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Breaking of shoaling internal solitary waves (ISWs) is important for mixing and mass
transport processes in oceans and lakes. For ISWs in a two-layer stratified fluid, previous
studies identified four breaker types: surging, plunging, collapsing, and fission. The latest
classification of these breaker types is based on the wave slope Sw and the bottom slope
S; however, this classification was found to be unsatisfactory in delineating collapsing and
plunging breakers. The present study proposes a new classification for these two breaker
types using extended data sets, consisting of published experimental data and the results
of new numerical simulations. It was found that a single nondimensional index BISW =
(S/Sw )ReISW

2 delineates collapsing and plunging breakers in the extended data, where
ReISW is a new wave Reynolds number that accounts for nonlinear wave steepening.
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I. INTRODUCTION

Breaking of shoaling internal waves is an important cause of mixing and diapycnal mass transport
in oceans [1] and lakes [2–4]. For example, several large-wave shoaling events per tidal cycle may
supply sufficient nutrients to the photic zone [5] or create a surface patch with high phytoplankton
concentration [6]. Internal-wave breaking can also induce residual currents and associated diapycnal
mass transport, as observed in laboratory-scale experiments [7–9], in lakes [10], in estuaries [11,12],
and on continental shelves [13]. Breaking of internal solitary waves (ISWs) is also considered to
be important for sediment transport and resuspension [12,14–16]. Shoaling ISWs can break in
various ways and knowing which type of ISW breaking occurs is essential for understanding the
ensuing mass transport [15] and energetics [17,18]. In this study, we propose to extend the latest
classification of ISW breaking in a two-layer stratified fluid [19] by introducing Reynolds number
effects.

ISWs have an unchanged form as they propagate in deep water, but they deform and ultimately
break over sloping topography in relatively shallow water, such as on continental shelves. One of
the important parameters characterizing the deformation is the turning point, where the pycnocline
is at mid depth, and the polarity of an ISW changes from a wave of depression in deeper water to
that of elevation in shallower water [20,21]. If the bottom slope is mild enough to allow “adiabatic”
adjustment to the changing water depth, an incoming ISW of depression may transform into a
packet of ISWs [22]; this process is called fission. ISWs resulting from fission are predominantly
waves of elevation because fission occurs upslope from the turning point [19]. If the bottom slope
is sufficiently steep that an incident ISW does not have sufficient time for adiabatic adjustment, the
trailing face of the ISW steepens. Subsequently, if the wave has sufficient time to steepen before
reaching the turning point, the trailing face plunges, or overturns in the upslope direction [23];
however, if the incoming wave does not have sufficient time to overturn, the trailing face surges
upslope. These types of ISW breaking are called plunging and surging, respectively (see Aghsaee
et al. [19])
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In addition to fission, plunging, and surging, ISWs may break due to instability. Shear instability
may occur when the Richardson number Ri = N2/uz

2 (N is the buoyancy frequency and uz is
the vertical shear) becomes sufficiently low [24–26]. This process is important in relatively deep
water but does not appear to be so over a slope in relatively shallow water [20,27]. Another type
of instability occurs when the adverse pressure gradient induced by an ISW causes separation of
the bottom boundary layer and the shed vortices destabilize the pycnocline [28–31]. This process
becomes more important for shoaling ISWs because the adverse pressure gradient increases as the
wave trough approaches the bottom [32]; this type of ISW breaking is called collapsing.

Breaking of an ISW can create a train of ISWs of elevation with trapped cores, which have closed
streamlines when seen in a reference frame moving with the propagation speed [18,33]. Such ISWs
are often referred to as boluses [34,35]. They are known to occur after collapsing [34,35] and surging
[19]. Boluses have important implications for mass transport because they can have trapped cores
that carry mass upslope through the pycnocline [36,37]. Although we did not investigate boluses in
this study, the dependence of bolus formation on ISW breaker types illustrates the importance of
ISW classification.

Previous studies suggested several classifications of ISW breaking. Boegman et al. [38] (here-
after, BG) introduced an internal Iribarren number by modifying the Iribarren number originally
proposed for surface waves [39–42], and classified spilling, plunging, and collapsing breakers
in their laboratory experiments. (Note, however, that the classification of spilling breaker is now
considered to be erroneous [19].) Aghsaee et al. [19] (hereafter, AG) later introduced four types of
ISW breaking: fission, collapsing, plunging, and surging. They showed that the internal Iribarren
number alone is insufficient to classify these types of breaking, and proposed two-parameter
classification based on the wave slope Sw and the bottom slope S. However, this classification did
not satisfactorily delineate plunging and collapsing breakers in the laboratory experiments by BG
and in the numerical experiments conducted in this study. The laboratory experiments by Sutherland
et al. [43] also showed that Sw and S did not delineate plunging and collapsing breakers [see their
Fig. 9(a)], but they were unable to propose alternative classification for these breakers.

This study aims to extend the previous classification of AG by introducing Reynolds number
effects that delineates plunging and collapsing breakers. Following AG, we focused on ISWs in a
two-layer stratified fluid propagating into quiescent water and shoaling over a uniform slope. We
conducted numerical experiments of ISW breaking, but extended the work of AG by allowing the
density difference between the layers to vary. The simulation results were analyzed, together with
previous laboratory [38] and numerical [19] experiments, to derive a new parameter to classify
plunging and collapsing breakers.

II. METHODS

A. Present numerical experiments

In this study, a three-dimensional non-hydrostatic model, Fantom3D, was used to analyze the
breaking of shoaling ISWs. Fantom3D is an object-oriented parallel computing model for the
analysis of environmental fluid dynamics [44–47], based on the Reynolds-averaged Navier-Stokes
(RANS) equations in the height (z) coordinate. A free surface was applied to the top boundary, and
a no-slip and slip conditions were given on the bottom and lateral boundaries, respectively. The
partial cell scheme [48] was used to represent a uniform bottom slope in the z-coordinate model.

Sub-grid-scale turbulence was parameterized with a k-ε turbulence closure scheme [49,50]
to account for turbulent mixing and dissipation after ISW breaking; however, the turbulence
parameterization is not important for the purpose of this study because, as shown later, processes up
to (but not after) the point of wave breaking are laminar in the laboratory-scale problems considered
in this study [51].

Both energy reflection and breaker type are determined during the initial two-dimensional
wave/slope interaction occurring at large scale [19,52]. Therefore, the computational domain was
two-dimensional (2D), consisting of an open boundary, a flat-bottom section, and a uniform-slope
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FIG. 1. Schematic diagram of computational domain and mesh size. This figure indicates case 3 in Table I.

section (Fig. 1). The length of the flat-bottom section before the toe of the slope was 3.0 m,
and the total water depth H was 0.3 m for all cases. The bottom slope S, in the uniform-slope
section, varied from 0.03 to 0.3, to be consistent with AG. The size of the computational mesh was
0.002 m × 0.002 m in the wave breaking region over the slope and coarser elsewhere for all the
cases.

We applied an initial hyperbolic tangent stratification:

ρ(z) = ρ1 + �ρ

2

(
1 − tanh

z + h1

0.5a

)
, (1)

where z is the upward-positive vertical coordinate with origin at equilibrium water surface, h1 is
the upper-layer thickness, ρ1 is the density of the upper layer, �ρ is the density difference between
the upper and lower layers, and a (=0.01 m) is the thickness of the density interface. We used
upper-layer thicknesses ranging from h1 = 0.04 m to 0.08 m. To investigate the influence of the
specific density ratio εd [=�ρ/(ρ1 + �ρ)], we considered 17 cases with a lower-layer density ρ2 =
1010 kg m−3, 4 cases with ρ2 = 1020 kg m−3, 7 cases with ρ2 = 1040 kg m−3, and 1 case with ρ2 =
1080 kg m−3, while holding an upper-layer density at ρ1 = 1000 kg m−3 (Table I). In comparison,
AG and BG used εd = 0.04 and 0.02, respectively. The model was forced at the open boundary using
the third-order ISW solution [53,54]. The ISW amplitude A was varied from 0.013 m to 0.049 m
in order to investigate four different breaker types (Table I). The results from the present numerical
experiments are denoted as “NS”. The thickness of the density interface may control internal wave
breaking in a two-layer stratification; however, we consider the thin density interface case following
Boegman et al. [38] and Aghsaee et al. [19] with a quasi-two-layer system. Sutherland et al. [43]
performed experiments on breaker classification with varying interfacial thickness, but only report
results from experiments with a thin interface, thereby suggesting those with a thick interface are
inappropriate for the present investigation. The effect of the interfacial thickness on the type of
breaking remains to be investigated elsewhere.

B. Previous laboratory and numerical experiments

In addition to the numerical experiments described above, we included numerical experiments by
AG and the laboratory experiments by BG, to find a more universal classification of ISW breakers.
AG investigated breaking criteria using 2D direct numerical simulations. They defined four breaker
types, fission, collapsing, plunging, and surging, but also found mixed-mode breaker types, such as
collapsing-surging and collapsing-plunging breakers. In AG, the total water depth H was 0.15 m,
and the upper-layer thickness h1 ranged from 0.02 m to 0.06 m, with a specific density ratio εd of
0.04. They examined 7 different slope gradients S from 0.01 to 0.3. The initial condition was given
using the Dubreil–Jacotin–Long (DJL) equation [33].

BG carried out laboratory experiments in a tilting tank. They investigated breaking of high-
frequency internal waves over a uniform slope, formed by the degeneration of an internal basin-scale
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TABLE I. Main parameters from numerical experiments conducted in this study. Note that ρ1 =
1.00 g cm−3 for all the cases. U is the estimate of maximum free-stream current speed outside of the bottom
boundary layer, and c is the propagation speed of the leading incident ISW.

ρ2(g cm−3) h1 (m) h2 (m) A (m) λ(m) U (ms−1) c(ms−1) S Breaker type

Case 1 1.04 0.08 0.22 0.0278 0.900 0.0233 0.166 0.03 fission
Case 2 1.01 0.08 0.22 0.0490 0.873 0.0240 0.086 0.1 plunging
Case 3 1.01 0.08 0.22 0.0375 0.889 0.0172 0.085 0.1 plunging
Case 4 1.01 0.08 0.22 0.0489 0.896 0.0240 0.086 0.067 plunging
Case 5 1.01 0.08 0.22 0.0638 1.057 0.0360 0.087 0.067 plunging
Case 6 1.01 0.08 0.22 0.0213 0.961 0.0087 0.081 0.1 collapsing-plunging
Case 7 1.01 0.08 0.22 0.0128 1.105 0.0050 0.080 0.1 collapsing
Case 8 1.01 0.08 0.22 0.0255 0.908 0.0107 0.083 0.3 surging
Case 9 1.02 0.08 0.22 0.0317 0.906 0.0195 0.117 0.03 fission
Case 10 1.02 0.08 0.22 0.0318 0.903 0.0195 0.117 0.1 collapsing-plunging
Case 11 1.01 0.08 0.22 0.0199 0.973 0.0081 0.082 0.03 fission
Case 12 1.01 0.08 0.22 0.0199 0.971 0.0081 0.080 0.05 fission
Case 13 1.01 0.08 0.22 0.0199 0.970 0.0081 0.082 0.1 collapsing-plunging
Case 14 1.01 0.08 0.22 0.0199 0.968 0.0081 0.080 0.2 surging
Case 15 1.04 0.06 0.24 0.0190 0.691 0.0122 0.150 0.06 fission
Case 16 1.01 0.06 0.24 0.0187 0.699 0.0060 0.075 0.06 collapsing
Case 17 1.04 0.08 0.22 0.0379 0.862 0.0344 0.169 0.1 plunging
Case 18 1.08 0.08 0.22 0.0378 0.844 0.0483 0.240 0.1 plunging
Case 19 1.04 0.08 0.22 0.0214 0.992 0.0172 0.164 0.1 collapsing-plunging
Case 20 1.01 0.08 0.22 0.0213 0.965 0.0087 0.083 0.1 collapsing-plunging
Case 21 1.04 0.06 0.24 0.0363 0.593 0.0262 0.158 0.08 plunging
Case 22 1.04 0.06 0.24 0.0298 0.624 0.0204 0.160 0.15 plunging
Case 23 1.04 0.06 0.24 0.0152 0.722 0.0095 0.147 0.2 surging
Case 24 1.01 0.06 0.24 0.0150 0.727 0.0047 0.075 0.2 surging
Case 25 1.02 0.06 0.24 0.0158 0.757 0.0070 0.106 0.15 surging
Case 26 1.01 0.06 0.24 0.0157 0.761 0.0050 0.075 0.15 surging
Case 27 1.02 0.04 0.26 0.0216 0.461 0.0071 0.094 0.075 collapsing
Case 28 1.01 0.05 0.25 0.0266 0.559 0.0078 0.073 0.06 collapsing
Case 29 1.01 0.06 0.24 0.0128 0.801 0.0040 0.075 0.1 collapsing

seiche. The total water depth H and the specific density ratio εd were 0.29 m and 0.02, respectively.
They varied the upper-layer thickness h1 from ≈0.06 m to ≈0.085 m, and used two slope gradients,
S = 0.0967 and 0.145. Since it is possible that wave breaking occurred before ISWs were fully
developed through the degeneration process in the experiments, we investigated whether the leading
high-frequency internal wave, in each experimental case, can be considered as an ISW (see
Appendix). From this analysis, we used six cases in which the leading incident wave approximately
satisfied the theoretical amplitude–wavelength relationship for an ISW [Table II and Fig. 8].

C. Analytical methods

We develop a new classification of ISW breaker types using parameters that depend on the
background conditions (e.g., bottom slope and stratification) and the incident wave, but not the
wave as it deformed over the slope. This strategy was consistent with the classification of ISW
breakers by AG, which was based on the bottom slope S and the wave slope Sw = A/λ. Here, A is
the incident-wave amplitude, and λ is the incident-wave wavelength defined as

λ =
∫ +∞
−∞ η(x)dx

A
, (2)
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TABLE II. Main parameters from laboratory experiments by Boegman et al. [38]. Only cases that
approximately satisfy theoretical amplitude-wavelength scale relationship of internal solitary waves are
chosen (see Fig. 8). Wavelengths are slightly adjusted to satisfy the theoretical amplitude-wavelength scale
relationship.

ρ2 (gcm−3) h1(m) h2(m) A (m) λ(m) S Breaker type
Case B1 1.02 0.06 0.23 0.0256 0.674 0.145 plunging
Case B2 1.02 0.058 0.232 0.0068 0.955 0.145 collapsing
Case B3 1.02 0.087 0.203 0.0244 1.056 0.097 plunging
Case B4 1.02 0.087 0.203 0.0245 1.056 0.097 plunging
Case B5 1.02 0.083 0.207 0.0407 1.066 0.145 plunging
Case B6 1.02 0.083 0.207 0.0374 1.032 0.145 plunging

and η is the downward interface displacement [55]. These parameters may be combined into the
internal Iribarren number, ξi = S/Sw

0.5. We used different wave Reynolds numbers as parameters
representing boundary-layer separation. Diamessis and Redekopp [30] and Boegman and Ivey [15]
introduced the following wave Reynolds numbers

Re = c0H

ν
, (3)

Rew = c0A

ν
, (4)

respectively. Here, H = h1 + h2 is the total depth, ν is the kinematic viscosity or eddy viscosity
before boundary-layer separation, c0 is the propagation speed of long linear waves over a flat bottom,

c0 =
√

εg
h1h2

H
, (5)

and g is the gravitational acceleration. Aghsaee et al. [32] introduced the momentum-thickness
Reynolds number to provide a criterion for the separation of a laminar boundary layer over a flat
bottom; however, we did not consider this in the present study with waves shoaling over a sloping
bed.

The “critical depth” is defined as the position where the total water depth is divided with the
ratio of ρ1

0.5 and ρ2
0.5 from water surface. It is easily found from the Korteweg–de Vries (KdV)

theory that an ISW is convex toward the critical depth (Fig. 2). Therefore, there exists a “turning
point” where an incoming ISW changes the polarity from a wave of depression in deeper water
to a wave of elevation in shallower water. Nakayama et al. [9] defined the horizontal length from
the turning point to the slope–interface intersection at equilibrium as the critical length LC . They
summarized that LC should be taken into account in order to clarify how internal waves are excited
and how residual currents are driven over a slope when a collapsing breaker occurs. For a plunging
ISW breaker, AG found that the breaking point occurs offshore from a turning point. We define the
horizontal length from the toe of the slope to the turning point as the critical slope length LSC.

To check whether the bottom boundary layer under an ISW was laminar before breaking, we
considered a Reynolds number for boundary layer flows under a solitary wave

ReBL = aU

ν
, (6)

where U is the maximum free-stream current speed in the lower layer, and a ∼ (2c0)−1λU is half
the wave-induced horizontal water-particle displacement in the free-stream region [56]. Previous
laboratory [56] and numerical [57,58] experiments showed that the laminar-turbulent transition
occurs when ReBL = O(105).
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FIG. 2. Definition of critical slope length, LSC, and critical length, LC , and breaking points, BpX and BpZ .

To investigate the characteristics of the breaking point for various ISW breakers, the location of
the breaking point was estimated to be the location where the vertical pressure gradient becomes
zero [9]:

∂p

∂z
= 0 at density interface. (7)

This method enables precise detection of the breaking point, even if there is no distinguishable
mixing of the density interface. The horizontal length between the toe of the slope to the breaking
point is defined as BpX, the vertical length between the flat bottom to the breaking point is BpZ , and
the vertical length between the flat bottom and the critical depth is HSC (Fig. 2).

III. RESULTS

A. Present numerical experiments

As in AG, four different types of ISW breaker—fission, collapsing, plunging, and surging—were
found to occur in our numerical experiments. Typical cases of fission (case 1), collapsing (case 7),
plunging (case 3), and surging (case 8) are shown in Fig. 3. For fission, it was confirmed that
an ISW with a longer wavelength was deformed into ISWs of elevation with shorter wavelengths
that eventually broke over the slope [Fig. 3(a)]. As well known from previous studies, collapsing
breakers induced a backward overturn of the interface near the front [i.e., anticlockwise overturn in
Fig. 3(b)]. Plunging breakers showed a dynamic forward overturn along the trailing face [clockwise
overturn in Fig. 3(c)]. For surging breakers, mixing occurred adjacent to the slope and the front
ran-up over the slope, without major overturning of the density interface [Fig. 3(d)].

To investigate the influence of the turning point location on the breaker type, BpX/LSC and
BpZ/HSC are plotted in Fig. 4. The breaking points for plunging occurred downslope from the
turning point [19]. In contrast, the breaking points for surging, collapsing, and fission were likely to
occur upslope from the turning point. The vertical location of breaking was found to occur below
the critical depth and the breakers were all located at almost the same height. Mixed-mode breakers
(collapsing-plunging and collapsing-surging breakers) are not shown in Fig. 4.

In all the present numerical experiments, the bottom boundary layer flows before ISW breaking
were laminar, ReBL = O(103), and well below the transition at ReBL = O(105). For example, U =
O(10−2 m s−1), c0 = O(0.1 m s−1), λ = O(1 m), and ν = 10−6 m s−1 (Table I). We also confirmed
that the use of molecular kinematic viscosity (10−6 m2 s−1) and the k-ε turbulence closure scheme
gave essentially the same results before wave breaking. The above scaling arguments are also
applicable to the experiments in AG and BG, and so the bottom boundary layer flows, from the
previously published data, are hereafter considered to be laminar.
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FIG. 3. Typical cases of different breaker types. (a) Fission (case 1 in Table I). (b) Collapsing (case 7 in
Table I). (c) Plunging (case 3 in Table I). (d) Surging (case 8 in Table I). Contours indicate density.

B. Revisiting previous breaker classifications

Our numerical experiments and the laboratory experiments by BG showed that the breaker type
could not be classified by using the internal Iribarren number (ξi), but surging and fission could be
classified using Sw and S. In particular, we found that the criterion for a surging breaker by AG,

S > 7Sw, (8)
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FIG. 4. Relationship between BpX/LSC and BpZ/HSC. All points are from NS. Triangles, squares, circles,
and crosses indicate plunging, surging, collapsing, and fission, respectively.

holds for our extended data sets, except one laboratory case from BG (Fig. 5). However, as found
by Sutherland et al. [43], plunging and collapsing breakers could not be separated using Sw and S
in previously published data.

C. New breaker classification

We confirmed that surging breakers and fission could be classified using Sw and S, but it remains
necessary to find a new parameter for classifying plunging and collapsing breakers. We attempted
to use a wave Reynolds number to classify these breakers, because wave Reynolds number controls
boundary-layer separation over a flat bottom [15,30–32]. Figures 6(a) and 6(b) show collapsing and
plunging breakers as a function of (S/Sw) and Re or Rew. Although (S/Sw) and Re do not delineate
the two breaker types, (S/Sw) and Rew do delineate them. However, the classification in Fig. 6(b)
is not ideal because it requires two parameters [i.e., two lines in Fig. 6(b)].

FIG. 5. ISW breaker types as a function of wave slope Sw and slope gradient S. Green, blue and red show
NS, BG and AG, respectively. Triangles, squares, circles, and crosses indicate plunging, surging, collapsing,
and fission, respectively.
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FIG. 6. ISW breaker types as functions of S/Sw and different wave Reynolds numbers. (a) Re, (b) Rew , and
(c) ReISW. Green, blue, and red show NS, BG, and AG, respectively. Triangles and circles indicate plunging
and collapsing, respectively. Panel (c) shows proposed classification with solid line indicating the threshold
between plunging and collapsing breakers.

To derive a single parameter that delineates collapsing and plunging breakers, we modified Rew

by considering wave steepening effects. We did so because a plunging breaker is not expected
to occur when nonlinear wave steepening occurs relatively slowly, but Rew does not capture such
effects. For example, laboratory experiments in Nakayama et al. [8] showed only collapsing breakers
when the upper- and lower-layer thicknesses were equal (note, however, that the incident waves were
sinusoidal, not ISWs, in their experiments). Therefore, it appeared reasonable to use the increase in
wave propagation speed, due to nonlinear effects αA, as a velocity scale to modify Rew. Here, α is
the coefficient of the nonlinear term in the KdV equation, defined as

α = 3

2

c0

h1h2

ρ1h2
2 − ρ2h1

2

ρ1h2 + ρ2h1
. (9)
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FIG. 7. ISW breaker types as a function of h’ and αA. Green, blue, and red show NS, BG, and AG,
respectively. Triangles and circles indicate plunging and collapsing, respectively.

We choose the following length scale to define a Reynolds number:

h′ = h1h2

h1 + h2
. (10)

Although α and h′ change with water depth, the values in the flat-bottom section are used in the
above expression because we aim to develop a classification based on incident-wave parameters.
Figure 7 shows that the larger αA and h′ become, the greater the tendency is toward plunging
breakers, although some of the data points for plunging and collapsing breakers overlap because of
the dependence on (S/Sw). Based on the above arguments, we propose the following wave Reynolds
number:

ReISW ≡ αAh′

ν
. (11)

Figure 6(c) shows that collapsing and plunging breakers can be delineated by a straight line
because it is found from Fig. 6(c) that the smaller the value of α is given, the more the greater ten-
dency toward collapsing breakers. Therefore, ReISW is revealed to have more universal application
compared to Rew. From the results in Fig. 6(c), we propose the following nondimensional index as
a threshold between collapsing and plunging breakers:

BISW ≡ (S/Sw )Re2
ISW

{
> 7 × 106 plunging
< 7 × 106 collapsing.

(12)

The meaning of BISW can also be understood from geometrical relationships, rather than the KdV
theory. Because the specific density ratio between the upper and lower layers is small (εd � 1), α

and LSC can be written as

α ∼ 3

2
c0

h2 − h1

h1h2
, (13)
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LSC ∼ h2 − h1

S
. (14)

These expressions can be used to rewrite ReISW as

ReISW ∼ 3

2

LSCS

H
Rew, (15)

which shows the importance of the critical slope length LSC , the relationship between Rew and
ReISW and the relationship between α and (LSCS c0/H ). When a density interface is located close to
the critical depth (LSC tends to zero), ReISW becomes smaller and collapsing breakers predominate,
even if Rew is relatively large.

An approximate (first-order) critical amplitude AC , which delineates collapsing and plunging
breakers, can be obtained from Eqs. (12) and (15) assuming the wavelength of the classical (first-
order) KdV soliton, yielding

AC ∼ B2
ISW,C

27S2Re4

(
H 2

h1h2

)2(
H

LSCS

)3

, (16)

where BISW,C (=7 × 106) is the threshold between collapsing and plunging breakers. When LSC

becomes larger, the critical amplitude becomes smaller, which means that a plunging breaker is
more likely to occur. It should be noted that the critical amplitude AC is likely to be overestimated
since the wavelength is underestimated by the first-order KdV theory [59].

IV. DISCUSSION

The major contribution of this study is the use of a Reynolds number (either Rew or ReISW) to
classify collapsing and plunging breakers. Although Re or Rew have been previously applied to
investigate the boundary-layer separation under an ISW [30–32], this study appears to be the first to
apply a Reynolds number for ISW breaker classification. We preferred ReISW to Rew in this study,
because it leads to a simple nondimensional index that delineates collapsing and plunging breakers.
The proposed classification should be used when the breaker type based on the Sw−S classification
by AG falls in the collapsing or plunging regime.

Another new result obtained in this study is the confirmation that the effect of the specific
density ratio εd on ISW breaker types is small. Although Michallet and Ivey [17] showed that
mixing efficiency is insensitive to εd , its effect on ISW breaker types does not appear to have been
investigated before. It should be noted that the results in Michallet and Ivey [17] and this study do
not imply small effects of εd on the overall mass transport induced by ISW breaking. For a given
(displacement) amplitude, ISW-induced currents are proportional to the wave speed c0, and hence
εd

1/2, so εd can affect isopycnal mass transport of water mass with intermediate density created by
ISW breaking.

Previous studies suggest that there are potentially competing Reynolds-number effects on ISW
breaker types. On one hand, Aghsaee et al. [32] showed that the boundary layer is more susceptible
to separation at higher momentum-thickness Reynolds number, although their results are valid only
for a laminar boundary layer over a flat bottom. On the other hand, based on numerical simulations
at relatively low and very high grid resolutions, AG argued that collapsing breakers, triggered
by boundary layer separation, are less likely to occur at higher Rew, because of smaller vortices
resulting from the separation and slower growth of the instability. Our analysis of Reynolds-number
effects is based on simulations at relatively low grid resolution [Figs. 6(b) and 6(c)], but the results
are consistent with the high-resolution simulation by AG and collapsing is less likely to occur at
higher Reynolds number.

It should be noted that the proposed classification has several caveats. One of them is that
broad-crested ISWs (A ≈ (h2 − h1)/2 when ρ1 ≈ ρ2) are outside of the parameter range, because
they were not considered in the experiments in BG, AG, and this study when ρ1 ≈ ρ2. However,
this is not of significant concern because the majority of observed ISWs are narrow-crested (see
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Ref. [19], their Fig. 2). The second caveat is the use of two-dimensional numerical simulations,
which do not capture three-dimensional processes such as secondary instability and subsequent
mixing [51,60]. Since the focus of this study is the processes up to incipient ISW breaking, the use
of two-dimensional model is considered sufficient for simulating initial two-dimensional instability
[19,51,52]. The last caveat is that the breaker type, and hence proposed threshold between collapsing
and plunging breakers in Eq. (12), will be modified if the no-slip bottom boundary is not resolved
with the grid resolution employed in the numerical experiments [19]. The processes leading to
fission, plunging, and surging are not very sensitive to grid resolution because they depend on
kinematic and “adiabatic” processes. However, boundary-layer separation and ensuing instability,
which causes collapsing, is more sensitive to grid resolution. Nonetheless, it is encouraging that the
simulations in this study, and in AG, independently satisfy the proposed classification, suggesting
that the results are relatively robust to differences in model formulation and simulation conditions.
The resolution dependence of the threshold in Eq. (12) does not affect the result that the Reynolds
number is a major factor in delineating collapsing and plunging breakers.

The proposed nondimensional index BISW can be calculated by including the effect of thickness
of the pycnocline. Therefore, we need to test whether the proposed classification is applicable to
these conditions. Background shear would also be an important factor [61], and its effects can be
included in the calculation of c0, α, and β [62]; however, this is beyond the scope of the present
work. An eddy viscosity can also be used as ν to calculate ReISW. It remains to be investigated, in
future work, which choice provides better classification of ISW breakers in the case including the
effect of thickness of the pycnocline.

As an example application of the proposed classification, we apply Eq. (12) (with α instead
of LSC) to the numerical simulation in Vlasenko and Hutter [23]; although the grid resolution
might be too coarse to resolve the no-slip bottom boundary layer in their simulation [19]. They
simulated plunging to occur under the following conditions: h1 = 50 m, h2 = 950 m, L = 18.8 km,
LSC = 17.8 km, εd = 0.00498, ν ≈ 0.001 m2 s−1, λ ≈ 500 m, and A = 84.4 m. Since Sw = 0.17
and S = 0.051, this case is located in the collapsing or plunging regime in the Sw−S classification
(Fig. 5). The proposed classification does indicate a plunging breaker with ReISW = 1.9 × 105,
S/Sw = 0.30, and BISW = 7.3 × 1011 [Fig. 6(c)].

V. CONCLUSIONS

This study investigated the classification of ISW breakers over a uniform slope in a two-layer
stratified fluid based on present numerical experiments and previous laboratory [38] and numerical
[19] experiments. We showed that the latest classification [19] based on the wave slope Sw and
the bottom slope S does not classify collapsing and plunging ISW breakers in the published data
sets, and that the use of S/Sw and a wave Reynolds number (either Rew or ReISW) enables us
to delineate them, with ReISW being preferred as it requires a single equation. We proposed a
nondimensional index BISW = (S/Sw )ReISW

2 for the classification, with a threshold value (7 ×
106). The applicability of the proposed classification to the case with the effect of thickness of
the pycnocline remains to be investigated in the future.
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FIG. 8. Comparisons of amplitude–wavelength relationships. Cases with (a) h1 ≈ 0.06 m and (b) h1 ≈
0.085 m from Boegman et al. [38].

APPENDIX

In this Appendix, we investigate whether the leading high-frequency internal wave in the
laboratory experiments in BG can be considered as an ISW. They investigated the breaking of
shoaling high-frequency internal waves formed by the degeneration of an internal seiche in a tilting
tank. Since it takes a steepening timescale to form ISWs from an internal seiche [63,64], an ISW
is formed only if this steepening timescale is shorter than the time it takes for the wave to break
(see Fig. 7 in BG). To see if the leading high-frequency internal wave over the flat-bottom section
was an ISW before reaching the uniform-slope section, we followed previous studies [55,65,66],
and compared the experimental and theoretical amplitude–wavelength relationships over a flat
bottom. To calculate the theoretical relationships for ISWs, we used the Fully nonlinear and strongly
dispersive Internal wave equation in a two-layer system (FDI-2s) [54,67,68], because the third-order
solution underestimates the wavelengths of large-amplitude ISWs (Fig. 8).

Since the ISWs were formed from an internal seiche, it is expected that background current
affected the profiles of ISWs. For example, for surface waves in stratified fluids, background shear
can increase the wavelength by more than 10% when the modified Froude number is larger than 1.0
[69–72]. Although the modified internal Froude number, including the effect of background current,
is less than 1.0 in Boegman et al. [38], it should be noted that a wavelength might be overestimated
slightly.

Based on the comparisons shown in Fig. 8, we used two and four cases from the cases with
upper-layer thickness h1 ≈ 0.06 m and ≈0.085 m, respectively, in our analysis (Table II).
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