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We conduct direct numerical simulations of turbulence sustained in slowly precessing
spheroids with the absolute value of the ellipticity 1 being between zero (i.e., a sphere)
and 0.2. Using a flexible grid generation algorithm, we can effectively simulate flows in
an arbitrarily shaped container. This enables us to investigate the ellipticity dependence
of the precession-driven flow in spheroids with the spin and precession axes being at
a right angle. The numerical results are in excellent agreement with experimental data
under the same flow conditions. In particular, we numerically realize hysteresis loops,
which have been well known since the seminal experiments by Malkus [Science 160,
259 (1968)], connecting two qualitatively different states in a precessing spheroid with
non-negligible ellipticity |5| larger than about 10/+/Re (where Re denotes the Reynolds
number defined by using the spin angular velocity). Our numerical simulations reveal
the three-dimensional turbulent flow structures in these states. One is a high-energy state
where the mean flow is approximated by a uniform-vorticity flow. The other is a low-energy
state with twisted mean-flow streamlines, which lead to fully developed turbulence when
the Reynolds number is high enough. The mean-flow structures in the low-energy state
are common irrespective of the ellipticity; namely, the main component of the mean flow
is a circulation about the axis perpendicular both to the spin and precession axes, but
the torsion of the mean-flow streamlines is larger for smaller n. For sufficiently high
Reynolds numbers, the low-energy state and therefore developed turbulence are sustained
for the Poincaré number (the precession rate) larger than about |7|/2. On the other hand,
stronger precession leads to the significant reduction of turbulence in a central region of the
container. Hence, a container with smaller |n| is adequate to sustain developed turbulence
with weak precession.

DOLI: 10.1103/PhysRevFluids.4.014603

I. INTRODUCTION

We investigate the flow of an incompressible fluid confined in a rotating container whose spin
axis precesses about another axis perpendicular to itself (Fig. 1). The most remarkable feature of
the precession-driven flow is that, despite the simple container motion, the sustained flow states
and their dependence on the parameters (the spin and precession rates) are highly nontrivial.
In particular, a weak precession can drive strong turbulence. This feature has been attracting
geophysicists because it is an important issue whether or not the weak precession of the Earth
affects the geodynamo. The turbulence sustained without stirrers in a smooth cavity is attractive
also in engineering applications, and it is an interesting scientific unsolved problem to reveal the
origin of the strong turbulence driven by weak precession of a container.
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FIG. 1. Precessing spheroid with the spin and precession axes being at a right angle. Numerical grid is
shown on (a) the cavity wall and (b) the equatorial plane. For visibility, the number of the grid points is
reduced. The coordinates (x, y, z) fixed on the rotating frame (the precession frame) are defined so that the
spin and precession axes are parallel to the z and x axes, respectively.

In fact, many studies have been conducted to understand the flow in precessing containers. The
modern theoretical studies go back to the one by Poincaré [1], and important contributions have been
continuously made [2—4] for steady flow and its instability in the weak precession regime. However,
since it is difficult to establish a nonlinear theory applicable to the turbulence regime, laboratory
experiments, which were first conducted by Malkus [5] and Vanyo and Linkins [6], have been
leading this research field. Even by using state-of-art techniques, however, the information on the
flow obtained in the laboratory is limited. In particular, it is difficult to measure three-dimensional
flow fields in a precessing container.

Direct numerical simulations (DNSs) therefore must play a crucial role. Tilgner [7-9] conducted
the first DNSs of flow in precessing spherical and spheroidal shells, and later quite a few DNSs
of precession-driven flow were conducted not only by himself and his coworkers [10-13] but also
by many other researchers (see the recent DNS studies [14-24] and references therein). It is only
recently, however, that we can conduct the DNS of turbulent flow in a precessing full sphere under
conditions similar to the laboratory experiments [25,26]. These DNSs [25,26] for the precessing
sphere employed the spectral method in terms of the spherical harmonics and Jacobi polynomials.
Although we may use a coordinate transformation to conduct the DNS of flow in a spheroid or a
spheroidal shell [10], it is not necessarily effective to extend the spectral method to the DNS of
flow in a spheroid, because of the coordinate singularity and the grid-point concentration along
the symmetry axis of the spherical coordinate. Therefore, Chan et al. [14] and Zhang et al. [17]
employed a finite element method in the DNS of precession-driven flow in an oblate spheroid.
To our knowledge, Refs. [14,17] were the first DNSs of precession-driven flow in spheroids, but
no DNS has been conducted to focus on developed turbulence, which is the target of the present
study, in precessing spheroids. In the present study, we conduct DNSs by using a finite difference
method, instead of the spectral or finite element methods, adopting an appropriate grid generation
algorithm so that we also avoid the above mentioned difficulties of the spherical coordinate. Since
the generated grid is boundary-fitted, the boundary condition is accurately imposed. In addition,
to efficiently conduct the DNSs, we make the numerical grid finer only in near-wall regions.
In addition, the parallel computing is also straightforward compared to the spectral methods. A
disadvantage is in the complexity of the coding due to the adoption of the curvilinear coordinate.
Nevertheless, it is advantageous that we can easily change the shape of the container. We conduct,
making use of this advantage, a series of DNSs of turbulent flows in precessing spheroids with
different values of the ellipticity.
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In the present paper, we show DNS results for the ellipticity dependence of flow in spheroids. It
was shown by the theory on inviscid flow by Poincaré [1], by the theory on viscous flow by Busse
[2], and by the laboratory experiments by Malkus [5] that a small ellipticity significantly affects the
flow states. Our DNSs, of course, realize this feature of the significant dependence of flow states on
the ellipticity of the container. Furthermore, our DNSs show the accurate route to turbulence as well
as the detailed three-dimensional turbulent flow structures in the precessing spheroids.

II. DIRECT NUMERICAL SIMULATIONS
A. Governing equations

We investigate flow of a confined fluid in precessing spheroids. As depicted in Fig. 1, a container
with a spheroidal cavity spins at a constant angular velocity 2, and the spin axis rotates about
another axis (the precession axis) at a constant angular velocity €,. In our setup, we restrict
ourselves in the case that the spin axis is perpendicular both to the equatorial plane of the spheroid
and to the precession axis. We observe the flow in the noninertial frame (the precession frame),
which rotates at £, with respect to the laboratory. The Cartesian coordinates (x, y, z) are fixed in
the precession frame and defined as shown in Fig. 1, namely, the x and z axes are parallel to the
precession and spin axes, respectively.

We numerically simulate the flow of an incompressible Newtonian fluid (with constant mass
density p and kinematic viscosity v) confined in the spheroid. By using the reciprocal €2,~! of the
spin angular velocity, the equatorial radius a of the cavity, and a* p as the characteristic time, length,
and mass, respectively, we nondimensionalize the Navier-Stokes equation in the precession frame
to obtain

a—u+u~Vu——V +iV2u+2Poux’é (1)
o1 TP T Re r
Here u(x,t), p(x,t), x, and ¢ are the nondimensionalized fluid velocity, pressure, position vector,
and time, respectively. The nondimensionalized equation of continuity and boundary condition on
the cavity wall are expressed by

V-u=0 (2)
and
z 2
u==e,xx on x2+y2+<1—> =1. 3
-1

In Egs. (1) and (3), ey and 'é,, denote the unit vectors parallel to the spin and precession axes,
respectively. The governing equations (1)—(3) depend on three nondimensional parameters, i.e., the
Reynolds number (the spin rate),

2
Q
Re = L% 4)
v
the Poincaré number (the precession rate),
Q
Po= -2, 5
Q. &)
and the ellipticity of the cavity,
a—>b
n= , (6)
a

with b being the polar radius. Flow in the precessing spheroid (Fig. 1) is therefore controlled by
these three parameters (Re, Po, ).
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B. Numerical schemes

We briefly summarize the numerical scheme of our DNSs. We use a standard finite difference
scheme, but we do not solve the governing equations in the spherical coordinate, which is usually
employed for the DNS of flow in a full sphere, a spherical, or spheroidal shell because one can easily
impose the boundary condition (3) on the cavity wall. As mentioned in Sec. I, the disadvantages of
DNS in the spherical coordinate are the following. First, we need special treatments to evaluate the
spatial derivatives due to the coordinate singularities. Second, and more seriously, the grid points
concentrate along the symmetry axis, where the velocity derivatives are not necessarily large. We
therefore use a boundary-fitted coordinate, shown in Fig. 1, so that we can avoid these difficulties
of the spherical coordinate. More concretely, we first generate the cubed sphere grid [27] on the
container’s wall, which is used for the boundary condition of the Poisson equation to generate a grid
inside the container. By putting appropriate source terms in the Poisson equation, we can make the
grid finer in near-wall regions. See Appendix A for the details of the grid generation algorithm.

We emphasize that the construction method of the boundary-fitted grid is flexible and applicable
to containers other than a sphere. In the present DNS, in fact, we can easily conduct DNSs of
flow in a sphere, a spheroid, a cylinder, and even a channel without changing the main code. This
advantage enables us to conduct the DNS of flow in precessing spheroids with different values of the
ellipticity (6). We then investigate the ellipticity dependence of the flow transitions on turbulence
and the three-dimensional flow structures and statistics of the sustained turbulence.

Apart from the grid, our numerical schemes are standard. We use a second-order finite difference
method with the collocate grid in the curvilinear coordinate [28], where we assign the three velocity
components in the Cartesian coordinate and the pressure at the center of each grid cell, whereas
we assign the mass flux on the side of each cell. These assignments of the variables ensure the
mass conservation. For the temporal integration, we use the second-order Crank-Nicolson method
for the viscous term and the second-order Adams-Bashforth method for the other terms in Eq. (1).
The SMAC method is employed for the coupling of (1) and (2), and the Poisson equation for the
pressure is solved iteratively using the SOR method.

C. Validation

To validate the DNS results, we compare them with experimental data in Fig. 2. As described
in detail in Refs. [29,30], we can measure the velocity field only on the equatorial plane of
the containers in our experiments using particle image velocimetry. We therefore compare the
temporally averaged velocity field on the plane for two different containers with n = 0 and 0.1.
The temporal average is taken over 50 spin periods both in the experiments and in the DNSs.
Figures 2(a) and 2(b) and Figs. 2(c) and 2(d) show the cases with the spherical and spheroidal
cavities, respectively. The parameters are common: Re = 10* and Po = 0.1. The numerical results
are in good agreement with the experimental data.

Incidentally, we have confirmed that, for this Reynolds number (Re = 10*), when we use grid
points less than 983, the results are inconsistent with experimental data, although the DNS is stably
conducted. The convergence tolerance of the correction pressure ¢ also affects the results. We
therefore impose the condition

(m+1) _ 4(m)
9D — ™o o
|l

where || - || is the L,-norm and m denotes the number of the iteration, to judge the convergence. The
results shown below are by the DNSs with 98° grid points and the convergence tolerance (7) for the
Poisson equation.
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FIG. 2. Comparison of the temporally averaged (over 50 spin periods) velocity field on the equatorial
plane of (a), (b) the precessing sphere and (c), (d) spheroid with n = 0.1. Results of (a), (c) the DNSs with the
number of grid points being 98° and (b), (d) laboratory experiments. Parameters are common: Re = 10* and
Po = 0.1. The length of the vectors is normalized so that a$2; becomes unity. The DNS results are plotted, by
interpolation, only on the points where the experimental data exist.

II1. RESULTS

The most interesting feature of the flow in a precessing container is that relatively weak
precession of the container leads to developed turbulence. It is therefore crucial to reveal (1) the
condition that turbulence is sustained and (2) the detailed three-dimensional structures of sustained
turbulence. As will be shown in this section, the present DNSs may reveal these.

A. Sustainability condition of developed turbulence

When we increase Po from 0, for a fixed value of Re, flow in a precessing spheroid changes as
the solid-body rotational (Po = 0), steady in the precession frame, periodic, and turbulent flows.
It is known, since the experiments by Malkus [5], that the developed turbulence appears suddenly
(discontinuously) at a value of Po, which is denoted by Po’(Re), in a spheroid with sufficiently
large ellipticity. In contrast, the flow transition in a precessing sphere is continuous [5,31].
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Po

FIG. 3. The temporal average E of the kinetic energy in the precession frame as a function of Po. The
energy E attains the maximum for the solid-body rotational flow (Po = 0). We examine four different values
(n = 0, black curve; 0.1, dark gray; 0.15, gray, 0.2, light gray) of the ellipticity of the spheroidal container. The
Reynolds number is fixed at Re = 10*. Upper triangles are the results of DNSs with increasing Po, and lower
triangles are those with decreasing Po. We observe hysteresis loops for n = 0.15 and 0.2.

We conduct a series of DNSs with changing the ellipticity of the spheroid in the range that
0 < 1 < 0.2. For each value of 1, we change the value of Po by step and evaluate the temporal

average
1 2
E=(5 [ lufdx (8)

of the total kinetic energy in the precession frame for the fixed Reynolds number at Re = 10*. We
show results in Fig. 3. The value of E attains the maximum,

b/a 1- (m/b)2 A (]l —
Eumax = / / arddrde = A=) ©)
b/a 15

which depends on the ellipticity 7, for the solid-body rotational flow at Po = 0, and it decreases as
Po increases.

The upper triangles in Fig. 3 are the results for increasing Po cases, whereas the lower triangles
are those for decreasing Po cases. This figure clearly shows the qualitative difference of the
transition depending on the ellipticity. More concretely, for the examined Reynolds number (Re =
10%), when the ellipticity is larger than about 0.1, the transition is discontinuous and a hysteresis loop
exists. In contrast, when n < 0.1, the transition is continuous, and no hysteresis loop is observed.
We will discuss, in Appendix B, the Re dependence of the minimum |7| for which a discontinuous
transition occurs.

As will been shown in detail in the next subsection (Sec. III B), the flow structures for Po <
Po® and for Po > Po'") are significantly different. For example, when 1 = 0.15, the former for
Po < Po™ is in a high-energy (high-E) state with E ~ 0.6, which is dominated by a global nearly-
uniform-vorticity circulation about an axis inclined from the spin axis due to the Coriolis force
[see Fig. 6(b) in Sec. III B]. On the other hand, the latter for Po > Po") is in a low-energy (low-E)
state with £ =~ 0.15, whose mean flow structure is complex [see Fig. 6(c)]. We emphasize that the
high-E state has no large-scale shearing motions, and it cannot produce strong turbulence. In other
words, Po must be larger than Po’ for sustaining complex large-scale flow and, therefore, developed
turbulence. In fact, our laboratory experiments [31] for sufficiently high Reynolds numbers show
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that the flow in the low-E state is indeed developed turbulence, in which shearing motions around
the twisted mean flow structure produces small-scale turbulent eddies (see Fig. 7 in Sec. III B for
the corresponding DNS results).

We observe in Fig. 3 that the transitional Poincaré number Po") is larger for larger 1. The
container with smaller ellipticity is, therefore, better for the purpose to sustain developed turbulence
with smaller Po. Incidentally, we showed [31] by using the theory by Busse [2] that Po") ~ |n|/2
for sufficiently high Re. Although the Reynolds number examined in the present DNSs is not high
enough (Re = 10%), the results in Fig. 3 are consistent with the prediction: Po") ~ |5|/2 = 0.1
for n = 0.2, for example. It may be worth mentioning that, when Re is sufficiently high, Po")
is significantly larger than the critical Po at which the steady flow becomes unstable due to the
inertial-mode resonance (see the experimental results shown in Ref. [31]). We also observe in Fig. 3
that the range of Po of the hysteresis loop expands as 1 increases.

In addition, Fig. 3 shows that the Po dependence of the energy E above the transition (i.e., in
the low-E state for Po > Po") is independent of the ellipticity. This result implies that the flow
structures in the low-E state only weakly depend on the ellipticity. We will discuss this point in
Sec. IIID.

B. Three-dimensional flow structures in the bistable states

We have shown in the preceding subsection (see Fig. 3) that there can be bistable states for a given
set of parameters. In this subsection, we compare the three-dimensional flow structures in these
states to conclude that they are quite different. More concretely, the low-E state has flow structures
that are much more complex than the high-E states, which are the nearly-uniform-vorticity flows.
We recall that the energy E is evaluated in the precession frame, and it takes the maximum (9) for
the solid-body rotational flow (Po = 0).

We investigate a typical example in detail, i.e., the bistable states at Re = 10* and Po = 0.085 in
the precessing spheroid with the ellipticity n = 0.15. These two states are both unsteady. We show
the temporally averaged velocity fields on cross sections in Fig. 4. The average velocity [Figs. 4(a)-
4(c)] in the high-FE state is much faster than in the low-E state [Figs. 4(d)—4(f)], and it is as fast
as the speed a2, of the cavity wall on the equatorial plane. However, the velocity fluctuations are
much larger in the low-E state. Evidence is given in Fig. 5, in which the average (u, + u), +u’)/3
of the root mean squares of velocity components is shown. Note the difference in the contour levels
in Fig. 5(a) for the high-E state and in Fig. 5(b) for the low-FE state. Although the velocity is much
faster in the high-E state than in the low-E state (Fig. 4), the velocity fluctuations are significantly
larger in the low-E state. We also observe that the high-turbulence-intensity regions are located
differently in these two states. The region is annular on the equatorial plane in the high-E states
[Fig. 5(a)], which forms a tube in the three-dimensional space [Fig. 5(c)]. On the other hand, the
high-turbulence-intensity region in the low-E state is ringlike [Fig. 5(d)]. The origin of the strong
turbulence intensity will be discussed below (see Fig. 7).

For this Poincaré number (Po = 0.085), the global flow structure in the high-E state is a simple
global circulation about an axis which is inclined from the spin axis (the z axis). Figure 6(b) shows
the streamlines of the mean flow in the high-E state. We can see that the principal component of the
flow in the high-E state is a simple global circulation.

In contrast to the simple large-scale flow structure [Fig. 6(b)] in the high-E state, the mean flow in
the low-E state is nontrivial [Figs. 4(d)—4(f) and 6(c)]. We notice in these figures that the mean flow
in a central region of the container is a circulation about the y axis, which is the axis perpendicular
to both the spin and precession axes. However, different from the high-E states [Figs. 4(a)—4(c)],
the velocity of this circulation [Figs. 4(d)—4(f)] is much slower than the spin velocity of the cavity
wall. We also notice in Fig. 6(c) that the center line of this circulation is twisted, and it cannot be
expressed as a uniform-vorticity flow.

It may be interesting to compare the global flow structures with the theory by Busse [2]. As
shown in previous studies [11,31-33], the unsteady flow in the high-E state is well approximated
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FIG. 4. Temporally averaged velocity fields in the bistable states for Re = 10* and Po = 0.085 in the
precessing spheroid with n = 0.15. We show the mean velocity fields (in the precession frame) on three cross
sections of the flow in the (a)—(c) high-E state and (d)—(f) low-E state. It is seen in panel (c) that the fluid
velocity in the high-E state is as fast as the velocity a2, of the cavity wall on the equatorial plane.

by the steady uniform-vorticity solution [2] derived for low Po. To demonstrate this, we plot in
Fig. 6 streamlines of the mean flow in a Po range around the hysteresis loop and compare them
with the steady solution. Figure 6(e) shows the theoretical prediction of the angle ¢ between the
spin axis and the uniform vorticity vector. The vertical lines in Fig. 6(e) indicate the three values
of Po (0.08, 0.085, and 0.09), for which we show the DNS results in Fig. 6(a), Figs. 6(b) and
6(c), and Fig. 6(d), respectively. Note that the theory predicts that the range of Po for the bistable
states is 0.074 < Po < 0.082, which is slightly lower than the DNS results. More precisely, we
numerically observe the bistable states in a very narrow range around Po = 0.085 [Figs. 6(b) and
6(c)]. Nevertheless, the steady solutions well approximate the mean flow structures in the hysteresis
loop. We can see in Fig. 6(a) that the center line of the mean-flow circulation observed in the high-E
state for Po = 0.08 coincides with the theoretical prediction (the red straight line) of the direction of
the vorticity vector. Incidentally, the blue straight lines in Fig. 6 denote the direction of the vorticity
of the other steady solution in the low-E states, which correspond to the blue closed circles in
Fig. 6(e). It is further interesting to observe, in Figs. 6(c) and 6(d), that the circulation approximately
about the y axis in a central region of the container in the low-E states is also approximated by
the steady solution, though, of course, the twisted streamline structures are not expressed by the
uniform-vorticity solution. We reemphasize that these are surprising coincidences, since the theory
[2] is applicable to steady flows for low Po («Re~!/?).

It is further important to observe in Fig. 6(b) that there exist strong shear flows around y = =a,
where the internal flow is circulating about the y axis, whereas the cavity wall and the fluid near
the wall rotate about the z axis. Smaller-scale turbulent eddies are likely to be created by vortex
stretching in these shearing regions. To verify this, we show isosurfaces of the enstrophy in Fig. 7.
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FIG. 5. (a), (b) The contour on the equatorial plane and (c), (d) the isosurface of the average (u/, + u/y +
u’)/3 of root mean squares of three velocity components for Re = 10* and Po = 0.085 in the precessing
spheroid with = 0.15. (a), (c) High-E and (b), (d) low-E states. Note the difference in the contour levels in
panels (a) and (b). The threshold of the isosurface is (c) 0.014 and (d) 0.07.

In the low- E state [Fig. 7(b)], strong small-scale turbulent eddies are indeed created in these regions
and circulating along the mean-flow streamlines. Incidentally, this ringlike region with turbulent
eddies was observed in a precession-driven turbulence in a sphere [34]. On the other hand, since
the mean flow in the high-E state is not accompanied by a shearing motion, no small-scale eddies
are observed in Fig. 7(a). Instead, we observe cavity-size ringlike vortical structures in the high-E
state. We note that the threshold of the enstrophy isosurface in Fig. 7(b) is 4.8 times larger than
in Fig. 7(a). This means that much stronger smaller-scale vortices exist in the low-E states than
the high-E states. It is this difference in the intensity of smaller-scale vortices in the high- and
low-E states that explains the difference of the magnitude of velocity fluctuations shown in Fig. 5.
In fact, the ringlike region with high turbulence intensity [Fig. 5(d)] coincides with the region with
small-scale vortices [Fig. 7(b)].

In summary, large-scale flows in the bistable states are essentially different from each other
(Fig. 6). The shearing regions (y ~ =£a) in the nontrivial large-scale flow in the low-E state play
an important role for sustaining small-scale turbulent eddies [Fig. 7(b)]. In fact, for higher Re, fully
developed turbulence is sustained by the large-scale structures in the low-E state [30]. Experiments
for higher Re also showed that flows in the high-E states were quiescent turbulence, whereas those
in the low- E states were fully developed (see the visualizations in Fig. 3 of Ref. [31]).
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FIG. 6. Three-dimensional flow structures in a Po range around the hysteresis loop for Re = 10* and n =
0.15. The Poincaré number is (a) Po = 0.08, (b), (c) 0.085, and (d) 0.09. For Po = 0.08 and 0.09, we observe
only flows in the (a) high- and (d) low-E states, respectively. The precession with Po = 0.085 sustains bistable
states with (b) high and (c) low energy. Panel (e) shows the theoretical prediction [2] of the angle ¢ between the
spin (z) axis and the vorticity vector of the steady uniform-vorticity flow. The dotted vertical lines in panel (e)
indicate the three values (0.08, 0.085, and 0.09) of Po. The red and blue straight lines in panels (a)—(d) indicate
the direction of the uniform vorticity vector of the steady flow in the high- and low-E states, respectively.

C. Laminarization for higher Po

For further higher Po, the turbulent flow in a precessing cavity laminarizes in a central region of
the container. This interesting phenomenon has not been emphasized, but it is important. We show
the evidence of the laminarization in Fig. 8, where we draw streamlines of the temporally averaged
velocity field for six values of Po between 0.2 and 2. The Reynolds number and the ellipticity are
fixed at Re = 10* and 5 = 0.15, respectively. The line of sight is parallel to the x (precession) axis,
and only streamlines in a hemisphere (x > 0) are drawn.

The observed mean-flow structures are interesting. For the examined condition (Re = 10* and
n = 0.15), the mean-flow streamlines for Po < 0.3 are complex [see Figs. 8(a) and 8(b) for Po =
0.2 and 0.3; see also Fig. 6(b) for Po = 0.085]. In contrast, for Po larger than 0.4 [Fig. 8(c)], the
turbulence in a central region is significantly reduced. More concretely, flow becomes a simple
two-dimensional circulation about the precession (x) axis in the central region of the container.
This two-dimensionalization occurs only in the central region, and turbulence is still sustained but
confined in an outer region. We observed this laminarization in laboratory experiments [29], but the
present DNS first reveals its three-dimensional structures. Recall that we observe the flow in the
precession frame. The circulation in the central region implies that the fluid rotates in a different (in
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FIG. 7. Isosurfaces (blue objects) of the instantaneous enstrophy field in the (a) high-E state and (b) low-
E state. The threshold is set to be (a) 2.552? and (b) 1252?. Structures in the boundary layer near the wall
(\/x2 + ¥2 4+ [z/(1 — n)]*> > 0.9a) are not shown. Red curves are the streamlines shown in Fig. 6.

fact, faster) angular velocity from 2, in the laboratory frame. The contrast between turbulent and
laminar regions gets clearer for higher Po [Figs. 8(e) and 8(f)].

This laminarization for relatively high Po, which is actually lower than 1, stems from the fact that
the precession axis is fixed in the laboratory frame. In other words, this is a well-known phenomenon
in rotating systems. Therefore, even if we change the container’s shape, it is difficult to avoid the
laminarization in a high Po range. We reemphasize that the laminarization occurs for Po which is

FIG. 8. Laminarization in a central region along the precession axis for higher Po. We draw streamlines
of the temporally averaged field in a hemisphere (x > 0). The Reynolds number is fixed at Re = 10*, and the
Poincaré number is changed as (a) Po = 0.2, (b) 0.3, (c) 0.4, (d) 0.5, (e) 1, and (f) 2. The ellipticity of the cavity
isn =0.15.
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FIG. 9. Streamlines of mean flow in the spheroids with different ellipticity: (a) n = 0, (b) 0.1, and (c) 0.2.
Flow parameters are common: Po = 0.1 and Re = 10*. Streamlines are drawn from the spin axis, and colored
in red for those towards y > 0 and in blue for those towards y < 0. Red (or blue) streamlines are right-hand
(or left-hand) spirals.

not that high (say, Po > 0.4 for Re = 10* as shown in Fig. 8). This is important information for the
sustainability condition of strong turbulence in precessing containers.

D. Ellipticity dependence of the low-energy states

Another interesting observation in Fig. 3 is that the different curves for different values of 7
coincide for Po > Po”), namely, the energy E of the low-energy states is independent of 7. This
implies that the flow in these states is only weakly dependent on the ellipticity. We show in Fig. 9
streamlines of mean flow in the spheroids with ellipticity n = 0, 0.1, and 0.2. The flow parameters
are common: Re = 10* and Po = 0.1. Streamlines are drawn from the points on the spin axis (i.e.,
the z axis). The streamline topology is, indeed, common in these containers irrespective of the
ellipticity. It is also similar to the one shown in Fig. 6(b) for n = 0.15 and Po = 0.85. In this
intermediate Po range (Po = 0.1), the flow is dominated by circulations about the y axis, which
is the axis perpendicular to both the spin and precession axes. In particular, for the largest ellipticity
examined [ = 0.2, Fig. 9(c)], the mean flow seems a relatively simple circulation about the y axis.
However, the streamlines are actually spirals, and the fluid slowly flows towards y = +a. The red
(or blue) curves towards the y > 0 (or y < 0) hemisphere are right-hand (or left-hand) spirals. For
smaller n, these spirals are curved, and they form a pair of banana-shaped vortices in the sphere
[n = 0, Fig. 9(a)]. As shown in Sec. III B (Fig. 7), the shear flow around these large-scale vortices
plays important roles in producing small-scale turbulent eddies. We also showed in Ref. [25] that
the pair of the banana-shaped vortices sustains strong mixing in the precessing sphere.

For comparison, we also conduct the DNS of turbulence in prolate spheroids with the ellipticity
being —0.1 and —0.2. By setting appropriate initial conditions, we realize turbulence in the low-
E state for the common set of the flow parameters (Po = 0.1 and Re = 10%). Figures 10(b) and
10(c) show the streamlines of the mean velocity field of the simulated turbulence in the prolate
spheroids, and Fig. 10(a) shows the streamlines in the sphere [Fig. 9(a)] from the same viewpoint
as in Fig. 10(b). Comparing Fig. 10(a) for n = 0 with Fig. 10(b) for n = —0.1, we can see that the
mean flow structures in these cavities are similar. In particular, the pair of twisted vortices exists in
the both cavities. Although similar twisted vortices are observed in the prolate spheroid with a larger,
in magnitude, ellipticity [n = —0.2, Fig. 10(c)], their orientation is different from those observed in
Figs. 10(a) and 10(b). Note that we rotate the objects with the angle 77 /4 about the z axis in Fig. 10(c)
with respect to Figs. 10(a) and 10(b). It is important that the twisted (banana-shaped) vortices exist
in these prolate spheroids because they effectively generate small-scale turbulent eddies in the shear
flows around them. Therefore, if the Reynolds number is high enough, these spheroids may also
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FIG. 10. Streamlines of mean flow in (a) the precessing sphere and prolate spheroids with the ellipticity
(b) n = —0.1 and (c) —0.2. Flow parameters are common: Po = 0.1 and Re = 10*. Panel (a) shows the same
streamlines as in Fig. 9(a) but from a different viewpoint. Note that we rotate the objects so that we can see the
twisted vortices; the line of sight in panel (c) is different with the angle 7 /4 (around the z axis) from panels (a)
and (b).

sustain fully developed turbulence. However, recalling the laminar-turbulent transition shown in
Fig. 3, the low-E state, for Po &~ 0.1, cannot be sustained in spheroids with larger |5|. Therefore,
the weak precession (Po & 0.1) sustains strong turbulence if and only if || < 0.2.

IV. CONCLUSIONS

We have conducted the DNSs of turbulence in precessing spheroids. The simulated velocity fields
are in good agreement with the experimental data (Fig. 2). In particular, we numerically realize
bistable flow states for a given set of parameters (Re, Po) and hysteresis loops connecting them
(Fig. 3). (See Appendix B for the condition under which a hysteresis loop appears.) Systematically
changing the Poincaré number Po and the ellipticity n of the cavity for a fixed Re (=10*), we have
revealed the condition for developed turbulence to be sustained in precessing spheroids and the
three-dimensional flow structures of the sustained turbulence.

For the sustainability condition of developed turbulence in processing spheroids, we have to
consider two facts. One is that the developed turbulence is sustained only in the low-E state (Fig. 7).
The low-E states are realized when Po 2 0.1 in a sphere and spheroids with small ellipticity,
whereas it is sustained when Po > Po) & |n|/2 for larger || (Sec. IIl A). Therefore, for larger
[n], the developed turbulence requires higher Po (Fig. 3). The other is the fact that the turbulence
is drastically reduced in a central region when Po is large (Fig. 8). This laminarization in a central
region, which is a well-known phenomenon in rotating systems, occurs for Po 2 0.2 [29], and it is
significant for Po = 0.4 [Fig. 8(c)]. Hence, in order to simultaneously satisfy these two conditions
to sustain developed turbulence, we should use a spheroidal cavity with small ellipticity.

Although the ellipticity significantly affects the sustainability condition of the low-E state and
therefore of the developed turbulence, the energy E in the low-E states is only weakly dependent
on n (Fig. 3). We also observe that the three-dimensional flow structures in the low-E states
have common features irrespective of 7 (Figs. 9 and 10). The observed large-scale flow structures
explain the physical mechanism to sustain developed turbulence in the low-E states; namely,
there exist strong shear flows between the internal large-scale flow, which is dominated by the
circulation about the y axis (Figs. 9 and 10), and the near-wall circulation about the spin (z) axis.
It is in this shear flows that small-scale turbulent eddies are amplified [Fig. 7(b)]. Furthermore,
when the ellipticity is small (say, || < 0.1), the large-scale vortices are twisted in a nontrivial
manner [Figs. 9(a), 9(b), 10(a), and 10(b)], and there exist internal shear layers. Therefore, when
the Reynolds number is high enough, small-scale turbulent eddies are effectively generated in
these cavities. Such well-developed turbulent flow in a spheroid with a small ellipticity seems
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plausible for effective mixing of the confined fluid as well as for the precession-driven dynamo.
For larger |n|, the internal large-scale flow is relatively simple. It is a simple circulation about
the y axis for n = 0.2 [Fig. 9(c)], whereas it seems to tend to the circulation about the spin (z)
axis for n = —0.2 [Fig. 10(c)]. For further larger |n| (=0.2), as repeatedly discussed above (see
Sec. ITA), no low-E states, and therefore no developed turbulence, are sustained by weak
precession (Po =~ 0.1).

The study of the flow in a precessing spheroid has a long history. The year of the submission
of the present paper is the 50th anniversary of the two important studies: the seminal laboratory
experiment by Malkus [5], which showed that turbulence could be sustained in precessing contain-
ers, and the excellent theory of Busse [2], which derived steady flow solutions of the viscous fluid
confined in precessing spheroids. It was shown in Refs. [11,31-33] that the theory of Busse for
steady flows can explain the hysteresis loop discovered in the experiments by Malkus. Although it
took a half century to reveal the detailed three-dimensional turbulent flow structures in precessing
spheroids, since adequate numerical environments for the study of precession-driven turbulence are
now available, we expect significant progress of our understanding of this fascinating flow system
in a few years.
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APPENDIX A: GRID GENERATION ALGORITHM

In this Appendix, we describe the generation method of the grid used in our DNS of flow in a
sphere. The grids in spheroids are constructed by the linear transformation of the grid in the sphere.
First, we generate a grid on the spherical surface by using the method proposed by Ronchi et al. [27].
We set the circumscribed cube with the sphere and project grids on the six sides of the cube onto
the spherical surface. Next, we generate a grid inside the sphere. Our goal is to construct curvilinear
coordinates (&€, n, ¢). For this purpose, we solve the Poisson equations,

gxx + Ey_v + EZZ = P(S’ n, C)v (Al)
Nxx + Nyy +Nzz = 0E,n, ), (A2)
Cax 8y + 8z = R, n,0), (A3)

where the subscripts denote the spatial derivatives. We interpret £ and P in Eq. (A1) as the temperate
and heat source. Then we impose the boundary condition of the temperature on the spherical
boundary by the value obtained in the first step. Since the solution to (A1) is the steady solution
of the heat equation, the isothermal surfaces (i.e., the constant & surfaces) give smooth surfaces
which satisfy the boundary conditions. Similarly, the solutions to (A2) and (A3) give smooth spatial
distributions of 1 and ¢. In practice, however, we do not solve (A1)-(A3) because we need (x, y, z)
as functions of (&, n, ¢). Instead, we solve the equivalent equations [35],

11 Xee + QX + 033X + 21X, + @3Xer + 03X ) = —JH(Pxs + Qx, + Rx;),  (Ad)
a11Yee + @Yy + @33Yee + 2(Q12Yen + @13Ver + 023yne) = —J*(Pye + Oy, + Ry;),  (AS)

11265 + 0002y + 03320 + 2001028y + Q1326 + @23250) = —J*(Pze + 0z, + Rz:),  (A6)
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which are obtained by interchanging the independent and dependent variables of (A1)—(A3). Here
o and J are given by

an = J2(E2+£2+ €2

an = J*(m; + ) +n2)

sy = I (L4 +82)

ary = J(Ene + Eyny + E12)

aiz = JAEL + £ +E:0)

w3 = T (Nele + Myy + 0282) (A7)

and

J = XeynZe + Xy YeZe + Xe Yely — XgYeln — XnVsZy — X¢ YyZes (A8)

respectively. We solve (A4)-(A6) by an iterative method, where the derivatives on the right-hand
side of (A7) are numerically evaluated by using the formulas such as &, = (y,z; — y:2,)/J.
To attract coordinate surfaces around &€ = E, we set the source term P as

P&, n,¢) = —Asgn(§ — E)exp(=Cl|§ — EJ). (A9)

Here sgn(x) = x/|x|. By appropriately setting constants A and C (we use the values A = 8000 and
C = 0.4) we can adjust grid width near the wall (i.e., E = 0 and N with N being the number of the
grid points in one direction). Similarly, we set the source terms Q and R so that we can make the
grid finer in a near-wall region in the 7 and ¢ directions.

APPENDIX B: CONDITION FOR A HYSTERESIS LOOP TO EXIST

The steady solutions of Busse [2] approximate unsteady flows in the high- E state. Therefore, the
breakdown of the torque balance of the steady flow well describes the subcritical transition from the
high- to low-E states [11,31-33]. Using this idea, we derive the condition for the hysteresis loop to
appear in the transition between the high- and low-E states. According to the theory, Po is expressed
as a function of the vorticity magnitude w, which is equal to cos ¢, of the sustained steady flow as

po [ 0259 . - 2+2.622w L, B
" | | VRew e Re ? ’

Here we have used e, L e,. Note that the ellipticity » appears only in the curly brackets on the
right-hand side. If the ellipticity is sufficiently small so that the first term in the curly brackets
is dominant, then Po is a monotonically decreasing function of w. On the other hand, if Re is
sufficiently high so that the first term is negligible, then dPo/dw = 0 for a value of w (€ (0, 1]) and
therefore the function Po(w) is not monotonic [see an example in Fig. 6(e)]. In such a case, when
increasing Po from 0, we observe a discontinuous behavior of w. The condition for a hysteresis loop
to exist is therefore determined by the dominance of the second term in the curly brackets, and it is
expressed by

Re > an~ 2. (B2)

Here the coefficient « is determined by the maximum value of & such that the function

2 > 2.62? 1
fl@)= [(0 ~59 +a)2> 4 292 w](—z - 1> (B3)
aw o w

014603-15




KEN KOMODA AND SUSUMU GOTO

of w is a monotonically decreasing function. We estimate o« = 98.8 ~ 100. Hence, for a given Re,
a hysteresis loop exists for the ellipticity || > 10/+/Re. This is consistent with the observation in
Fig. 3 that, for Re = 10*, hysteresis loops are observed when n > 0.1.
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