufficient to predict wave motion. For
large amplitude and reasonably short tanks, shear instabilities form (L5-1m, L5-2m). For midlength and
midamplitude waves, wave trains form and for longer tanks with large amplitudes, both shear instabilities
and wave trains form (15L5-4m, 15L5-8m, 25L5-4m, 25L5-8m).

clearly evident in the W−1 = 0.825 case in Fig. 16(c) as the formation of billows and the subsequent
interactions with the wave trains increase the ME at a greater rate. The confound here is that the
shortest cases undergo the smallest increase in the ME due to only one instance of billowing and
no clear wave formation. For the longer cases where it is possible to form a propagating wave train,
there is a larger increase in the ME .

Figure 17 shows the relative change in Eb over two periods. It is clear that it is not a simple
relationship between the aspect ratio and the dimensionless amplitude of the seiche. Cases denoted
by filled in markers are those for which Kelvin-Helmholtz instabilities are observed. Notice that
the increase in Eb of cases without Kelvin-Helmholtz billows fall off exponentially with increasing
aspect ratio. However, the cases where Kelvin-Helmholtz billows do appear do not fall off exponen-
tially but instead appear to level off to some relatively constant value. Conversely, the character of
the relative Eb increase completely changes for the case with the largest dimensionless amplitude
(W−1 = 0.825), denoted by magenta circles. For the cases with (W−1, μ) = (0.825, 0.0625) and
(0.825,0.125), the interaction between shear instabilities and propagating solitary waves was seen
as opposed to the case (W−1, μ) = (0.825, 0.25), where only shear instabilities were seen.

IV. DISCUSSION

High-resolution pseudospectral simulations of internal seiches are performed with a focus on
cases with sufficiently large dimensionless amplitude to yield either significant Kelvin-Helmholtz
billows, trains of solitary like waves, or both. None of the simulations exhibit the formation of
turbulent bores, and indeed most observations in lakes suggest that the formation of nonlinear wave
trains (i.e., undular bores) is a far more generic phenomenon. A particular focus of the study is on
the change in behavior as the aspect ratio is varied, and the way in which this change is manifested
in the energetics and mixing. While the dynamics of small-amplitude waves can be described with
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linear and weakly nonlinear theories [22,23], the results of this paper indicate that short tanks, or
large aspect ratios, yield behavior that is dominated by shear instability that sets in near the node of
the standing wave [42]. Once the instability has ceased, the oscillations are due almost exclusively
to lower harmonics indicated by Fig. 11, behavior demonstrated in Horn et al. [18]. Increasing the
tank length, or decreasing the aspect ratio, increases the rate at which the standing wave breaks
down into a nonlinear wave train where higher harmonics are activated for longer times.

In many cases where the dimensionless amplitude and the length of the domain are sufficiently
large, the formation of the wave train coexists with shear instabilities during the evolution, and there
is enhanced mixing as the instabilities and waves interact. This is clearly apparent in the 25L5-4m
case from Figs. 16(c) (light blue curve) and 17. This aspect ratio and dimensionless amplitude
combination appear to allow for the largest relative change in the Eb as well as an efficient transfer
of energy from the fundamental harmonic of the seiche to higher harmonics.

The dynamics discussed above are schematized in Fig. 18. Many of the cases in the present paper
fall into a regime where shear instabilities and dispersive wave trains coexist.

In order to build an understanding of the energetics of the wave field, spectral analysis of the
KE is utilized to build a mode-by-mode understanding of the flow. This analysis is partially based
off of the analysis performed by Horn et al. [18]. Where they use an a priori method of estimating
when the nonlinearity of the system becomes important, an a posteriori method based on spectral
decomposition of the KE is used here. Nonlinear effects become important when higher harmonics
become excited due to various mechanisms. With the cases discussed in the second section of this
paper, it is found that the development of a solitary wave occurs very rapidly in the evolution of
the seiche when the layer depths are unequal. This evolution is heuristically predicted by weakly
nonlinear wave theory (the KDV equation and variants discussed by Helfrich and Melville [22]) and
agrees qualitatively with the results developed by Horn et al. [18]. Many of the cases not discussed
also undergo a rapid transition from large-scale oscillation to small-scale wave activity before the
first half period. To compare, most of the cases considered in Ref. [18] fall into a regime in which
the dominant degeneration mechanism is the formation of a packet of solitary waves.

To complement the analysis for the KE, a semianalytical model is developed which gives an
estimate as to the rate at which Ea is irreversibly removed from the fundamental mode of the
seiche. This rate is not indicative of the energy lost to dissipative forces and mixing, but instead
gives an indication as to how fast energy is extracted from the fundamental mode of the seiche.
Though viscosity is not explicitly accounted in this analysis, at early times, the model is reasonably
representative of the rate at which Ea is extracted from the fundamental mode of the seiche. The
results of this model quantify the fact that the Ea leaves the fundamental mode faster for cases with
a larger dimensionless amplitude and slower for a smaller dimensionless amplitude. This agrees
with the qualitative results from Figs. 2, 3, and 7 as well as with the analysis of Horn et al. [18]
and Boegman et al. [20]. This model is not meant to be a replacement for the more correct stratified
case.

This paper also includes a quantitative analysis of fluid mixing. The paradigm that Figs. 16 and
17 demonstrate is that shear instabilities and solitary waves can coexist and enhance the amount of
mixing that occurs. Figure 16 shows that when only shear instabilities are allowed to form there is
typically one mixing event, where in cases where propagating waves occur, there are multiple. This
contrast is seen by comparing the time series in Fig. 16(a) to Figs. 16(c) or 16(d).

With a higher dimensionless amplitude, there is a larger initial input of Ea . This energy can be
transferred to KE and back to Ea (which results in oscillations of the density interface), it can be
transferred to KE and dissipated, or fluid layers can be mixed, resulting in an increase of Eb [34].
However, if the dimensionless amplitude is not large, the results from Fig. 14 suggest that the rate
at which Ea is exacted from the fundamental mode of the seiche is small and therefore there is less
energy for mixing.

There are several directions in which this research could be continued. One is by resolving the
boundary layer dynamics. Because the viscosity is small, boundary layers are thin, and solving the
Navier-Stokes equations including the boundary becomes a problem with multiple scales. Thus,
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points must be clustered near boundaries in order to resolve any motion at those scales. What the
model in Eq. (28) does not take into account and might be of interest for future work is the effect
that the boundary has on the large-scale dynamics of the flow and its energetics. By resolving the
boundary layer, one could build an understanding of how the viscous dissipation at the boundary
affects the dynamics of the large-scale flow. It should be expected that by resolving the boundary
layer, mechanical energy is explicitly removed due to dissipation, and this in turn damps the wave
motion. Complex situations involving boundary separation and intrusion of near-boundary fluid
into the main water column may also be possible and merit exploration. As well, in the field, it
is known that the motion resulting from a seiche can contribute to the vertical transport of matter
and biological material [9], so by utilizing high-resolution simulations of seiche boundary layers,
parametrizations of vertical transport of material could be created and used in larger scale models.

Another direction in which this research could be taken is building an understanding of the
full three-dimensional dynamics in high resolution. The scales that are considered in this paper
are comparable to length scales found in a laboratory; thus, it is not unreasonable to expect
three-dimensional dynamics to occur. These dynamics could possibly allow for slightly different
energetics as well as differences in mixing dynamics. Some representative cases discussed in this
paper could be performed in three dimensions to see if the bulk dynamics change during the
transition to turbulence. By performing simulations in three dimensions, secondary instabilities and
true transition to turbulence can occur, as in the well-documented studies of shear instability by
Peltier and Caulfield [40], Mashayek and Peltier [48], and Mashayek and Peltier [49]. We discussed
earlier that these shear instabilities are important for the mixing of the fluid; hence by accurately
resolving their three dimensional aspects, a better quantitative understanding of the interfacial
mixing could be built.

In terms of experiment, further steps include verifying the analysis and results of the Ea decay
rate. This can help to verify whether or not these parametrizations can be included in field-scale
models. Currently, the majority of field-scale models would not be able to accurately resolve the
nonhydrostatic aspects of the fluid flow that contribute to the irreversible change of Ea .
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