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Influence of inlet flow profiles on swirling flow dynamics in a finite-length pipe
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The influence of various inlet swirling flow profiles on the manifold of steady ax-
isymmetric states of flows in a straight, long circular pipe of a finite length L and
on flow dynamics is investigated. The study is motivated by the bifurcation diagrams
originally studied by Leclaire and Sipp [B. Leclaire and D. Sipp, J. Fluid Mech. 645,
81 (2010)] and explores, in all of their inflow cases, the relationship between bifurcation
and flow evolution. Steady circumferential and axial velocities and azimuthal vorticity are
prescribed at the inlet. A parallel flow state is set at the outlet. The outlet state of the steady
problem may be determined by solutions of the axially independent Squire-Long equation.
For each of the incoming flows studied, the solutions include the base columnar flow
solution, a decelerated flow along the centerline, an accelerated flow along the centerline,
a vortex-breakdown solution, and a wall-separation solution. These solutions correspond
to respective steady states in the pipe. Branches of higher-order noncolumnar states that
bifurcate at a sequence of critical swirl levels are also presented. The theoretical predictions
are numerically realized by unsteady and inviscid flow simulations. The simulations clarify
the base flow stability and the dynamics of initial perturbations to various attracting states.
Results demonstrate that, depending on the inlet flow profile, the global minimum state
of the energy function E of the problem turns at a certain critical swirl level, denoted
by ω0 + ε(L) [where 0 < ε(L) � 1 and tends to zero with an increase of L], from the
columnar state to become a centerline-decelerated flow state, a vortex-breakdown state,
or a wall-separation state. The jump of the global minimum state of E at ω = ω0 + ε(L)
together with the critical swirl of the columnar state at ω = ω1 govern the evolution of
pipe vortex flows. This analysis provides understanding of all possible axisymmetric flow
evolution processes for various inlet profiles and swirl levels, and the domain of attraction
of crucial states.

DOI: 10.1103/PhysRevFluids.4.014701

I. INTRODUCTION

Vortex flows exhibit the appearance of instabilities and breakdown phenomena which signif-
icantly change the flow structure. Specifically, the vortex-breakdown process is characterized by
the sudden deceleration of a vortex jet to form a stagnation point along the centerline, followed
by a wide separation zone and a high turbulence in the swirling wake behind the zone. Extensive
reviews of this phenomenon were given by Refs. [1–6]. They focused on the breakdown of flows
in vortex tubes and of leading-edge vortices around slender wings flying at high incidence. Other
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breakdown phenomena in pipe flows include transition to flows with a stagnation line around the
wall and a large wall-separation zone behind it (see the recent experiments in Ref. [7]). These
various breakdown phenomena may limit the performance of engineering systems including the
aerodynamics of aircraft at high incidence [8] and inlets, compressors, fans, and turbines of jet
engines, Ref. [9]. In combustion systems, however, breakdown phenomena help to form a natural
flame holder zone and thereby improve the chemical reaction stability and efficiency, Ref. [10].

The experimental studies in Refs. [2,11–14] of vortex flows in fixed pipe geometries reported
the occurrence of the axisymmetric-bubble, rotating-spiral, and double-helix types of breakdown
zones around the vortex centerline at low Reynolds numbers 500 < Re < 3 000. These types of
breakdown may coexist at low Re, less than 1 000. The axisymmetric type of breakdown dominated
the flows when swirl level or Re were increased. In addition, later experiments found the open,
axisymmetric conical breakdown states at much higher Re, above 50 000, Refs. [5,15]. They found
that the bubble breakdown was replaced by an open downstream breakdown zone; the vortex
core initiated a kink at a certain point which was followed by a short rotating spiral wave and a
sudden burst into three-dimensional turbulence, while the outer core flow expanding around an open
centreline zone was nominally an axisymmetric swirling wake flow. The conical breakdown state
was found to be a fundamental type of breakdown at high Re, above 100 000, and may represent an
inviscid-limit type of breakdown. This type of breakdown was also documented in high-Re flows
over delta wings in Ref. [4] and in flows in open pipes, Ref. [16].

Moreover, recent experimental studies of flows in rotating pipes discovered disrupted vortex
states that include an axisymmetric wall-separation zone on the wall of the pipe and these can coexist
with vortex-breakdown states, Ref. [7]. These various experiments also reveal that breakdown as
well as wall-separation states are sensitive to the inlet vortex flow profiles. We address this issue in
the present paper.

We follow in this paper the Wang and Rusak [17–20] theory, the studies of Rusak et al. [21],
and the approach of Rusak and Wang [22]. These papers studied the inviscid-limit axisymmetric
vortex-breakdown process of a vortex flow in a straight, circular pipe of length L. They considered
a setup with an active vortex generator placed in front of the pipe inlet, at a steady and continuous
operation. Steady circumferential and axial velocities and azimuthal vorticity were assumed at the
inlet section of the pipe. The inlet flow allowed the development of radial velocity in response to
the propagating disturbances inside the bulk and to the swirl level. When the pipe was long, the
outlet state was passive with no radial velocity and no axial gradients of the azimuthal vorticity and
the circulation. Along the pipe walls an inviscid no-penetration condition was set. This model was
applied to explore the various dynamical processes of the flow. A variational functional E was used
to describe the manifold of steady states as a function of swirl ratio at the inlet ω.

The analysis of Refs. [17–22] focused on inlet flow profiles such as the solid-body rotation, the
Rankine vortex model, the Lamb-Oseen vortex model, and the Q-vortex model of Ref. [2]. It showed
that there are two critical swirl ratios of the inlet flow ω0 + ε(L) and ω1 [here ω0 + ε(L) < ω1] that
connect four branches of equilibrium states (see Fig. 15 in Ref. [19]). The parameter 0 < ε(L) � 1
and tends to zero with the increase of L. When 0 � ω < ω0 + ε(L), the base parallel (columnar)
vortex flow states form a global minimum point of E that is asymptotically stable. When ω0 +
ε(L) < ω < ω1, they become a local minimum point of E that is linearly stable. When ω > ω1, they
become a min-max point of E that is unstable to a dominant centerline mode of perturbation which
decelerates the flow along the centerline. In addition, unstable, centerline-decelerated solitary-wave
flow states that form min-max points of E bifurcate at ω1 and grow in size as ω is reduced toward
ω0 + ε(L). At ω = ω0 + ε(L), the global minimum point of E changes from being formed by the
columnar states to a state which describes a flow around a breakdown zone that starts at the outlet.
As ω is varied above ω0 + ε(L), breakdown states appear and form a global minimum point of E .
The radial size of the breakdown zone increases with increasing ω above ω0 + ε(L) and the nose of
the zone moves upstream towards the inlet. These states show a flow that expands axisymmetrically
around a centerline, open stagnation region, similar to the flow states discovered in Ref. [5] at
Re > 100 000. These zones develop from an infinitesimal amount of inlet mass flux with no swirl
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at the pipe centerline that grows into a large stagnation zone of finite size. In addition, a branch
of linearly stable, centerline-accelerated flow states that are local minimum points of E bifurcate
at ω1 to higher swirl levels. Moreover, the analysis of Ref. [23] showed the existence of additional
higher-order critical swirl levels ω2 < ω3 < · · · that appear in sequence as inlet swirl is increased
above ω1. Higher-order noncolumnar flow states bifurcate at each of these critical swirl levels and
they all form unstable min-max points of E . Note that Fig. 1 in Ref. [23] extends and fully completed
the bifurcation diagram for an inlet Lamb-Oseen vortex flow shown in Fig. 14 I(a) in Ref. [24] for a
range of swirls around ω1.

Wang and Rusak’s [17–19] analyses of the Lamb-Oseen and Q vortices in a pipe of finite
length show for high Re that when ω > ω0 + ε(L) vortex breakdown is a necessary process from
a perturbed near-columnar vortex flow to a state where the incoming swirling flow expands around
a large and open centerline stagnant zone. This evolution is the result of interaction of azimuthal
vorticity waves propagating upstream with the active incoming flow profile. It is caused by a flow
axial inhomogeneity that is induced by the asymmetry between the fixed active inlet flow and
the passive exit conditions. The stability margin of the columnar states decreases as ω increases
above ω0 + ε(L) and approaches ω1. They reach a critical balance at ω1 and become unstable when
ω > ω1. The simulations of Ref. [23] demonstrate that breakdown states form global attractors
of flow evolution when ω > ω0 + ε(L). Therefore, the condition ω > ω0 + ε(L) is necessary for
the existence of breakdown states, while the condition ω > ω1 is sufficient for the appearance of
breakdown states.

Buntine and Saffman [25] and Leclaire et al. [24,26] conducted computational studies to develop
solution branches of the steady and inviscid flow problem as the incoming swirl level was increased
for various incoming flow profiles into straight, contracting, or diverging pipes. These studies
focused only on regular flow states before the appearance of a stagnation point at the outlet.
However, they all experienced difficulty in computing the flow states beyond such a situation and
therefore stopped the computation of branches of states once a stagnation point was found at the
outlet. We point out that there is no physical, mathematical, or numerical reason for branches
of solutions to stop in the middle of the parametric space. Leclaire and Sipp [24] inferred from
their computations the possible appearance of breakdown states or wall-separation states and found
that certain inlet flow profiles may promote breakdown states at low swirl ratios while other inlet
profiles may promote wall-separation states. However, all the manifold of solutions in Ref. [24]
are incomplete and for the situations where a stagnation point appears at the outlet, nonregular
solutions describing a separation zone at the centerline or on the wall must develop. These states
should be computed to fully complete the bifurcation diagrams since they are directly related to the
long-term dynamics of the flow. Following Refs. [19,22], the present study resolves these issues by
formulating physical conditions that allow the computation of centerline stagnation zones or wall
quasistagnation zones. In the analysis of inviscid-limit flows, these conditions are directly related to
the Batchelor [27] condition for separation zones in viscous flows.

We also point out that the manifolds of solutions described by Leclaire and Sipp [24] do not
include higher-order bifurcation points and additional branches of solutions that must exist. These
states also strongly affect the trajectories of flow evolution from various initial conditions (see, for
example, Ref. [22]).

Moreover, Rusak and Wang [22] studied a solid-body rotation entering a rotating pipe with a plug
axial velocity. In this case, ω0 + ε(L) = ω1 and the complete bifurcation diagram of the manifold
of steady states has been developed for a range of swirls above ω1. Note that Fig. 4 in Ref. [22] fully
completed the bifurcation diagram shown in Fig. 14 II(a) in Ref. [24]. The analysis in Ref. [22]
showed the existence of flows with wall-separation zones, in tandem with vortex-breakdown states.
These states exhibit an open quasistagnation zone on the pipe wall. Inside the zone there are no axial
and radial velocities, however the pressure and circumferential velocity vary. The zones develop
from an infinitesimal mass flux with rotation on the wall at the inlet that grows into a quasistagnation
zone of finite size. The breakdown and wall zones increase in size with an increase of swirl above
ω1. The breakdown and wall-separation states have their domains of attraction in response to flow
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initial conditions and the evolution of perturbations. Reference [7] established experimentally the
existence of these zones in flows in rotating pipes.

The present simulations show that the wall-separation states naturally evolve from the inviscid
flow dynamics in a rotating pipe and the viscosity or viscous no-slip conditions are not needed to
generate such states. Flow dynamics is dominated by its inviscid flow behavior and the dominant
centerline instability mode of perturbation that in the case of wall separation accelerates the flow
along the centerline and decelerates the flow near the wall. Slight viscosity at high-Re situations
may only tune the flow dynamics. Adding the no-slip condition along the wall generates at high-Re
situations a thin boundary layer of the axial velocity that in wall-separation states is carried with the
flow dynamics along the interface of the wall-separation zone.

We investigate in the present paper the manifold of steady rotating flows in a circular straight
pipe of finite length for various incoming swirling flow profiles. The mathematical model uses
the inviscid and incompressible axisymmetric flow problem (Sec. II). We use the interesting inlet
flow profiles of Ref. [24]. Following the global analysis of Wang and Rusak [19], the outlet state
may be determined by solutions of the axially independent Squire-Long equation (Sec. III). For
each incoming flow profile, there are four possible types of solutions. Bifurcation diagrams are
established in Sec. IV and compared with solutions of the Squire-Long equation according to
Leclaire and Sipp [24]. These theoretical predictions are also numerically realized by unsteady
inviscid and axisymmetric flow simulations. The simulations clarify the base flow stability and the
dynamics of initial perturbations to the various states. The present study extends all the bifurcation
diagrams studied in Ref. [24] to also include vortex-breakdown, wall-separation, and higher-order
flow states. We show that for some inlet flow profiles the global minimum state turns at ω0 + ε(L)
from a columnar state to become a centerline-decelerated flow state, a breakdown state, or a
wall-separation state. The jump of the global minimum of E at ω = ω0 + ε(L) and the critical
swirl at ω = ω1 dominate the global flow dynamics.

The present paper is motivated by the interesting study of Leclaire and Sipp [24], contributes
fundamental results, and adds necessary knowledge to the qualitative and the quantitative bifurcation
pictures of Ref. [24]. The paper provides a conclusive understanding of the global vortex flow dy-
namics for various inlet profiles. Also, we give a definite correlation between numerical simulation
results, the results of the Squire-Long problem, the results from the columnar Squire-Long model,
and results from the weakly nonlinear model. The columnar flow results and the weakly nonlinear
model provide accurate reduced-order analysis tools to predict the flow dynamics for various inlet
profiles and the simulations help to realize the important flow states, their stability, and transitions
among them.

II. MATHEMATICAL PROBLEM

An incompressible, inviscid, and axisymmetric vortex flow in a circular straight pipe of radius R

and finite length LR is investigated. The axial distance x from the inlet and the radial distance r from
the centerline are scaled with R. We use a cylindrical coordinate system (r, θ, x) where 0 � r � 1,
0 � θ < 2π , and 0 � x � L. We scale the velocity components with the characteristic speed U

entering the pipe. We use the nondimensional axial velocity w, radial velocity u, and azimuthal
velocity v. We scale time t with the ratio R/U .

Let y = r2/2, where 0 � y � 1/2. Assuming axisymmetry, we use a stream function ψ (x, y, t )
from which u = −ψx/

√
2y and w = ψy . Then the reduced azimuthal vorticity χ is given by

χ = −
(

ψyy + ψxx

2y

)
(1)

and azimuthal vorticity is determined from η = √
2yχ . We define the circulation function K as

K = √
2yv. The dynamics of ψ (x, y, t ), K (x, y, t ), and χ (x, y, t ) in the flow domain 0 � x � L
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and 0 � y � 1/2 are given by

Kt + ψyKx − ψxKy = 0, (2a)

χt + ψyχx − ψxχy = 1

4y2
(K2)x (2b)

for t � 0. Equation (2a) presents the transport along a path line of circulation K . Equation (2b)
describes the change of reduced azimuthal vorticity χ along a path line as it is affected by the
stretching or contraction of circulation. This effect induces changes in the flow that propagate either
upstream or downstream, along the centerline or the wall. These changes interact with the incoming
and outgoing states within a finite time and, at certain swirl levels, increase in size and develop into
states with either vortex-breakdown or wall-separation regions.

To represent experimental setups, Eqs. (1) and (2) are solved with certain conditions posed at the
domain boundaries. We investigate the setup where inlet flow is given for t � 0 and 0 � y � 1/2
by ψ (0, y, t ) = ψ0(y) and K (0, y, t ) = ωK0(y), where ω � 0 is the swirl ratio of the entering flow
and K0(0) = 0. In this paper we use the functions ψ0(y) and K0(y) studied in Ref. [24],

ψ0(y) =
(

1 − d

b

)
y + d

2b

1 − e−2by

1 − e−b
, K0(y) = 1 − e−2by

b
. (3)

Here b is the vortex-core parameter, rc = 1.12/
√

b, and d is an axial jet parameter, related to
the centerline axial velocity ψ0y (0) = 1 + d( 1

1−e−b − 1
b

). Moreover, we set χ (0, y, t ) = −ψ0yy =
2bd

1−e−b e
−2by , which, from Eq. (1), is equivalent to the condition ψxx (0, y, t ) = 0 for t � 0 and

0 � y � 1/2. This condition reflects that the inlet radial velocity u(0, y, t ) = −ψx (0, y, t )/
√

2y

is not prescribed. It may evolve in time to represent interaction between the incoming flow and
propagation of perturbations in the bulk. These inlet conditions represent a physical setup where
the flow entering the pipe is generated by a vortex generator composed of a system of guiding
vanes in front of the pipe operating at steady and smooth conditions (see the experimental studies
of Refs. [2,5,11,12,16,28] and the simulations of Ref. [29]).

The condition at the outlet represents a flow with no radial velocity, i.e., ψx (L, y, t ) = 0 for
t � 0 and 0 � y � 1/2. When the pipe length is long, L > 6, this condition describes the data from
Ref. [16] experiments where a parallel state was formed in the mean flow at about six radii away
from the pipe inlet, ahead of the exit. Following Ref. [24], L = 10 is used for all cases computed in
this paper.

Axisymmetry is set along the centerline, i.e., ψ (x, 0, t ) = 0 for 0 � x � L and for t � 0. Along
the wall surface y = 1

2 , i.e., ψ (x, 1
2 , t ) = ψ0( 1

2 ) = 1
2 for 0 � x � L and for time t � 0. It represents

a constant flow flux at each cross section along the pipe together with the tangency of flow along
the wall.

The transport equations (2) together with the Poisson equation (1) and prescribed boundary
conditions form a well-defined problem of the evolution of the pipe flow. Given initial conditions
for ψ (x, y, 0), K (x, y, 0), and χ (x, y, 0), the mathematical problem represents the dynamics of
an axisymmetric vortex flow in a pipe of finite length. Moreover, the inlet vorticity condition
[ψxx (0, y, t ) = 0] describes a case where the circulation and total head coming into the pipe are
identical for several steady states in the bulk at the same inlet swirl level and with the same boundary
conditions, see Ref. [21]. Such boundary conditions were used in the viscous flow simulations of
Refs. [30–33] and in the inviscid flow simulations of Refs. [19,21,22,24,25,34] of rotating flows in
pipes.

The steady columnar (parallel) flow state where ψ (x, y, t ) = ψ0(y), K (x, y, t ) = ωK0(y), and
χ (x, y, t ) = χ0(y) = −ψ0yy is a base solution of the mathematical problem (1) and (2) with the
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prescribed boundary conditions. Starting from a perturbed flow at t = 0 given by

ψ (x, y, 0) = ψ0(y) + δψ1(x, y), χ (x, y, 0) = χ0(y) + δχ1(x, y),

K (x, y, 0) = ωK0(y) + δK1(x, y), (4)

we use the simulation algorithm described in Refs. [21,23] to simulate flow evolution for the inlet
profiles according to Eq. (3) and at various inlet swirl levels. Here δ is the perturbation size and
ψ1(x, y), χ1(x, y), and K1(x, y) are the initial perturbation functions.

The simulation code uses an explicit first-order forward difference in time and a second-order
upwind finite-difference scheme in space to integrate K and χ in time according to inviscid flow
equations (2). To accurately capture flow states with centerline breakdown or wall-separation zones,
the scheme uses a backward-difference formula at each point when either the axial or the radial
velocities at the point are positive and a forward-difference formula at each point when either the
axial or the radial velocities at the point are negative. The time step must obey certain criteria in
terms of axial and radial step sizes to guarantee numerical stability of the computations. An iterative
second-order central-difference scheme in space is used at each time step to integrate ψ in terms of
χ according to the Poisson equation (1). For additional details of the computational algorithms, also
see Appendix A in Ref. [35]. We look to determine the relationship between time-asymptotic states
computed from the simulations and predicted solutions of the steady-state problem, discussed in the
next section.

III. STEADY-STATE SOLUTIONS

A. Steady-state problem

We look to describe the manifold of solutions of the steady-state problem resulting from Eqs. (1)
and (2) with the set of boundary conditions when ω increases from zero to high values. We define
ψ = ψs (x, y) when flow is at the steady state. In the steady flow problem, the circulation K and
total head H flowing into the pipe are functions of only ψs , see Ref. [36]. Then Eqs. (1) and (2) can
be recast into one partial differential equation (PDE), which is known as the Squire-Long equation
(SLE) (see Refs. [37,38]), i.e.,

ψsyy + ψsxx

2y
= H ′(ψs ) − K (ψs )K ′(ψs )

2y
for 0 � ψs � ψ0(1/2) (5)

in the domain 0 � x � L and 0 � y � 1/2. The prime represents derivatives of K and H with ψs .
We consider a base rotating columnar (parallel) flow solution of Eq. (5) given by ψs (x, y) =

ψ0(y) and Ks (x, y) = ωK0(y) for 0 � x � L and 0 � y � 1/2. We first invert ψs = ψ0(y) to
obtain y = y(ψs ) for 0 � ψs � ψ0(1/2). Then we can determine the circulation and total head
functions as

K = K (ψs ) = ωK0(y(ψs )),

H (ψs ) = H0 + p(y(ψs )) + 1
2ψ2

0y (y(ψs )) + ω2K2
0 (ψs )

4y(ψs )
(6)

for 0 � ψs � ψ0(1/2). Here H0 is the given inlet centerline total head and p(y) =
ω2

∫ y

0 [K2
0 (y∗)/4y∗]dy∗ for 0 � y � 1/2 is the nondimensional pressure profile of the base flow

(scaled by ρU 2, where ρ is the flow constant density). In addition, to be able to determine nonregular
solutions with either centerline or wall-separation regions, we prescribe

K (ψs ) = K (0) = 0, H (ψs ) = H (0) = H0, K ′(ψs ) = H ′(ψs ) = 0 (7)

when ψs < 0 and

K (ψs ) = K (ψ0(1/2)), H (ψs ) = H (ψ0(1/2)), K ′(ψs ) = H ′(ψs ) = 0 (8)
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when ψs > ψ0(1/2), respectively. The conditions in Eqs. (7) and (8) result from the Batchelor [27]
condition in the inviscid-limit case. In the centerline stagnation regions, ψs (x, y) = 0 and all the
velocity components vanish. Our simulations in Sec. IV demonstrate that flow in these regions
comes from an infinitesimally small upstream flux around the centerline with no circulation that
expands radially from the centerline to form a finite-size stagnation region around the centerline
with a zero value of ψs and no velocity components inside the region. In the wall regions,
ψs (x, y) = ψ0(1/2) and only the radial and axial velocities vanish, however the circumferential
velocity does not vanish; it is v = K (ψs )/

√
2y. Our simulations in Sec. IV demonstrate that flow

in these wall regions comes from an infinitesimally small upstream flux on the wall that carries the
wall circulation and expands radially from the wall to the bulk to form a finite-size quasistagnation
region attached to the wall with no radial and axial velocities but with a fixed nonzero circulation.

The boundary conditions for the steady-state problem are

ψs (0, y) = ψ0(y) for 0 � y � 1/2, ψsx (L, y) = 0 for 0 � y � 1/2,

ψs (x, 0) = 0, ψs (x, 1/2) = ψ0(1/2) for 0 � x � L. (9)

A base solution of Eqs. (5)–(9) for all ω and L is the columnar state ψs (x, y) = ψ0(y). These
solutions form the branch of columnar states.

The SLE problem of Eqs. (5)–(9) was solved numerically in Ref. [24]. When no separation
regions appear in the flow, they found regular flow solutions of the problem and correctly described
these branches of solutions. In the following section we provide details on how to establish the
branches of nonregular solutions and of higher-order solutions to complete the bifurcation diagrams
and clarify the flow dynamics.

B. Global analysis

Following Wang and Rusak [19], we use the variational functional

E (ψs ; ω) =
∫ L

0

∫ 1/2

0

[
ψ2

sy

2
+ ψ2

sx

4y
+ H (ψs ; ω) − K2(ψs ; ω)

4y

]
dy dx (10)

of the SLE (PDE) problem of Eqs. (5)–(9), i.e., states ψs (x, y) that form extrema points of E (ψs ; ω)
are solutions of the SLE problem. Here H (ψs ; ω) and K (ψs ; ω) are defined by Eqs. (6)–(8). Wang
and Rusak [19] proved that the functional E (ψs ; ω) has a global minimum state for all ω � 0. When
0 � ω < ω0 + ε(L) [where 0 < ε(L) � 1], the base columnar flow ψs (x, y) = ψ0(y) is the global
minimum state of E (ψs ; ω). However, when ω > ω0 + ε(L), the global minimum state of E (ψs ; ω)
changes to another noncolumnar state and the columnar state becomes a local minimum point of
E (ψs ; ω) for ω0 + ε(L) < ω < ω1. When ω > ω1, the columnar state becomes a min-max point of
E (ψs ; ω). In addition, there exist min-max states of E (ψs ; ω), in between the respective global and
local minimum points.

Wang and Rusak [19] also proved that in a long pipe (L � 1) the outlet flow profile ψs (L, y) of
either the global or local minimum states of E (ψs ; ω) is determined, respectively, by the global or
local minimum states of the functional E(ψc; ω) of the columnar SLE (x-independent) problem,

ψcyy = H ′(ψc ) − K (ψc )K ′(ψc )

2y
for 0 � ψc � ψ0(1/2)

ψc(0) = 0, ψc(1/2) = ψ0(1/2),

(11)

with conditions (7) and (8). For this problem, E(ψc; ω) is given by

E(ψc; ω) =
∫ 1/2

0

[
ψ2

cy

2
+ H (ψc ) − K2(ψc )

4y

]
dy. (12)
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A base solution of the problem in Eq. (11) is ψc(y) = ψ0(y). Other solutions of this ordinary
differential equation (ODE) problem are found numerically using a fourth-order accurate Runge-
Kutta solution scheme. When the incoming swirl ω increases, solutions of the ODE problem may
also include states with a decelerating flow at and around the centerline, an accelerating flow at
and around the centerline, a stagnation region around y = 0 (where all velocities are zero), and
a quasistagnation region attached to y = 1/2 (in which the radial and axial velocities vanish).
Solutions of the SLE (ODE) (11) that form either global or local minimum points of E(ψc; ω)
determine the nature of corresponding solutions of the SLE (PDE) problem in Eqs. (5)–(9).

We look to determine the following special values of ω related to the ODE and the PDE problems.
(i) For ω = ωB solutions of the ODE first bifurcate with an increase of swirl from the branch of
the base solutions. Here ωB is Benjamin’s [39] special swirl level in a very long pipe (L tends to
infinity). This swirl level corresponds to the critical swirl level of the PDE problem, ω1 = ωB +
k/L2, of the base rotating flow in a finite-length pipe (here k is a constant that depends on the
base flow profiles). (ii) For ω = ω0 solutions become a global minimum point of E instead of the
base solution. This swirl level corresponds to another critical level of the PDE problem, ω0 + ε(L)
[where 0 < ε(L) � 1], which is the swirl level at which solutions of the PDE problem turn into
a global minimum state that is different from the columnar state. (iii) For ω = ωBD a centerline
stagnation zone first appears. This swirl level corresponds to the swirl level ωBD + εBD (L) [where
0 < εBD (L) � 1] at which solution of the PDE problem with a breakdown zone first appears. (iv)
For ω = ωWS a quasistagnation zone attached to y = 1/2 first appears. This swirl level corresponds
to the swirl level ωWS + εWS (L) [where 0 < εWS (L) � 1] at which solution of the PDE problem
with a wall-separation zone first appears. (v) In some cases ω = ωF , where the branch of certain
types of solutions folds. This swirl level corresponds to the swirl level ωF + εF (L) [where 0 <

εF (L) � 1] at which solutions of the PDE problem fold. The small terms ε(L), εBD (L), εWS (L),
and εF (L) cannot be determined from the SLE (ODE) solutions. They can be only found from
comparison of the ODE solutions with the PDE solutions. These parameters are expected to tend to
zero as L increases.

C. Weakly nonlinear model

In addition, we use the weakly nonlinear model of near-critical (ω ∼ ωB) swirling flows in a long
pipe (L � 1) by Refs. [21,23]. They defined ε1 = 1/L2, where 0 < ε1 � 1 and �ω = ω − ωB =
κωε1/2ωB . They considered a long-wave asymptotic solution of the problem in Eqs. (1) and (2) with
assumed boundary conditions of the form

ψ (x, y, t ; ω; Re) = ψ0(y) + ε1ψ1(X, y, t∗) + ε2ψ2(X, y, t∗) + · · · ,

χ (x, y, t ; ω; Re) = χ0(y) + ε1χ1(X, y, t∗) + ε2χ2(X, y, t∗) + · · · ,

K (x, y, t ; ω; Re) = ωK0(y) + ε1K1(X, y, t∗) + ε2K2(X, y, t∗) + · · · . (13)

Here X = x/L = √
ε1x and t∗ = ε

3/2
1 t are the rescaled axial coordinate and time, 0 � X � 1

and t∗ � 0. The functions ψ1,K1, χ1 and ψ2,K2, χ2 are the first- and second-order perturbation
functions, respectively. They also assumed that ε2 ∼ ε2

1 ∼ ε1�ω.
From substituting Eqs. (13) into Eqs. (1) and (2), Ref. [23] found that the leading-order stream

function perturbation is given by a separation of variables solution of the form ψ1(X, y, t∗) =
φB (y)A(X, t∗), where φB (y) is Benjamin’s eigenfunction in Ref. [39]. Also, the leading-order
circulation and reduced azimuthal vorticity are K1(X, y, t∗) = [ωBK0y/ψ0y]φB (y)A(X, t∗) and
χ1(X, y, t∗) = −φByyA(X, t∗), respectively. The function A(X, t∗) describes the evolution and
axial shape of the perturbations. In the leading order, the stream function, circulation, and reduced
azimuthal vorticity perturbations are composed of a fixed in-time standing wave in the y direction
and an evolving axial wave. Analysis of the second-order equations resulted in a nonlinear partial
differential model equation for the evolution of A(X, t∗):

τAt∗ = AXXX − α(A2)X + βκωAX. (14)
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Here

τ = Ns

δ∗ , α = N1

δ∗ , β = N2

δ∗ , κω = 2ωB

�ω

ε1
, (15)

where

δ∗ =
∫ 1/2

0

φ2
B

2y
dy, Ns =

∫ 1/2

0

[
χ0y

ψ2
0y

+ ω2
BK0K0y

y2ψ3
0y

]
φ2

Bdy,

N1 = −1

2

∫ 1/2

0

⎡
⎣ 1

ψ0y

(
χ0y

ψ0y

)
y

+ ω2
B

yψ
3/2
0y

(
K0K0y

yψ
3/2
0y

)
y

⎤
⎦φ3

Bdy,

N2 =
∫ 1/2

0

K0K0y

2y2ψ2
0y

φ2
Bdy.

The boundary conditions for solving Eq. (14) for all t∗ � 0 become

A(0, t∗) = AXX(0, t∗) = AX(1, t∗) = 0. (16)

In the present paper we use the steady-state version of Eqs. (14) and (16) to determine higher-
order (second, third, and so on) branches of axisymmetric steady-state solutions of the SLE (PDE)
problem that bifurcate in sequence from the branch of columnar states at the various critical swirls
ω2, ω3, and so on, respectively (where ω1 < ω2 < ω3 < · · · ). These solutions are found by an
iterative fourth-order Runge-Kutta scheme of Eq. (14) until all boundary conditions are satisfied.
It was shown in Ref. [40] that these solutions are min-max states of E (ψs ; ω). This analysis also
showed that all of these higher-order states are unstable. The numerical simulations of Refs. [21–23]
also demonstrated that these states are not global attractors of flow dynamics and the long-term flow
evolution does not stabilize on these states. However, these states may appear in simulations as
momentary local attractors of the flow dynamics and may affect the direction of flow evolution
towards the local or global minimum states of E (ψs ; ω).

IV. COMPUTED RESULTS

In the present computations, we focus on the flow cases where the inlet flow profiles are given
by Eq. (3). For each case that we study below, we first construct solutions ψc(y) of the SLE (ODE)
problem given by Eqs. (11). There are five types of such solutions. (i) The base state ψc(y) = ψ0(y)
for 0 � y � 1/2, referred to as a type 0 solution, is used to establish the functions H ′(ψc ), K (ψc ),
and K ′(ψc ) in Eqs. (11). (ii) A decelerating flow state near the centerline for which 0 < ψcy (0) <

ψ0y (0) is referred to as a type 1 solution. Here ψcy (0) is unknown and found through iterations
of solving the ODE (11) until the wall condition in Eqs. (11) is satisfied with high accuracy of
10−14. (iii) An accelerating flow state near the centerline for which ψcy (0) > ψ0y (0) is referred
to as a type 2 solution. Here again ψcy (0) is unknown and found through iterations of solving
the ODE (11) until the wall condition in Eqs. (11) is satisfied with high accuracy of 10−14. (iv)
A vortex-breakdown state with a stagnation region in the range 0 < y � y0 around the centerline
where ψc(y) = ψcy (y) = 0 in this range. This solution is referred to as a type 3 solution. Here 0 <

y0 < 1/2 is unknown and found through iterations of solving the ODE (11) until the wall condition
in Eqs. (11) is satisfied with high accuracy of 10−14. (v) A wall-separation state that contains a
quasistagnation region in the range yw � y � 1/2, where ψc(y) = ψ0(1/2) and ψcy (y) = 0. This
solution is referred to as a type 4 solution. Here 0 < yw < 1/2 is unknown and found through
iterations of solving the ODE (11) until the centerline condition in Eqs. (11) is satisfied with high
accuracy of 10−14. For each type of solution, the value of E(ψc; ω) according to Eq. (12) is then
calculated and described as a function of ω. When these states form either global or local minimum
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points of E(ψc; ω), they correspond to the outlet state of a similar solution type of the SLE (PDE)
problem.

Specifically, in each case the solutions ψs (x, y) of the SLE (PDE) found in Ref. [24] provide
this information. Note, however, that their solutions are restricted to columnar flow states for which
ψs (x, y) = ψ0(y) for 0 � x � L and 0 � y � 1/2 (the type 0 solution of the PDE), centerline
decelerated flow states for which 0 < ψsy (L, 0) < ψ0y (0) (the type 1 solutions of the PDE), and
centerline accelerated flow states for which ψsy (L, 0) > ψ0y (0) (the type 2 solutions of the PDE).
Leclaire and Sipp [24] obtained branches of solutions up to the situations where ψsy (L, 0) = 0
or ψsy (L, 1/2) = 0. They identified these special states as corresponding, respectively, to the first
appearance of either vortex-breakdown or wall-separation states. The vortex-breakdown states are
characterized by a nonregular solution ψs (x, y) with a finite-size stagnation zone around the pipe
centerline (the type 3 solution of the PDE). The wall-separation states are characterized by another
nonregular solution ψs (x, y) with a finite-size quasistagnation region on the wall (the type 4 solution
of the PDE).

The results ψcy (0) as a function of ω from the various solution types of the SLE (ODE) problem,
the solutions of ψsy (L, 0) as a function of ω from the various types of solutions of the PDE problem
found in Ref. [24], and values of ψy (L, 0, t � 1) as a function of ω from the unsteady numerical
simulations are shown for each case in a bifurcation diagram of solutions and are compared with
each other. We also compare results for the size of y0 and yw found, respectively, from type 3 and
4 solutions of the ODE problem with those found from the simulated time-asymptotic states at the
pipe outlet. In addition, to complete the set of all possible branches of states of the PDE problem, we
describe the results of computations of higher-order states based on the weakly nonlinear problem
of Ref. [23] given by Eqs. (14) and (16).

In each of the following figures, the solid black lines represent the various solution types of
the SLE (ODE) problem. The yellow circles represent the columnar critical state at ωB and the
states for first appearance of vortex breakdown at ωBD and wall separation at ωWS according to the
SLE (ODE) problem. The red lines represent Leclaire and Sipp’s [24] various solution types of the
SLE (PDE) problem, where the solid lines describe asymptotically stable solutions and the dashed
line describes an unstable solution. The red circles represent the critical state at ω1, the state for the
first appearance of vortex breakdown at ωBD + εBD (L), and the state for the first appearance of wall
separation at ωWS + εWS (L) according to Ref. [24] results. The various black dashed lines represent
unstable higher-order states computed according to the weakly nonlinear theory of Ref. [23]. The
open circles represent time-asymptotic results from the numerical simulations of flow evolution.

A. Case 1: b = 1.6978, d = 1.6263, and L = 10

This base flow describes a large-core vortex flow with rc = 0.8596 and with an axial jet that
has a centerline velocity ψ0y (0) = 2.0329 and wall velocity ψ0y (1/2) = 0.4066. The manifold of
solutions in this case is similar to that of a solid-body rotation and a plug axial flow studied in
Ref. [22]. Figure 1(a) summarizes the bifurcation diagrams of solutions ψcy (0), ψsy (L, 0), and
ψy (L, 0, t � 1) as a function of ω around ωB . Notice that the scale of the horizontal coordinate
is significantly magnified. The difference between the various solutions is on the order of 0.003
in terms of ω. Figure 1(b) presents the bifurcation diagrams of y0 for type 3 and yw for type 4
states as a function of ω. Here ω0 = ωB = 3.7900 and ω0 + ε(L) = ω1 = ωB + k/L2 = 3.7925
for a pipe with L = 10. Also, it is found that ωBD = 3.7967 and ωWS = 3.7940 according to the
ODE problem; ωBD + εBD (L) = 3.7982 and ωWS + εWS (L) = 3.7954 from solutions of the PDE
problem that were reported in Ref. [24]. The difference between results for these major swirl levels
computed according to the ODE and the PDE problems is small [k/L2, ε(L), εBD (L), and εWS (L)
are less than 0.003] and it is a result of the relatively long pipe length. It is expected in this case
that all of these small terms decrease with an increase of L and bifurcation diagrams of the PDE
problem approach those of the ODE problem.
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FIG. 1. Case 1: b = 1.6978, d = 1.6263, and L = 10. Here ωB = ω0 = 3.7900 and ω0 + ε(L) = ω1 =
3.7925. (a) Bifurcation diagrams of solutions ψcy (0), ψsy (L, 0), and ψy (L, 0, t � 1) as a function of ω.
(b) Bifurcation diagram of y0 and yw as a function of ω. The solid black lines represent solutions of the
columnar Squire-Long (ODE) problem. The yellow circles represent the columnar critical state at ωB , and
the states at ωBD for the first appearance of vortex breakdown and at ωWS for the first appearance of wall
separation according to the columnar ODE problem. The red lines represent Leclaire and Sipp [24] solutions
of the Squire-Long (PDE) problem, where solid lines are asymptotically stable solutions and the dashed line
is the unstable solution. The red circles represent the critical state at ω1, the state for the first appearance of
vortex breakdown (BD) at ωBD + εBD (L) and the state for the first appearance of wall separation (WS) at
ωWS + εWS (L) according to Leclaire and Sipp [24]. The open circles represent time-asymptotic results from
the numerical simulations of flow evolution. The black dashed lines represent unstable states according to the
weakly nonlinear theory of Rusak et al. [23].

The computations show that the type 0 states of the ODE problem form global minimum points of
E when 0 � ω < ωB , an inflection point of E at ω = ωB , and min-max points of E when ω > ωB .
These states correspond to asymptotically stable columnar (type 0) flow states of the PDE problem
that are global minimum points of E when 0 � ω < ω1 and to unstable min-max points of E when
ω > ω1, see Refs. [17,19]. The type 1 solutions of the ODE problem bifurcating at ωB and turning
at ωBD into type 3 solutions form together a branch of global minimum points of E for all ω > ωB .
For the long pipe, these solutions correspond, respectively, to centerline decelerated flow (type 1)
states of the PDE problem bifurcating at ω1 followed by breakdown (type 3) states that start at
ωBD + εBD (L). Within the studied swirl range, the simulations show that these states form a branch
of asymptotically stable, global-minimum points of E when ω > ω1.

The type 2 solutions of the ODE problem, also bifurcating at ωB and turning at ωWS into
type 4 solutions, form local minimum points of E for all ω > ωB . For the long pipe, these states
correspond, respectively, to centerline accelerated flow (type 2) states of the PDE problem that
bifurcate at ω1, followed by wall-separation (type 4) states that start at ωWS + εWS (L). Together,
within the range of swirl studied, they form a branch of linearly stable, local-minimum states
of E when ω > ω1. Also shown in Fig. 1(a) are the second higher-order bifurcating states at
ω2 = 3.812 79. These states are unstable (see Ref. [40]).

Moreover, it can be seen from Fig. 1(a) that the results of the PDE problem are close to the
predictions according to the ODE problem. The small numerical gap between these solutions is on
the order of 0.003 in terms of ω. This is again a result of the effect of the finite-length L = 10 in the
PDE problem with respect to the case of the ODE problem. The time-asymptotic states computed
from simulations match with the centerline decelerated flow (type 1) and centerline accelerated flow
(type 2) solutions of the PDE problem according to Ref. [24]. Moreover, the simulations construct
vortex-breakdown (type 3) and wall-separation (type 4) states which were not computed in Ref. [24].
The outlets of these states show nice agreement with the ODE results.

Figure 2(a) describes representative contours of ψ (x, y, t � 1) of the time-asymptotic vortex-
breakdown state at ω = 3.81. The flow runs from left to right, the bottom axis is the centerline,
the top edge is the wall, the left edge is the inlet, and the right edge is the outlet. In this case,
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FIG. 2. Case 1: b = 1.6978, d = 1.6263, and L = 10. (a) Contours of the time-asymptotic solution of
ψ (x, y, t � 1) of the vortex breakdown state at ω = 3.81. (b) Plot of ψc(y ) (solid line) and ψ (L, y, t � 1)
(circles) as a function of y of the vortex breakdown state at ω = 3.81. (c) Contours of the time-asymptotic
solution of ψ (x, y, t � 1) of the wall-separation state at ω = 3.81. (d) Plot of ψc(y ) (solid line) and
ψ (L, y, t � 1) (circles) as a function of y of the wall-separation state at ω = 3.81. In (a) and (c) flow runs
from left to right, the left side is the pipe inlet and the right side is the outlet, the bottom side is the centerline
and the top side is the wall, and there are 26 equispaced lines from 0 to 0.5. In (b) and (d) the results are close
to each other.

y0 = 0.0274. Figure 2(b) compares the ODE solution ψc(y) (solid line) and ψ (L, y, t � 1) at the
pipe outlet (circles) for the vortex-breakdown (type 3) state at ω = 3.81. There is nice agreement
between these solutions (they are nearly the same within three digits). Figure 2(c) presents contours
of ψ (x, y, t � 1) of the time-asymptotic wall-separation state at the same ω = 3.81. We find that
both the vortex-breakdown and wall-separation states can coexist in this case and at various ω >

ωBD + εBD (L). Figure 2(d) shows nice agreement between the ODE solution ψc(y) (solid line) and
the time-asymptotic results ψ (L, y, t � 1) at the pipe outlet (circles); again, they are nearly the
same within three digits.

Figure 3(a) presents lines of axial velocity along the pipe centerline, ψy (x, 0, t ) vs x, at
various times during the evolution of the flow from an initially perturbed columnar state to a
vortex-breakdown state at ω = 3.81. Similarly, Fig. 3(b) shows lines of axial velocity along the
centerline, ψy (x, 0, t ) vs x, at various times during the evolution of the flow from a perturbed
columnar state to a wall-separation state at ω = 3.81. The arrows in both panels show the direction
of evolution from t = 0 to t � 1. Figures 3(a) and 3(b) demonstrate that the columnar flow state
of the SLE (PDE) problem is unstable in the range of swirl ω > ω1 and, depending on the initial
perturbations in Eqs. (4), the flow may evolve to either a breakdown (type 3) state when δ < 0
or a wall-separation (type 4) state when δ > 0. The simulations also demonstrate that both the
breakdown and the wall-separation states are asymptotically stable in the range of swirl studied.

In summary, we find that the ODE solutions nicely predict (within three digits accuracy) the
nature of centerline decelerated flows, centerline accelerated flows, as well as breakdown and
wall-separation states of the PDE problem with L = 10 and the structure of the outlet flow in the
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FIG. 3. Case 1: b = 1.6978, d = 1.6263, and L = 10. (a) Lines of axial velocity along the centerline
ψy (x, 0, t ) vs x at various times during the evolution of the flow from a perturbed columnar state (with δ < 0) to
a vortex breakdown state at ω = 3.81. (b) Lines of axial velocity along the centerline ψy (x, 0, t ) vs x at various
times during the evolution of the flow from a perturbed columnar state (with δ > 0) to a wall-separation state
at ω = 3.81. The arrows in both panels show the direction of evolution in time.

time-asymptotic solutions from the simulations. The simulations help to realize the various types
of flow states in the range of swirl around ωB and shed light on flow dynamics at various incoming
flow swirl levels, specifically when ω > ω1.

B. Case 2: b = 6, d = 4.386, and L = 10

This base flow describes a smaller core vortex flow with rc = 0.4572 and with a strong axial jet
that has a centerline velocity ψ0y (0) = 4.6659 and wall velocity ψ0y (1/2) = 0.2799. The manifold
of solutions in this case is different from the results in case 1 as well as the results for the
Lamb-Oseen model vortex described in Ref. [19]. Figure 4 describes the bifurcation diagrams of
solutions ψcy (0), ψsy (L, 0), and ψy (L, 0, t � 1) as a function of ω around ωB . We find that in this
case ω0 = 11.4390, ωB = 12.2758, and ω1 = ωB + k/L2 = 12.2796. Also, ωBD = 11.5624 and
ωWS = 16.3500 according to the ODE problem; ωBD + εBD (L) = 11.56, but no ωWS + εWS (L)
was reported, according to Ref. [24]. Moreover, the branch of type 1 solutions of the ODE exhibits
a fold point at ωF = 11.3960. The branch of type 1 states of the PDE problem according to Ref. [24]
folds at ωF + εF (L) = 11.443, which is ω0 + ε(L) for the PDE problem with L = 10. Again, the
difference between results for the major swirl levels computed according to the ODE and the PDE
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FIG. 4. Bifurcation diagrams of solutions ψcy (0), ψsy (L, 0), and ψy (L, 0, t � 1) as a function of ω for
case 2: b = 6, d = 4.386, and L = 10. Here ω0 = 11.4390, ωB = 12.2758, and ω1 = 12.2796. The solid
black lines represent solutions of the columnar Squire-Long (ODE) problem. The yellow circles represent the
columnar critical state at ωB and the state at ωBD for the first appearance of vortex breakdown according to the
columnar ODE problem. The red lines represent Leclaire and Sipp [24] solutions of the Squire-Long (PDE)
problem, where solid lines are asymptotically stable solutions and the dashed line is the unstable solution.
The red circles represent the critical state at ω1 and the state for the first appearance of vortex-breakdown at
ωBD + εBD (L) according to Leclaire and Sipp [24]. The open circles represent time-asymptotic results from
the numerical simulations of flow evolution. The black dashed lines represent unstable states according to the
weakly nonlinear theory of Rusak et al. [23].

problems is small [k/L2, ε(L), and εBD (L) are less than 0.004 and εF (L) is 0.04] and it is due to
the relatively long pipe length.

In this case the computations show again that the columnar (type 0) solutions of the ODE
problem form global minimum points of E when 0 � ω < ω0, local minimum points of E when
ω0 < ω < ωB , and a min-max point of E when ω > ωB . The type 1 solutions, bifurcating at ωB

toward the range ω < ωB , fold at ω = ωF = 11.3960. In the range ωF < ω < ωB these bifurcating
solutions form min-max points of E. Also, the type 1 states that fold at ωF = 11.3960 back
to higher values of ω form local minimum points of E in the range ωF < ω < ω0. The fold
point at ω = ωF = 11.3960 is a point of change of the type 1 solutions from min-max points to
local-minimum points of E. With a further increase of ω above ω0 = 11.4390, the type 1 solutions
of the ODE turning into type 3 solutions at ωBD form together a branch of global minimum points
of E. In addition, the type 2 solutions, bifurcating at ωB and turning at ωWS into type 4 solutions,
form local minimum points of E when ω > ωB .

Therefore, it is found that the type 0 solutions of the ODE correspond to asymptotically
stable columnar states of the PDE problem when 0 � ω < ω0 + ε(L) = 11.443, which are global
minimum points of E . When ω0 + ε(L) < ω < ω1, they form linearly stable local minimum states
of E . For ω > ω1, they become unstable min-max states of E (see Refs. [17,19]).

We clarify the relationship between solutions of the ODE and the PDE problems. The ODE
type 1 min-max solutions, bifurcating at ωB to lower swirl levels, do not represent solutions of
the PDE when ω0 + ε(L) � ω < ω1. The type 1 solutions of the PDE problem bifurcating at ω1

toward lower ω are represented by the first branch of the higher-order solutions and these states are
unstable min-max states of E (see Ref. [18]). In the range of the ODE fold point ωF = 11.396 to
ω0 = 11.439, the type 1 solutions of ODE problem, which fold back at ωF = 11.396 and are local
minimum points of E, cannot be the outlet state of any solution of the PDE problem since they have
higher values of E than that of the base inlet state and do not satisfy the necessary condition (16) in
Ref. [19]. Indeed, according to Ref. [24], there is no solution of the PDE problem in this range of
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swirl, other than the columnar state. In the range of ω0 = 11.439 to ω0 + ε(L) = 11.443, the type 1
solutions of the ODE problem are global minimum points of E and may be the outlet state of type 1
global minimum states of E , but only when L > 10; these are not relevant to the case studied with
L = 10. Only at ω = ωF + εF (L) = 11.443, there are suddenly two solutions of the PDE problem,
and above this swirl level there are three solutions of the PDE problem. Therefore, for a finite-length
pipe with L = 10, ω0 + ε(L) = ωF + εF (L) = 11.443. The type 1 solutions of the ODE problem
followed by the type 3 solutions, which are global-minimum points of E when ω > ω0 + ε(L),
correspond to the type 1 (centerline decelerated flow) and 3 (breakdown) states of the PDE problem
with L = 10 and these states form global-minimum states of E when ω > ω0 + ε(L) = 11.443.

The present computations show that the ODE results match nicely with the type 1 states
predicted in Ref. [24] for PDE solutions when ω > ω0 + ε(L) = 11.443. Moreover, the type 2 states
bifurcating at ωB correspond to centerline accelerated flow (type 2) states of the PDE bifurcating
at ω1. These states also match nicely with the states predicted in Ref. [24] for PDE solutions when
ω1 < ω < ωWS . Also shown in Fig. 4 are the second up to the sixth higher-order bifurcating states
at ω2 = 12.3102, ω3 = 12.3714, and so on. All of these states are unstable.

The results of the simulations help to construct asymptotically stable centerline decelerated flow
(type 1) when ω0 + ε(L) < ω < ωBD + εBD (L). The simulations also help to construct nominal
vortex-breakdown (type 3) states when ω > ωBD + εBD (L). Results of simulations show agreement
with the ODE problem predictions. Moreover, for all initial perturbations in Eqs. (4) studied, with
either δ < 0 or δ > 0, these states are also found to be attractors of the flow dynamics when
ω > ω0 + ε(L).

However, the long-term evolution for all ω > ωBD + εBD (L) exhibits low-amplitude and low-
frequency oscillations (instabilities) within the breakdown zone, around nominal breakdown states.
In addition, it should be noted that in the simulations we could not establish the centerline
accelerated flow (type 2) states. This is a result of these states being close to the unstable higher-
order states, which causes the flow to evolve to the type 1 or type 3 states from every initial condition
tested. Very special initial conditions may be needed to realize in the simulations the type 2 states in
Ref. [24], but they may not dominate flow dynamics. This indicates a small margin of stability and
small domain of attraction of the centerline accelerated flow (type 2) states of the PDE problem.

In summary, we find again that the ODE solutions nicely predict the nature of steady-state
solutions according to the PDE problem. The simulations help to realize the centerline decelerated
flow (type 1) and breakdown (type 3) states that are attractors of the flow dynamics when
ω > ω0 + ε(L).

C. Case 3: b = 6, d = 5.417, and L = 10

This base flow describes the same small core vortex flow with rc = 0.4572 and with a stronger
axial jet that has a centerline velocity ψ0y (0) = 5.5276 and wall velocity ψ0y (1/2) = 0.1106. The
manifold of solutions in this case of both the ODE and PDE problems is similar in structure to
that described in case 2 (but the numerical values are different). Figure 5 shows the bifurcation
diagrams of solutions ψcy (0), ψsy (L, 0), and ψy (L, 0, t � 1) as a function of ω around ωB .
Here ω0 = 12.198, ωB = 12.535, and ω1 = ωB + k/L2 = 12.538. Also, ωBD = 13.772 and ωWS =
13.534 according to the ODE problem; ωBD + εBD (L) = 13.773 and ωWS + εWS (L) = 13.522
according to Ref. [24]. The branch of type 1 solutions of the ODE problem exhibits a fold point
at ωF = 12.194. The branch of type 1 states of the PDE problem according to Ref. [24] folds at
ωF + εF (L) = 12.223. At this fold point ω = ωF + εF (L) = 12.223, two solutions of the PDE
problem appear, and when ω > ωF + εF (L), three solutions of the PDE problem appear. Therefore,
again, as was shown in case 2, ω0 + ε(L) = 12.223 for the case with pipe length L = 10. Again, the
difference between results for the major swirl levels computed according to the ODE and the PDE
problems is small [k/L2, ε(L), εBD (L), and εWS (L) are less than 0.01 and εF (L) is 0.03] and it is
due to the relatively long pipe length. Also shown in Fig. 5 are the second up to the tenth higher-order
states bifurcating at ω2 = 12.561, ω3 = 12.607, and so on (not all are shown for clarity).
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FIG. 5. Bifurcation diagrams of solutions ψcy (0), ψsy (L, 0), and ψy (L, 0, t � 1) as a function of ω for
case 3: b = 6, d = 5.417, and L = 10. Here ω0 = 12.198, ωB = 12.5349, and ω1 = 12.5378. See the caption
of Fig. 1 for details about the various lines and points in this figure.

Similar to the discussion in case 2, it is found that again the columnar flow (type 0) states of
the PDE problem are asymptotically stable global minimum points of E when 0 � ω < ω0 + ε(L).
When ω0 + ε(L) < ω < ω1, they become linearly stable local minimum states of E . They become
unstable min-max states of E for ω > ω1. The centerline decelerated flow (type 1) states of the PDE
problem bifurcating at ω1 are unstable min-max points of E when ω0 + ε(L) < ω < ω1. After the
fold at ω = ω0 + ε(L) = 12.223, the type 1 centerline decelerated flow states of the PDE problem
followed by the type 3 (breakdown) states form global minimum points of E in the range ω >

ω0 + ε(L).
It can be seen again that the predictions according to the ODE problem for the type 1 states

are close to the results of the PDE problem according to Ref. [24]. The time-asymptotic results
from the simulations match the asymptotically stable local minimum centerline decelerated flow
(type 1) states of the PDE problem. Moreover, in the range of swirl studied, the simulations help
to construct stable time-asymptotic breakdown (type 3) states which form global minimum states
of E and show agreement with the ODE results. The simulations show that these breakdown states
do not exhibit any noticeable instabilities. Moreover, in the simulations we could not establish the
centerline accelerated flow (type 2) or the wall-separation (type 4) states that are linearly stable local
minimum points of E . This is again a result of these states being close to the unstable higher-order
states, which causes these flows to have a very small domain of attraction and to evolve to the type
1 or type 3 states from every initial condition tested.

We find again that the ODE solutions nicely predict the nature of steady-state solutions of the
PDE problem. The simulations help to realize the type 1 and 3 states as asymptotically stable global
attractors of flow dynamics when ω > ω0 + ε(L).

D. Case 4: b → 0, d = 1.636, and L = 10

This base flow describes a solid-body rotation flow with rc = 1 and with a mild axial jet that
has a centerline velocity ψ0y (0) = 1.8180 and wall velocity ψ0y (1/2) = 0.1820. The manifold
of solutions in this case is different from all the cases described above as well as from the case
of the solid-body rotation studied in Ref. [22] and the case of the Lamb-Oseen vortex studied
in Ref. [19]. In this case the wall-separation states appear first with the increase of ω and at
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FIG. 6. Bifurcation diagrams of solutions ψcy (0), ψsy (L, 0), and ψy (L, 0, t � 1) as a function of ω for
case 4: b → 0, d = 1.636, and L = 10. Here ω0 = 1.6539, ωB = 1.9093, and ω1 = 1.9106. See the caption of
Fig. 1 for details about the various lines and points in this figure.

incoming swirl levels below the critical level ω1 and below ωBD for breakdown. Figure 6 describes
the bifurcation diagrams of solutions ψcy (0), ψsy (L, 0), and ψy (L, 0, t � 1) as a function of ω

around ωB . Here ω0 = 1.6539, ωB = 1.9093, and ω1 = ωB + k/L2 = 1.9106. Also, ωBD = 2.7886
and ωWS = 1.7344 according to the ODE problem; ωBD + εBD (L) = 2.789 and ωWS + εWS (L) =
1.8021 according to PDE solutions in Ref. [24]. Again, the difference between results for the major
swirl levels computed according to the ODE and the PDE problems is small [k/L2 and εBD (L)
are less than 0.001 and εWS (L) is 0.07] and it is due to the relatively long pipe length. Note that
Ref. [24] did not report a fold of the branch of wall-separation states. According to the ODE results,
such a fold point must exist and form the value of ω0 + ε(L) that is below ω1. Therefore, ε(L)
cannot be determined from the PDE results; it is assumed to be small and, from the experience of
previous cases, it may be less than 0.03 for L = 10.

In this case the present computations show again that the columnar (type 0) solutions of the
ODE problem form global minimum points of E when 0 � ω < ω0, local minimum points of E

when ω0 < ω < ωB , and min-max points of E when ω > ωB . The branch of type 2 solutions of
the ODE problem bifurcates at ωB toward lower ω less than ωB and then turns uniformly into type
4 solutions of the ODE problem at ωWS = 1.7344. The branch of type 4 solutions continues with
the decrease of ω from ωWS to ωF = 1.6426 where it folds back with a further increase of ω above
ωF . In the range ωF < ω < ωB the bifurcating type 2 solutions at ωB , followed by type 4 solutions,
form min-max points of E. Also, the type 4 solutions that fold back to higher value of ω form local
minimum points of E in the range ωF < ω < ω0. The fold point at ω = ωF is a point of change
of type 4 solutions from min-max points to local-minimum points of E. With a further increase of
ω above ω0 = 1.6539, the type 4 solutions of the ODE problem form a branch of global minimum
points of E. In addition, when ω > ωB , the type 1 solutions of the ODE, bifurcating at ωB and
turning at ωBD into type 3 solutions, form local minimum points of E.

Therefore, we find again that the type 0 solutions of the ODE correspond to asymptotically
stable columnar states of the PDE when 0 � ω < ω0 + ε(L), which are global minimum points of
E . When ω0 + ε(L) < ω < ω1, they form linearly stable local minimum states of E . They become
unstable min-max states of E for ω > ω1, see Refs. [17,19].

We clarify again the relationship between solutions of the ODE and PDE problems. The type
2 and 4 min-max solutions of the ODE, bifurcating at ωB to lower swirl levels, do not represent
solutions of the PDE when ω0 + ε(L) � ω < ω1. The type 2 and 4 solutions of the PDE bifurcating
at ω1 toward lower ω are represented by the first branch of the higher-order solutions and these states
are unstable min-max points of E . In the range of the ODE fold point ωF = 1.6426 to ω0 = 1.6539,
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the type 4 solutions of the ODE problem, which fold back at ωF = 1.6426 and are local minimum
points of E, cannot be the outlet state of any solution of the PDE problem since they have higher
values of E than that of the base inlet state and do not satisfy the necessary condition (16) in
Ref. [19]. In the range of ω0 to ω0 + ε(L), the type 4 solutions of the ODE problem are global
minimum points of E and may be the outlet state of type 4 global minimum states of E , but only
when L > 10. Only when ω = ω0 + ε(L), there are suddenly two solutions of the PDE problem,
and above this swirl level there are three solutions of the PDE problem. Therefore, for a finite-length
pipe with L = 10, ω0 + ε(L) is the first swirl level at which solutions other than the columnar
state appear. The wall-separation (type 4) states of the PDE problem are global-minimum points
of E when ω > ω0 + ε(L). Moreover, the type 1 solutions of the ODE, bifurcating at ωB to higher
swirl levels, correspond to linearly stable centerline decelerated flow (type 1) states of the PDE
problem bifurcating at ω1 that are local minimum points of E . These states also match with the states
predicted in Ref. [24] for PDE solutions when ω1 < ω < ωBD + εBD (L). The type 3 solutions of
the ODE correspond to breakdown (type 3) states of the PDE that are also local minimum points
of E when ω > ωBD + εBD (L). Also shown in Fig. 6 are the second up to the tenth higher-order
bifurcating states at ω2 = 1.9206, ω3 = 1.9407, and so on (not all are shown for clarity). All of
these states are unstable.

The results of the simulations help to construct nominal wall-separation (type 4) states, centerline
decelerated flow (type 1), and vortex-breakdown (type 3) states when ω > ω0 + ε(L) which show
agreement with the ODE predictions. Depending on the initial conditions in Eqs. (4), the flow
may evolve to either the wall-separation states when δ > 0 and ω > ω0 + ε(L) or the centerline
decelerated flow or breakdown states when δ < 0 and ω > ω1. It can be seen that the results
of the PDE problem are close to the predictions according to the ODE problem. However, the
long-term evolution for all ω > ω0 + ε(L) exhibits low-amplitude and low-frequency oscillations
(instabilities) within the wall-separation and the breakdown zones, around nominal wall-separation
and breakdown states.

We find again that the ODE solutions predict the nature of steady-state solutions of the PDE
problem. The simulations help to realize the type 1, 3, and 4 states in the pipe. Depending on
the inlet swirl, initial conditions, and domains of attraction, these states are attractors of flow
dynamics.

V. CONCLUSIONS

The effect of inlet flow profiles on the evolution of inviscid, incompressible swirling flows
in a finite-length, straight, long circular pipe can be studied via global analysis methods and
simulations. The mathematical model used the unsteady and axisymmetric flow equations in the
stream function, circulation, and reduced azimuthal vorticity formulation with assumed boundary
conditions (Sec. II). A global analysis of the SLE was used to identify steady states with conditions
to determine solutions with separation zones (Sec. III). The problem reduces to the columnar SLE
with centerline and wall conditions to determine possible solutions of the stream function at the
outlet. There are four solution types of the columnar SLE. These correspond to steady flows in the
pipe with a centerline decelerated flow, states with a centerline accelerated flow, vortex-breakdown
states, and wall-separation states. Numerical simulations demonstrated agreement between time-
asymptotic states, the steady states computed by Ref. [24] using the SLE, and results from the
columnar SLE (Sec. IV). The numerical simulations clarified the stability characteristics of the
various states and their domain of attraction as a function of initial conditions. The computations
also provided complete bifurcation diagrams in terms of inlet swirl. Critical swirls for the onset
of the various branches of solutions were found. The present results show that with some inlet
flow profiles the global minimum state of E turns at ω0 + ε(L) from a base columnar state to
become a vortex-breakdown state (as found in case 1 and for the base Lamb-Oseen or Q vortices
in Ref. [41]). With other inlet flow profiles the global minimum state of E turns into either a
centerline-decelerating flow state (cases 2 and 3) or a wall-separation state (case 4). This jump
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of the global minimum state of E at ω0 + ε(L) together with the critical swirl of the columnar states
at ω1 govern the evolution of vortex flows in the pipe.

We focused in this paper on the interesting axisymmetric flow cases reported in Ref. [24]. They
revealed the important effect of the inlet flow profiles on the flow bifurcation diagram. The present
results, together with the results in Refs. [19,22,23], provide the complete bifurcation diagrams for
all their cases and clarify the various possible flow dynamical scenarios as related to the inlet flow
profiles, the stability of these states, and the domain of attraction of the local and global minimum
states of E .

The present study is limited to inviscid flow analysis and simulations. We note that the studies
of Wang and Rusak in Refs. [17–20] established that there is a direct and consistent relationship
between the axisymmetric and inviscid flow stability properties of columnar and noncolumnar base
flows and the axisymmetric high-Re stability properties of the corresponding flows states. Similar
conclusions have been established in the recent three-dimensional and unsteady simulations based
on the Navier-Stokes equations in Ref. [42]. The high-Re flow stability properties are essentially
inherited from the inviscid flow properties. The dominant mode of instability is a centerline mode of
perturbation and not a wall mode. Therefore, it is not affected by the viscous boundary layer. Also,
this instability mode is generated by the axial inhomogeneity between the pipe inlet and outlet
conditions. Therefore, the effect of viscosity is only from the bulk, is passive, and only slightly
affects the critical swirl for instability and the instability mode properties. Moreover, predictions
of critical states at ω1 and ω0 according to the inviscid axisymmetric flow theory match results
from numerical simulations with the increase of Re (see, for example, Refs. [30–32]). This has also
been found in Ref. [42] for both axisymmetric and three-dimensional instabilities. In this sense,
the inviscid-limit dynamics is not a singular limit and increasing Re continuously tends toward the
inviscid flow dynamics.

The present study is also limited to axisymmetric flows. We note that in the experiments of
Refs. [2,5,11,12,15] the flow exhibits three-dimensional unsteady turbulent states, specifically when
Re is relatively low (below 5 000). With an increase of Re above 50 000 they found that the bubble
breakdown at low Re was replaced by an open-downstream, nearly axisymmetric breakdown zone
with three-dimensional perturbations and turbulence only inside the zone, while the outer core flow
in the bulk expanding around the open zone was nominally (in the mean time-averaged behavior)
an axisymmetric swirling wake flow. The present inviscid and axisymmetric flow simulations show
the natural evolution to states with open zones that may represent the mean behavior of the flow in
the bulk at high-Re situations.

Moreover, the direct numerical simulations and the linear or weakly nonlinear stability analyses
of Refs. [33,42–46] found the appearance of spiral and double-helical states in pipe flows that
cannot be described by the present study. Three-dimensional instabilities may also appear in the
wall viscous boundary layers and these may affect the flow dynamics in the pipe and should be
studied in detail. Extension of the present analysis to include the flow response to three-dimensional
perturbations and the following three-dimensional dynamics in pipes is a challenging task that can
shed additional light on the flow physics.

[1] M. G. Hall, Vortex breakdown, Annu. Rev. Fluid Mech. 4, 195 (1972).
[2] S. Leibovich, Vortex stability and breakdown-survey and extension, AIAA J. 22, 1192 (1984).
[3] M. Escudier, Vortex breakdown: Observations and explanations, Prog. Aerosp. Sci. 25, 189 (1988).
[4] J. M. Delery, Aspects of vortex breakdown, Prog. Aerosp. Sci. 30, 1 (1994).
[5] T. Sarpkaya, Turbulent vortex breakdown, Phys. Fluids 7, 2301 (1995).
[6] W. Althaus, C. Brücker, and M. Weimer, Breakdown of slender vortices, in Fluid Vortices, edited by S. I.

Green, Fluid Mechanics and Its Applications Vol. 30 (Springer, Dordrecht, 1995), pp. 373–426.

014701-19

https://doi.org/10.1146/annurev.fl.04.010172.001211
https://doi.org/10.1146/annurev.fl.04.010172.001211
https://doi.org/10.1146/annurev.fl.04.010172.001211
https://doi.org/10.1146/annurev.fl.04.010172.001211
https://doi.org/10.2514/3.8761
https://doi.org/10.2514/3.8761
https://doi.org/10.2514/3.8761
https://doi.org/10.2514/3.8761
https://doi.org/10.1016/0376-0421(88)90007-3
https://doi.org/10.1016/0376-0421(88)90007-3
https://doi.org/10.1016/0376-0421(88)90007-3
https://doi.org/10.1016/0376-0421(88)90007-3
https://doi.org/10.1016/0376-0421(94)90002-7
https://doi.org/10.1016/0376-0421(94)90002-7
https://doi.org/10.1016/0376-0421(94)90002-7
https://doi.org/10.1016/0376-0421(94)90002-7
https://doi.org/10.1063/1.868742
https://doi.org/10.1063/1.868742
https://doi.org/10.1063/1.868742
https://doi.org/10.1063/1.868742


YUXIN ZHANG, ZVI RUSAK, AND SHIXIAO WANG

[7] D. J. C. Dennis, C. Seraudie, and R. J. Poole, Controlling vortex breakdown in swirling pipe flows:
experiments and simulations, Phys. Fluids 26, 053602 (2014).

[8] A. M. Mitchell and J. Delery, Research into vortex breakdown control, Prog. Aerosp. Sci. 37, 385 (2001).
[9] G. McLelland, D. MacManus, and C. Sheaf, The effect of streamtube contraction on the characteristics of

a streamwise vortex, J. Fluids Eng. 137, 061204 (2015).
[10] C. O. U. Umeh, Z. Rusak, and E. Gutmark, Vortex breakdown in a swirl-stabilized combustor, J. Propul.

Power 28, 1037 (2012).
[11] T. Sarpkaya, On stationary and traveling vortex breakdowns, J. Fluid Mech. 45, 545 (1971).
[12] T. Sarpkaya, Effect of the adverse pressure gradient on vortex breakdown, AIAA J. 12, 602 (1974).
[13] J. H. Faler and S. Leibovich, Disrupted states of vortex flow and vortex breakdown, Phys. Fluids 20, 1385

(1977).
[14] A. K. Garg and S. Leibovich, Spectral characteristics of vortex breakdown flowfields, Phys. Fluids 22,

2053 (1979).
[15] F. Novak and T. Sarpkaya, Turbulent vortex breakdown at high Reynolds numbers, AIAA J. 38, 825

(2000).
[16] C. O. U. Umeh, Z. Rusak, E. Gutmark, R. Villalva, and D. J. Cha, Experimental and computational study

of nonreacting vortex breakdown in a swirl-stabilized combustor, AIAA J. 48, 2576 (2010).
[17] S. Wang and Z. Rusak, On the stability of an axisymmetric rotating flow in a pipe, Phys. Fluids 8, 1007

(1996).
[18] S. Wang and Z. Rusak, On the stability of non-columnar swirling flows, Phys. Fluids 8, 1017 (1996).
[19] S. Wang and Z. Rusak, The dynamics of a swirling flow in a pipe and transition to axisymmetric vortex

breakdown, J. Fluid Mech. 340, 177 (1997).
[20] S. Wang and Z. Rusak, The effect of slight viscosity on a near-critical swirling flow in a pipe, Phys. Fluids

9, 1914 (1997).
[21] Z. Rusak, S. Wang, L. Xu, and S. Taylor, On the global nonlinear stability of a near-critical swirling flow

in a long finite-length pipe and the path to vortex breakdown, J. Fluid Mech. 712, 295 (2012).
[22] Z. Rusak and S. Wang, Wall-separation and vortex-breakdown zones in a solid-body rotation flow in a

rotating finite-length straight circular pipe, J. Fluid Mech. 759, 321 (2014).
[23] Z. Rusak, J. Granata, and S. Wang, An active feedback flow control theory of the axisymmetric vortex

breakdown process, J. Fluid Mech. 774, 488 (2015).
[24] B. Leclaire and D. Sipp, A sensitivity study of vortex breakdown onset to upstream boundary conditions,

J. Fluid Mech. 645, 81 (2010).
[25] J. D. Buntine and P. G. Saffman, Inviscid swirling flows and vortex breakdown, Proc. R. Soc. A 449, 139

(1995).
[26] B. Leclaire, D. Sipp, and L. Jacquin, Near-critical swirling flow in a contracting duct: The case of plug

axial flow with solid body rotation, Phys. Fluids 19, 091701 (2007).
[27] G. K. Batchelor, On steady laminar flow with closed streamlines at large Reynolds number, J. Fluid Mech.

1, 177 (1956).
[28] T. W. Mattner, P. N. Joubert, and M. S. Chong, Vortical flow. Part 1. Flow through a constant-diameter

pipe, J. Fluid Mech. 463, 259 (2002).
[29] D. O. Snyder and R. E. Spall, Numerical simulation of bubble-type vortex breakdown within a tube-and-

vane apparatus, Phys. Fluids 12, 603 (2000).
[30] P. S. Beran and F. E. C. Culick, The role of non-uniqueness in the development of vortex breakdown in

tubes, J. Fluid Mech. 242, 491 (1992).
[31] P. S. Beran, The time-asymptotic behavior of vortex breakdown in tubes, Comput. Fluids 23, 913 (1994).
[32] J. M. Lopez, On the bifurcation structure of axisymmetric vortex breakdown in a constricted pipe,

Phys. Fluids 6, 3683 (1994).
[33] M. R. Ruith, P. Chen, E. Meiburg, and T. Maxworthy, Three-dimensional vortex breakdown in swirling

jets and wakes: Direct numerical simulation, J. Fluid Mech. 486, 331 (2003).
[34] F. Gallaire and J. M. Chomaz, The role of boundary conditions in a simple model of incipient vortex

breakdown, Phys. Fluids 16, 274 (2004).

014701-20

https://doi.org/10.1063/1.4875486
https://doi.org/10.1063/1.4875486
https://doi.org/10.1063/1.4875486
https://doi.org/10.1063/1.4875486
https://doi.org/10.1016/S0376-0421(01)00010-0
https://doi.org/10.1016/S0376-0421(01)00010-0
https://doi.org/10.1016/S0376-0421(01)00010-0
https://doi.org/10.1016/S0376-0421(01)00010-0
https://doi.org/10.1115/1.4029661
https://doi.org/10.1115/1.4029661
https://doi.org/10.1115/1.4029661
https://doi.org/10.1115/1.4029661
https://doi.org/10.2514/1.B34377
https://doi.org/10.2514/1.B34377
https://doi.org/10.2514/1.B34377
https://doi.org/10.2514/1.B34377
https://doi.org/10.1017/S0022112071000181
https://doi.org/10.1017/S0022112071000181
https://doi.org/10.1017/S0022112071000181
https://doi.org/10.1017/S0022112071000181
https://doi.org/10.2514/3.49305
https://doi.org/10.2514/3.49305
https://doi.org/10.2514/3.49305
https://doi.org/10.2514/3.49305
https://doi.org/10.1063/1.862033
https://doi.org/10.1063/1.862033
https://doi.org/10.1063/1.862033
https://doi.org/10.1063/1.862033
https://doi.org/10.1063/1.862514
https://doi.org/10.1063/1.862514
https://doi.org/10.1063/1.862514
https://doi.org/10.1063/1.862514
https://doi.org/10.2514/2.1036
https://doi.org/10.2514/2.1036
https://doi.org/10.2514/2.1036
https://doi.org/10.2514/2.1036
https://doi.org/10.2514/1.J050393
https://doi.org/10.2514/1.J050393
https://doi.org/10.2514/1.J050393
https://doi.org/10.2514/1.J050393
https://doi.org/10.1063/1.868882
https://doi.org/10.1063/1.868882
https://doi.org/10.1063/1.868882
https://doi.org/10.1063/1.868882
https://doi.org/10.1063/1.868878
https://doi.org/10.1063/1.868878
https://doi.org/10.1063/1.868878
https://doi.org/10.1063/1.868878
https://doi.org/10.1017/S0022112097005272
https://doi.org/10.1017/S0022112097005272
https://doi.org/10.1017/S0022112097005272
https://doi.org/10.1017/S0022112097005272
https://doi.org/10.1063/1.869312
https://doi.org/10.1063/1.869312
https://doi.org/10.1063/1.869312
https://doi.org/10.1063/1.869312
https://doi.org/10.1017/jfm.2012.420
https://doi.org/10.1017/jfm.2012.420
https://doi.org/10.1017/jfm.2012.420
https://doi.org/10.1017/jfm.2012.420
https://doi.org/10.1017/jfm.2014.555
https://doi.org/10.1017/jfm.2014.555
https://doi.org/10.1017/jfm.2014.555
https://doi.org/10.1017/jfm.2014.555
https://doi.org/10.1017/jfm.2015.276
https://doi.org/10.1017/jfm.2015.276
https://doi.org/10.1017/jfm.2015.276
https://doi.org/10.1017/jfm.2015.276
https://doi.org/10.1017/S0022112009992436
https://doi.org/10.1017/S0022112009992436
https://doi.org/10.1017/S0022112009992436
https://doi.org/10.1017/S0022112009992436
https://doi.org/10.1098/rspa.1995.0036
https://doi.org/10.1098/rspa.1995.0036
https://doi.org/10.1098/rspa.1995.0036
https://doi.org/10.1098/rspa.1995.0036
https://doi.org/10.1063/1.2773767
https://doi.org/10.1063/1.2773767
https://doi.org/10.1063/1.2773767
https://doi.org/10.1063/1.2773767
https://doi.org/10.1017/S0022112056000123
https://doi.org/10.1017/S0022112056000123
https://doi.org/10.1017/S0022112056000123
https://doi.org/10.1017/S0022112056000123
https://doi.org/10.1017/S0022112002008741
https://doi.org/10.1017/S0022112002008741
https://doi.org/10.1017/S0022112002008741
https://doi.org/10.1017/S0022112002008741
https://doi.org/10.1063/1.870266
https://doi.org/10.1063/1.870266
https://doi.org/10.1063/1.870266
https://doi.org/10.1063/1.870266
https://doi.org/10.1017/S0022112092002477
https://doi.org/10.1017/S0022112092002477
https://doi.org/10.1017/S0022112092002477
https://doi.org/10.1017/S0022112092002477
https://doi.org/10.1016/0045-7930(94)90061-2
https://doi.org/10.1016/0045-7930(94)90061-2
https://doi.org/10.1016/0045-7930(94)90061-2
https://doi.org/10.1016/0045-7930(94)90061-2
https://doi.org/10.1063/1.868359
https://doi.org/10.1063/1.868359
https://doi.org/10.1063/1.868359
https://doi.org/10.1063/1.868359
https://doi.org/10.1017/S0022112003004749
https://doi.org/10.1017/S0022112003004749
https://doi.org/10.1017/S0022112003004749
https://doi.org/10.1017/S0022112003004749
https://doi.org/10.1063/1.1630326
https://doi.org/10.1063/1.1630326
https://doi.org/10.1063/1.1630326
https://doi.org/10.1063/1.1630326


INFLUENCE OF INLET FLOW PROFILES ON SWIRLING …

[35] Z. Rusak, Y. Zhang, H. Lee, and S. Wang, Swirling flow states in finite-length diverging or contracting
circular pipes, J. Fluid Mech. 819, 678 (2017).

[36] G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1967),
p. 543.

[37] H. B. Squire, Rotating Fluids (Cambridge University Press, Cambridge, 1956), p. 139.
[38] R. R. Long, Steady motion around a symmetrical obstacle moving along the axis of a rotating liquid,

J. Meteorol. 10, 197 (1953).
[39] T. B. Benjamin, Theory of the vortex breakdown phenomenon, J. Fluid Mech. 14, 593 (1962).
[40] L. Xu, Vortex flow stability, dynamics and feedback stabilization, Ph.D. thesis, Rensselaer Polytechnic

Institute, 2012.
[41] Z. Rusak, C. H. Whiting, and S. Wang, Axisymmetric breakdown of a Q-vortex in a pipe, AIAA J. 36,

1848 (1998).
[42] C. Feng, F. Liu, Z. Rusak, and S. Wang, Dynamics of a perturbed solid-body rotation flow in a finite-length

straight rotating pipe, J. Fluid Mech. 846, 1114 (2018).
[43] P. Meliga, F. Gallaire, and J.-M. Chomaz, A weakly nonlinear mechanism for mode selection in swirling

jets, J. Fluid Mech. 699, 216 (2012).
[44] U. A. Qadri, D. Mistry, and M. P. Juniper, Structural sensitivity of spiral vortex breakdown, J. Fluid Mech.

720, 558 (2013).
[45] O. Tammisola and M. P. Juniper, Coherent structures in a swirl injector at Re = 4800 by nonlinear

simulations and linear global modes, J. Fluid Mech. 792, 620 (2016).
[46] S. Pasche, F. Gallaire, and F. Avellan, Predictive control of spiral vortex breakdown, J. Fluid Mech. 842,

58 (2018).

014701-21

https://doi.org/10.1017/jfm.2017.179
https://doi.org/10.1017/jfm.2017.179
https://doi.org/10.1017/jfm.2017.179
https://doi.org/10.1017/jfm.2017.179
https://doi.org/10.1175/1520-0469(1953)010<0197:SMAASO>2.0.CO;2
https://doi.org/10.1175/1520-0469(1953)010<0197:SMAASO>2.0.CO;2
https://doi.org/10.1175/1520-0469(1953)010<0197:SMAASO>2.0.CO;2
https://doi.org/10.1175/1520-0469(1953)010<0197:SMAASO>2.0.CO;2
https://doi.org/10.1017/S0022112062001482
https://doi.org/10.1017/S0022112062001482
https://doi.org/10.1017/S0022112062001482
https://doi.org/10.1017/S0022112062001482
https://doi.org/10.2514/2.277
https://doi.org/10.2514/2.277
https://doi.org/10.2514/2.277
https://doi.org/10.2514/2.277
https://doi.org/10.1017/jfm.2018.245
https://doi.org/10.1017/jfm.2018.245
https://doi.org/10.1017/jfm.2018.245
https://doi.org/10.1017/jfm.2018.245
https://doi.org/10.1017/jfm.2012.93
https://doi.org/10.1017/jfm.2012.93
https://doi.org/10.1017/jfm.2012.93
https://doi.org/10.1017/jfm.2012.93
https://doi.org/10.1017/jfm.2013.34
https://doi.org/10.1017/jfm.2013.34
https://doi.org/10.1017/jfm.2013.34
https://doi.org/10.1017/jfm.2013.34
https://doi.org/10.1017/jfm.2016.86
https://doi.org/10.1017/jfm.2016.86
https://doi.org/10.1017/jfm.2016.86
https://doi.org/10.1017/jfm.2016.86
https://doi.org/10.1017/jfm.2018.124
https://doi.org/10.1017/jfm.2018.124
https://doi.org/10.1017/jfm.2018.124
https://doi.org/10.1017/jfm.2018.124



