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Direct numerical simulations of passive scalar transport in turbulent channel flow subject
to spanwise rotation are carried out with two different boundary conditions for the scalar. In
the first case the scalar transport is driven by an assigned scalar difference at the walls and
in the second case by a constant mean streamwise scalar gradient. The Reynolds number
Re = Ubh/ν is fixed at 14 000 and the rotation number Ro = 2�h/Ub is varied from 0 to
0.75, where Ub is the mean bulk velocity, h half the channel gap width, and � the rotation
rate. This work is a continuation of Brethouwer [J. Fluid Mech. 844, 297 (2018)] to further
study the influence of rotation and also the influence of scalar boundary conditions on
scalar transport in channel flow. Mean scalar profiles and other scalar statistics differ in
the two cases with different boundary conditions but are similar in the near-wall region
in terms of local wall units. The conclusion of Brethouwer that the Reynolds analogy
for scalar-momentum transfer does not apply to rotating channel flow is independent of
scalar boundary conditions. Rotation influences the turbulent scalar flux differently than the
Reynolds shear stress and strongly reduces the turbulent Prandtl number on the unstable
channel side, irrespective of the scalar boundary conditions. Scalar structures are larger
than the turbulence structures in rotating channel flow, in contrast to nonrotating channel
flow where these are similar.

DOI: 10.1103/PhysRevFluids.4.014602

I. INTRODUCTION

The influence of rotation on heat and mass transfer in turbulent wall-bounded flows is of practical
interest, for example, for turbomachinery, and of theoretical interest. Passive scalar transport in
nonrotating turbulent wall-bounded flows has been studied extensively. Pirozzoli et al. [1] have
recently studied passive scalar transport in nonrotating turbulent channel flow at friction Reynolds
numbers Reτ = uτh/ν up to 4088 and for Prandtl numbers Pr = ν/α from 0.2 to 1 by direct
numerical simulation (DNS). Here, uτ is the friction velocity, h half the channel gap width, ν the
viscosity, and α the scalar diffusivity. The mean scalar profiles displayed a logarithmic profile in
the overlap region and large-scale scalar structures were observed. The turbulent Prandtl number
Prt varied with Pr and Reτ but was in general near unity, suggesting that the Reynolds analogy
for momentum and scalar transfer applies. Abe and Antonia [2] found that the streamwise velocity
and passive scalar fluctuations and other velocity-scalar statistics are strongly correlated near the
wall in DNS of turbulent channel flows. Antonia et al. [3] observed that the turbulence and passive
scalar spectra are fairly similar near the wall and in the outer region, providing further support
for the Reynolds analogy. Visualizations, however, suggested that the large-scale scalar structures
are wider in the spanwise direction than the streamwise velocity structures, although this was not
clearly reflected by the spectra. Also the inclination angles of the large-scale scalar structures with
respect to the wall were larger than those of the streamwise velocity structures. More references
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to studies of turbulent scalar transport and heat transfer in wall-bounded flows can be found in the
aforementioned publications.

Physical transport phenomena in turbulent wall-bounded flows subject to rotation have been
investigated in much less depth. Passive scalar transport in turbulent channel flow subject to
spanwise rotation has been examined by DNS at rotation numbers Ro = 2�h/Ub � 0.5, and
Reτ = 150 and 194 by Nagano and Hattori [4] and Liu and Lu [5]. Here, � is the rotation rate
and Ub the mean bulk velocity. Spanwise rotation tends to augment turbulence on the so-called
pressure side or unstable side where rotation is anticyclonic, and to suppress it on the so-called
suction or stable side where rotation is cyclonic [6,7]. This naturally leads to slow and fast turbulent
scalar transport on the stable, respectively, unstable, channel side [4,5]. Rotation also reduces the
streamwise turbulent scalar flux in the outer region and Nusselt number Nu [5]. Wu and Kasagi [8]
carried out DNS of turbulent channel flow with a passive scalar at Re = Ubh/ν = 2280 with varying
directions of the rotation axis and observed a large influence of rotation on the turbulent scalar flux
direction and mean scalar gradients. DNS of turbulent passive scalar transport in a square duct flow
subject to spanwise rotation was carried out by Fang and Wang [9]. Also in this case, the influence
of rotation on the scalar fluxes and Nu were considerable.

These studies were mostly at low Reynolds numbers. Recently, I have studied passive scalar
transport in spanwise rotating turbulent channel flow at a higher Re = 20 000, and Ro � 1.2 through
DNS [10]. At high Ro turbulent scalar transport is strongly reduced on the stable side since the
flow relaminarizes there. A main finding was that the Reynolds analogy does not apply to rotating
channel flow since the turbulent scalar transfer is often much faster than the momentum transfer
on the unstable channel side. This is reflected by Prt , which in some parts of the channel becomes
smaller than 0.2 at higher Ro. Spectra showed that the scalar and the turbulent scales also differ in
rotating channel flow. Some of the rotation effects on scalar transport in channel flow are also seen
in rapid distortion theory and DNS of homogeneous turbulent shear flow subject to rotation [11,12].

There have been several attempts to model heat and mass transfer in rotating wall-bounded
flows. Large-eddy simulation (LES) with the lattice Boltzmann method can capture the effects of
spanwise rotation on passive scalar transport in turbulent channel flow at low Ro quite well [13], but
accurately predicting turbulent scalar transport at higher Ro is likely challenging since predicting
the flow at high Ro by LES is hard [14]. Attempts have also been made with Reynolds-averaged
models [15], but the model results deviate sometimes strongly from DNS [16,17], demonstrating
that better models are welcome.

In previous DNS of passive scalar transport in spanwise rotating channel flow scalar transport
was forced by an assigned scalar difference at the two walls, which leads to a mean scalar gradient in
the wall-normal direction [4,5,10]. In DNS of nonrotating channel flow also other scalar boundary
conditions have been used. Kim and Moin [18] studied a case with the scalar put to zero at the walls
and a constant forcing term in the scalar transport equation. Pirozzoli et al. [1] studied the same
case and the case with an assigned scalar difference. The two cases gave similar results near the
walls in terms of wall units, but in the outer layer the differences were considerable. In the constant
forcing case the scaled scalar fluctuations were much weaker and the turbulent Prandtl number
deviated more from unity in the center region of the channel implying a greater difference between
momentum and scalar transfer. Abe and Antonia [2], Antonia et al. [3], Kasagi et al. [19], Abe and
Antonia [20], Lluesma-Rodrígez et al. [21] studied a case with a constant streamwise mean scalar
gradient. This case is, like the assigned difference case, in principle reproducible in experiments.
Kawamura et al. [22] compared these two cases in DNS of nonrotating channel flow at Reτ = 180.
At this low Reynolds number the scalar statistics were not only different in the outer region but also
closer to the wall. Obviously, boundary conditions have a noticeable impact on scalar statistics and
the similarity between momentum and scalar transfer.

The aim of this study is to investigate passive scalar transport in fully developed turbulent channel
flow subject to spanwise rotation and examine the influence of the scalar boundary conditions on
the scalar statistics by comparing the case with an assigned scalar difference at the walls to the case
with an imposed mean streamwise scalar gradient.
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The aims are (i) to answer the key question if the previous conclusion about the failure of the
Reynolds analogy in rotating channel flow [10] is affected by the scalar boundary conditions, (ii)
to compare the two cases with different scalar boundary conditions, and (iii) to further investigate
the difference between turbulent scalar and momentum transfer in rotating channel flow. For this
study I use DNS at Re = 14 000 corresponding to Reτ = 730 in the nonrotating case and vary
Ro from 0 to 0.75. This Reτ is higher than in the study of Kawamura et al. [22] so that I can
examine if the previously observed near-wall differences of the scalar statistics for the assigned
scalar difference and imposed mean streamwise scalar gradient cases also exist at higher Reynolds
numbers. The computed statistics can support modeling of turbulent heat and mass transfer in
rotating wall-bounded flows.

II. NUMERICAL PROCEDURE

Statistically stationary cases of rotating turbulent channel flow with a passive scalar with different
scalar boundary conditions are considered. In the following x, y, and z are the streamwise, wall-
normal, and spanwise coordinate, respectively. In the first case with an assigned scalar difference,
called case 1, the scalar is constant but has a different value at the walls. The scalar �′ is governed
by

∂�′

∂t
+ U′·∇�′ = 1

Pr Re
∇2�′ + Q (1)

with Q = 0 and �′ = 0 at one wall at y = −1 and �′ = 1 at the other wall at y = 1. The equation
is made dimensionless with Ub and h. From Eq. (1) follows that the mean scalar fluxes are constant
and equal at both walls in the statistically stationary state, irrespective if the channel is rotating
or not.

In the second case, called case 2, the scalar at the wall grows linearly with x. For a fully developed
flow and scalar field the mean streamwise temperature gradient is then constant and equal at all
y [19]. Defining T = Gx − �′, where T is the total scalar and G the mean streamwise scalar
gradient, it can be shown that the deviation �′ from the local wall temperature obeys Eq. (1)
with Q = G′U ′ where G′ and U ′ are the dimensionless streamwise mean scalar gradient and
velocity, respectively. At the walls the boundary condition is �′ = 0 implying that there are no
scalar fluctuations at the walls and that the two walls have the same temperature. Also in this case,
the mean scalar fluxes are constant at the walls, but they are different at y = −1 and y = 1 when
the channel rotates. Nevertheless, from Eq. (1) with Q = G′U ′ (note that U ′ is scaled by Ub) one
can derive by integration for the average of the mean wall scalar gradients

1

2

[(
∂�

∂y

)
y=−1

−
(

∂�

∂y

)
y=1

]
= Pr Re G′, (2)

where (∂�/∂y)y=−1 and (∂�/∂y)y=1 are the mean wall scalar gradients at y = −1 and 1,
respectively. Case 1, with scalar transport driven by a mean wall-normal scalar gradient, has been
studied in nonrotating channel flow by, e.g., Johansson and Wikström [23] and in rotating channel
flow by, e.g., Nagano and Hattori [4], Brethouwer [10]. Case 2, with scalar transport driven by a
mean streamwise scalar gradient, has been studied by, e.g., Kasagi et al. [19], Kawamura et al. [24]
in nonrotating channel flow.

The advection-diffusion equations (1) for the two cases are solved together with the incom-
pressible Navier-Stokes equations with the same pseudospectral code as in Brethouwer [7,10] using
Fourier expansions in the x and z directions and Chebyshev polynomials in the y direction. The
channel is subject to system rotation about the spanwise direction and periodic boundary conditions
are used for the velocity and scalars in the x and z directions. A figure of the flow geometry and
coordinate system is shown in Brethouwer [10]. The flow rate is kept constant so that Re = 14 000
in all cases. Ro is varied from 0 to 0.75 and Pr is set to 0.71. The computational domain size is 6π
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TABLE I. DNS parameters: Roτ = 2�h/uτ , Nx , Ny , and Nz are the number of Fourier and Chebyshev
modes in the streamwise, wall-normal, and spanwise direction, respectively.

Ro Roτ Reτ Reu
τ Res

τ Nx × Ny × Nz

0 0 730 730 730 1024 × 257 × 768
0.15 3.0 709 805 597 1152 × 289 × 800
0.3 6.5 643 762 496 1024 × 257 × 768
0.45 10.7 588 713 430 960 × 241 × 640
0.75 22.1 476 590 323 768 × 193 × 576

and 2π in the x and z direction, respectively, when normalized by h, which is somewhat smaller than
in Brethouwer [10] but the same as in Pirozzoli et al. [1]. DNS of Lluesma-Rodrígez et al. [21] have
shown that for nonrotating channel flow this size is more than sufficient to obtain one-point scalar
statistics and budgets that are independent of the domain size. Once the DNS reached a statistically
stationary state they were run for a long time, from 612Ub/h timescales at Ro = 0 up to 2200Ubh

timescales at Ro = 0.75, to obtain well converged statistics of the scalar transport. In the DNS the
difference between the mean scalar fluxes at the two walls is at most 0.3% in case 1 and the total
mean scalar fluxes at the wall deviate at most 0.5% from the mean balance given by Eq. (2) in case 2.
DNS parameters are listed in Table I. The friction velocity is calculated as uτ = [u2

τu/2 + u2
τs/2]1/2,

where uτu and uτs are the friction velocities of the unstable and stable channel side, respectively,
and Reu

τ and Res
τ are the friction Reynolds numbers based on uτu and uτs , respectively. The

streamwise and spanwise grid spacing in terms of Fourier modes and wall units of the unstable
side is �x+ � 14.5 and �z+ � 7.0, respectively, which is similar to the resolution of previous
DNS of rotating channel flow [6]. The spanwise resolution 6.0 � �z+ � 6.3 in the three DNS with
the highest Reτ is the same as in recent high-Reynolds number DNS of turbulent channel flow [25].

III. FLOW FIELD

In this section, I will discuss some features of the flow and scalar field. In the next sections I
will discuss the scalar statistics. Statistics derived from case 1 with an assigned scalar difference are
denoted by the subscript 1 and statistics derived from case 2 with a streamwise mean scalar gradient
are denoted by the subscript 2.

Figure 1 shows the profiles of the mean streamwise velocity U scaled by Ub and the root mean
square (rms) of the wall-normal velocity fluctuations v+ in wall units. The mean velocity shows
the typical skewed profile of spanwise rotating turbulent channel flow with a linear part obeying
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FIG. 1. Profiles of (a) U/Ub and (b) v+ at Ro = 0 (black solid), Ro = 0.15 (black dashed), Ro = 0.3 (black
dotted), Ro = 0.45 (red solid), and Ro = 0.75 (red dashed).
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(a)

(b)

(c)

(d)

FIG. 2. Visualizations of the scalar field in an x-z plane in case 2 on the unstable channel side at (a)
Ro = 0.15 and y = −0.5 and (b) Ro = 0.75 and y = −0.9. A dark color corresponds to a low scalar value.
Visualizations of the instantaneous scalar gradients in case 2 on the stable channel side at the wall at y = 1 at
(c) Ro = 0.3 and (d) Ro = 0.75. A dark color corresponds to large scalar gradients. The flow is from left to
right.

dU/dy � 2� [6]. The unstable (left) side of the channel is strongly turbulent with a growing
v+ with Ro, whereas turbulence on the stable (right) side is suppressed by rotation, leading to a
monotonic decline of v+ with Ro. Figure 2(a) shows a visualization of the scalar field in case 2 at
Ro = 0.15 in an x-z plane on the unstable channel side. Streamwise streaks with low scalar values
indicate the presence of large streamwise counter-rotating roll cells, as previously observed [7],
transporting the scalar away from the wall between the roll cells. Cross-stream visualizations (not
shown) confirm that the streaks are caused by large-scale updrafts. Similar streaks are also visible
at Ro = 0.3 and 0.45, suggesting that large roll cells are present when 0.15 � Ro � 0.45. Spectra,
not presented here, support this suggestion and further show that the size of the roll cells decreases
with Ro. Also at Ro = 0.75 streaks are visible [Fig. 2(b)], but they appear shorter and the spanwise
spacing is much smaller, indicating that roll cells are absent or much smaller and lack streamwise
coherence, which is supported by the spectra presented later.

The stable channel side is fully turbulent at Ro = 0.15 (not shown) but partly relaminarizes at
higher Ro. Figures 2(c) and 2(d) show the instantaneous scalar gradient at the wall on the stable
side at Ro = 0.3, and 0.75, respectively. Small-scale fluctuations in the scalar gradient point to
turbulence, whereas the absence of those fluctuations imply that the flow is locally laminarlike.
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FIG. 3. Time series at Ro = 0.75 of τ s
w (black dashed), θ ′

1 (blue solid), Qs
w1 (black solid), and Qs

w2 (red
solid).

From the visualization it can be concluded that patterns in the form of oblique bands of alternating
turbulent and laminar flow exist on the stable channel side at Ro = 0.3. Oblique turbulent-laminar
patterns are also found at Ro = 0.45 (not shown), but the turbulent band appears somewhat less wide
in that case. The patterns persist and are strictly confined to the near-wall region of the stable side.
Similar oblique turbulent structures are also found in other transitional wall-bounded flows (see, e.g.,
Duguet et al. [26], Brethouwer et al. [27]), although often spanning the whole channel. At a higher
Ro = 0.75 a single turbulent spot in a laminarlike environment is seen on the stable side instead
of an oblique pattern [Fig. 2(d)]. This spot goes through a continuous cycle of growth and decline,
inducing recurring spikes in the mean wall shear stress, τ s

w, and simultaneous spikes in the mean
scalar gradient at the wall on the stable side, Qs

w1 = (∂�1/∂y)y=1 and Qs
w2 = (∂�2/∂y)y=1, and

the rms of scalar fluctuations in case 1, θ ′
1, as shown by the time series in Fig. 3. The visualization

shown in Fig. 2(d) was obtained when the turbulent spot has approximately its maximum size,
corresponding to one of the peaks in Fig. 3. Before each peak the spot almost completely disappears.
Similar periodiclike variations in the wall shear stress and wall scalar gradient have been observed
in spanwise rotating channel flow by Brethouwer [7,10,28] but the physical mechanism differs. In
the latter studies the spikes on the stable channel side result from a recurring linear instability of
a Tollmien-Schlichting-like wave, whereas here this wave and thus the linear instability is absent
and the spikes are caused by a continuous cycle of growth and decay of a turbulent spot. The latter
process is akin to that observed by Hsieh et al. [17] in their DNS of spanwise rotating channel
flow. The period of the variations of the turbulent spot is also shorter than that related to the linear
instability of a Tollmien-Schlichting-like wave. However, it can be that the variations of the turbulent
spot largely disappear when the computational domain is substantially enlarged, as observed in other
transitional flows [27].

The observations of roll cells on the unstable channel side and partial relaminarization of the
flow and oblique patterns and spots on the stable side are consistent with previous studies [7,10].
For further discussions of these structures and flow statistics I refer to these studies and, e.g., Xia
et al. [6] and Grundestam et al. [29]. The flow relaminarization and slow variations of the turbulent
spot necessitates long simulations to obtain converged statistics. The periods with the spikes in the
turbulent activity on the stable side at Ro = 0.75 are not filtered out, as in Brethouwer [10], but are
included in the statistics.

IV. SCALAR STATISTICS

After a brief discussion of the flow and scalar field I turn now to the scalar statistics. Here below,
�i denotes the mean scalar, θi its fluctuation, and u and v the streamwise and wall-normal velocity
fluctuations, respectively.
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FIG. 4. Profiles of (a) �1 and (b) �2/(Pr Re). Lines as in Fig. 1. (c) τu
w/τw (red dashed), τ s

w/τw (blue
dashed), Qu

w2/(Pr Re) (red solid),and Qs
w2/(Pr Re) (blue solid) as a function of Ro.

Figures 4(a) and 4(b) show the mean scalar profiles �1 and �2/(Pr Re). The scaling of �2

by Pr Re is inspired by relation (2) noting that in the present DNS G′ = 1. The �1 profiles are
similar as in Brethouwer [10] with a small and large mean scalar gradient on the unstable and
stable channel side, respectively, for Ro > 0. This can be motivated by the facts that the scalar flux
across the channel is constant in case 1 and the turbulent scalar diffusivity is much smaller on the
stable channel side [10]. The �2 profile is naturally symmetric if Ro = 0 but becomes asymmetric
under the influence of rotation. It is remarkably flat for −0.6 � y � 0.3 at Ro = 0.15 and 0.3, and
displays a bump on the stable channel side at Ro = 0.75, which is explained later. In contrast to
case 1, the scalar fluxes at the two walls are not the same in case 2 if Ro > 0. Figure 4(c) shows
the scaled mean wall scalar fluxes Qu

w2/(Pr Re) and Qs
w2/(Pr Re) in case 2 together with the scaled

mean wall shear stresses τu
w/τw and τ s

w/τw on the unstable and stable side, respectively, where
τw = (τu

w + τ s
w )/2. Note that Qu

w2 + Qs
w2 = 2Pr Re and is invariant with Ro. Both Qu

w2/(Pr Re)
and τu

w/τw monotonically grow and accordingly Qs
w2/(Pr Re) and τ s

w/τw decline with Ro owing
to the growing difference between the unstable and stable sides. When Ro � 2 the whole flow
relaminarizes [6,7], implying that Qu

w2 and Qs
w2 as well as τu

w and τ s
w will converge for very rapid

rotation.
Although the profiles of �1 and �2 strongly differ, they are similar near the wall on the unstable

side in terms of wall units, as shown in Fig. 5(a). Here and below, y+ is the wall distance in viscous
wall units ν/uτ . In case 1 the wall scaling is naturally done in terms of θτ1 = Qw1/uτ , where
Qw1 = α(d�1/dy)w is the mean scalar flux at the wall. In case 2 the choice of the wall scaling is less
obvious since the mean scalar fluxes at the two walls differ. For profiles across the channel a global
scaling with θτ2 = (Qs

w2 + Qu
w2)/uτ appears natural, but for near-wall statistics a local scaling with

θu
τ2 = Qu

w2/uτ and θs
τ2 = Qs

w2/uτ on the unstable and stable side, respectively, is a natural choice.
In the following the superscript + denotes global scaling using θτ2 and the superscript ∗ denotes
local scaling using θu

τ2 and θs
τ2 (together with uτ in case of fluxes) on the unstable and stable side,

014602-7



GEERT BRETHOUWER

10 0 10 1 10 2 10 3
0

4

8

12

16

20
(a)

10 0 10 1 10 2 10 3
0

4

8

12

16

20
(b)

FIG. 5. (a) Profiles of �+
1 (thin lines) and �∗

2 (thick lines) on the unstable channel side and (b) profiles of
�∗

2 on the stable (thin lines) and unstable channel sides (thick lines). Lines as in Fig. 1. The dashed green and
blue lines are explained in the main text.

respectively, in case 2. In case 1 there is no distinction between local and global scaling because
the mean wall scalar fluxes are the same at both walls, as said before. Figure 5(a) shows that in
local scaling �+

1 and �∗
2 overlap near the wall on the unstable side at all Ro, underscoring the

strong similarities in scalar transport in the two cases. The profiles of �∗
2 on the stable channel side

obviously differ from those at the other side, as shown in Fig. 5(b). On the unstable side, �∗
2 shows

a monotonic decline and on the other side a monotonic growth with Ro since the scalar profiles
become more linear when the flow relaminarizes.

In Brethouwer [10], the �+
1 profile in the overlap region on the unstable side at Ro = 0

approximately matches the logarithmic profile

�+ = 1

κθ

log y+ + Cθ (3)

with κθ = 0.42 and Cθ = 2.8, given by the dashed green line in Fig. 5(b), whereas at high Ro,
�+

1 also approximately match (3) but with κθ = 2.0, given by the dashed blue lines in Fig. 5(b),
and Cθ varying with Ro. Also in the present DNS, the mean scalar profiles on the unstable side at
Ro = 0 match (3) with κθ = 0.42 and Cθ = 2.8. In fact, �∗

2 better matches this logarithmic profile
than �+

1 . Lluesma-Rodrígez et al. [21] also found that κθ = 0.42 at Reτ = 500 but a slightly higher
value of 0.44 at Reτ = 1000 and 2000 while Abe and Antonia [20] observed a value of 0.43 at
Reτ = 1020 in DNS of nonrotating channel flow with the same scalar boundary conditions as case
2 and Pr = 0.71. Abe and Antonia [20] noted that κθ increases to 0.46 at higher Reτ according
to the DNS by Pirozzoli et al. [1]. Together these studies suggest that κθ slowly grows with Reτ .
The profiles of �+

1 and �∗
2 overlap up to higher y+ than in the DNS at Reτ = 180 by Kawamura

et al. [22], suggesting that higher Reynolds numbers lead a stronger near-wall similarity in the two
cases. At Ro = 0.45 and 0.75 the mean scalar profiles of both cases approximately match (3) with
κθ = 2.0 on the unstable side, whereas the mean velocity profiles do not display this logarithmic
behavior [10]. Whether this indicates a genuine logarithmic behavior of the mean scalar profile in
rotating channel flow is yet unclear and the physical reason is elusive.

Figure 6(a) shows profiles of θ+
2 in global scaling. Profiles of θ+

1 are similar as in Brethouwer [10]
and therefore not shown here. There are some variations in θ+

2 on the unstable side with Ro but no
clear trend is visible; the near wall peaks at 0.15 � Ro � 0.45 are higher than at Ro = 0 and 0.75.
On the other hand, on the stable side there is a monotonic decline of θ+

2 for y � 0.6 with Ro, which
is related to turbulence suppression by rotation. Figures 6(b) and 6(c) show near-wall profiles of θ∗

2
together with θ+

1 . In terms of a local scaling θ∗
2 shows like �∗

2 a monotonic decline with Ro on the
unstable side. Since the near-wall mean scalar profiles in local scaling collapse on the unstable side
at a given Ro we may expect that the near-wall peaks of θ+

1 and θ∗
2 are similar, which is confirmed
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FIG. 6. (a) Profiles of θ+
2 and (b), (c) near-wall profiles of θ+

1 (thin lines) and θ∗
2 (thick lines) on the unstable

and stable channel side, respectively. Lines as in Fig. 1.

by Fig. 6(b). In case 1 the peak is slightly higher, which could be related to the stronger scalar
fluctuations in the outer layer in that case, but this difference at Ro = 0 is smaller than at lower
Reynolds numbers [22]. Figure 6(c) shows that on the stable side the difference between θ+

1 and θ∗
2

is larger, which is likely caused by the large scalar fluctuations in case 1 away from the wall [see
Fig. 7(b) in Brethouwer [10]]. There is no obvious explanation for the variation of the peak values
of θ+

1 and θ∗
2 on the unstable side with Ro because the maximal production of scalar energy θθ/2

given by Pθ = −vθ/(∂�/∂y) (not shown) is in local scaling very close to the theoretical prediction
Pr/4 at all Ro [23].

Figure 7(a) shows profiles of the mean streamwise turbulent scalar flux uθ
+
2 in global scaling. On

the unstable side the near-wall peak of uθ
+
2 remains but further away from the wall and on the stable

side uθ
+
2 decreases with Ro. This behavior on the unstable side is similar to that of uθ

+
1 and owing to

the effect of the Coriolis term in the balance equation of uθ , which counteracts the production term
of uθ in the outer region [10]. Figures 7(b) and 7(c) show profiles of the mean streamwise turbulent
scalar flux uθ

+
1 and uθ

∗
2 in local scaling near the two walls. Since uθ1 has the opposite sign as uθ2

on the stable side due to the different sign of the mean scalar gradient, −uθ
+
1 is plotted in Fig. 7(c).

Both uθ
+
1 and uθ

∗
2 decay with Ro on the unstable side near the wall and are very similar, especially

at higher Ro when they are indistinguishable. On the stable side by contrast their difference grows
with Ro. The decay of the streamwise turbulent scalar flux on the unstable side appears to be related
to a similar decay of u+ with Ro [7].

Figure 8 shows profiles of the mean wall-normal turbulent scalar flux vθ
+
2 in global scaling and

the correlation coefficient ρvθ2 = −vθ2/(v′θ ′
2), where v′ and θ ′

2 are the rms of v and θ2. Profiles of

vθ
+
1 are not shown since they are similar as in Brethouwer [10]. On the unstable side vθ

+
1 is near

−1, as follows from the equation for the mean scalar transport across the channel [10], whereas on
the stable side this flux is smaller, especially at Ro = 0.75, due to the suppression of turbulence. The
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FIG. 7. (a) Profiles of uθ
+
2 and (b), (c) near-wall profiles of uθ

+
1 (thin lines) and uθ

∗
2 (thick lines) on the

unstable and stable channel side, respectively. (c) Profiles of −uθ
+
1 and uθ

∗
2 on the stable channel side. Lines

as in Fig. 1.

profiles of vθ
+
2 are clearly different due to another forcing of the scalar field. From Eq. (1) follows

after integration that in the steady state

−vθ2
+ = Qu

w2

Qw2
− G′

Qw2

∫ y

−1
U ′dy − 1

Pr ReQw2

∂�2

∂y
. (4)

When the molecular transport term (last term on the right-hand side) is negligible −vθ2
+

is
determined by the first two terms on the right-hand side of Eq. (4). The sum of these two terms for
each run is shown by the blue lines in Fig. 8(a). The profiles of −vθ2

+
at different Ro closely follow

this sum away from the wall, confirming that the statistics are well converged. The wall-normal

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

1.5 (a)

-1 -0.5 0 0.5 1

-0.4

-0.2

0

0.2

0.4

0.6 (b)

FIG. 8. Profiles of (a) −vθ
+
2 and (b) ρvθ2. The blue lines show the sum of the first two terms on the right-

hand side of Eq. (4). Lines as in Fig. 1.
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FIG. 9. Profiles of (a) Prt and (b) Prt on the unstable channel side. Lines as in Fig. 1. The thin lines are for
case 1 and the thick lines for case 2.

turbulent scalar flux is, as expected, larger on the unstable side than the stable side, where it strongly
declines with Ro. A close inspection shows that at Ro = 0.75, −vθ2

+
is smaller than the sum of the

first two terms on the right-hand side of Eq. (4) if 0.4 � y � 0.6. From that follows that the last
term in Eq. (4) is negative and therefore ∂�2/∂y is positive in this region. This is the cause of the
small bump in the profile of �2 at Ro = 0.75 observed in Fig. 4(b) around y = 0.6, i.e., molecular
transport is not fully negligible there.

The correlation between v and θ2 is slightly larger at 0.15 � Ro � 0.45 than at Ro = 0 on the
unstable channel side, whereas on the stable side it declines with Ro, showing that rotation has a
large impact here on the correlation. A similar conclusion holds for the correlation between v and
θ1 [10]. The decline can be attributed to the influence of the Coriolis term in the transport equation
for vθ [10].

V. EFFICIENCY OF TURBULENT SCALAR TRANSPORT

In this section, I consider the efficiency of the turbulent scalar transport, which is especially
relevant for modeling and engineering.

A key quantity in many turbulent transport models is the turbulent Prandtl number given by

Prt i = νt

αti

. (5)

The eddy viscosity and scalar diffusivity are here computed as νt = −uv/(dU/dy)and αti =
−vθi/(d�i/dy), respectively. Prt1 is near unity in nonrotating channel flow in case 1 but much
smaller if Ro > 0, in agreement with Brethouwer [10]. Figures 9(a) and 9(b) show Prt1 and Prt2
across the channel and on the unstable channel side. When dU/dy � 0 or d�i/dy � 0 there
is a discontinuity in Prt i , which has been removed. Prt1 is about 0.85 in the outer region, in
agreement with the DNS of Pirozzoli et al. [1], whereas in the center region Prt2 becomes smaller
with increasing distance to the wall but stays mostly above 0.7. Elsewhere, for y � −0.55 and
y � 0.55, Prt2 is similar to Prt1. The Reynolds analogy for momentum and scalar transport is
thus approximately valid in case 1 and also case 2, except in the center region of the channel
where Prt2 deviates more from unity and the difference between momentum and scalar transfer
is noticeable. This difference in the center region of nonrotating channel flow was also noted by
Abe and Antonia [20] in DNS with the same scalar boundary conditions as case 2. They suggested
that the Reynolds analogy is promoted by the presence of a scalar fluctuation production term. When
this production term is small, as in the channel center region in case 2, a larger difference between
momentum and scalar transport can be expected, in agreement with the present results. Pirozzoli
et al. [1] observed only small differences between the turbulent Prandtl number for Pr = 0.71 and 1
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FIG. 10. (a) Nu1 (red line) and Nu2 (blue line), and (b) 2St2/Cf as a function of Ro.

in nonrotating channel flow, showing that Pr has a minor influence on the Reynolds analogy as long
as it is near unity.

Both Prt1 and Prt2 drop sharply with Ro in the outer region of the unstable side and are less than
0.2 at higher Ro [Fig. 9(a)], confirming Brethouwer [10]. Only near the wall Prt1 and Prt2 remain
near unity. Prt1 and Prt2 are very similar in the wall region y � −0.6 [Figs. 9(a) and 9(b)]. In the
center region of the channel Prt2 is smaller than Prt1, like in the nonrotating case, implying a higher
scalar eddy diffusivity and a larger difference between turbulent momentum and scalar transfer.
Nevertheless, the strong decline of the turbulent Prandtl number with Ro is observed in both cases 1
and 2 and thus not fundamentally influenced by the scalar boundary conditions. Also on the stable
side for y � 0.85, Prt1 and Prt2 decline with Ro but not as much. Further away from the wall both
rapidly diminish if Ro > 0. In both cases 1 and 2 the Reynolds analogy is thus clearly invalid and
the eddy scalar diffusivity much larger than the eddy viscosity if Ro > 0, meaning that turbulent
scalar transfer is much faster than momentum transfer.

Another quantity that reveals the influence of rotation on scalar transport is the Nusselt number,
which is defined for cases 1 and 2, respectively, as

Nu1 = 2h

α��
Qw1, (6)

Nu2 = 34

70

h

α�2m

Qw2, (7)

where �2m = ∫
U�2dy/(2hUb ) is the mixed mean scalar [1,10,20]. The factors 2 and 34/70 in

Eqs. (6) and (7), respectively, are included so that Nu1 = Nu2 = 1 in laminar Poiseuille flow.
Figure 10(a) shows Nu1 and Nu2 as a function of Ro. Similarly as in Brethouwer [10], Nu1 at Ro = 0
and 0.15 is approximately the same but then rapidly declines with Ro since the slow transport on
the stable side hinders the scalar transport across the channel. Nu2 shows a slower decline with Ro
because the slow scalar transport on the stable side is partly compensated by the rapid transport on
the unstable side.

The Reynolds analogy further implies that the ratio of the Stanton number and skin friction co-
efficient, 2St2/Cf , where St2 = Qw2/(Ub�m2) and Cf = 2u2

τ /U 2
b , is near unity [20]. Figure 10(b)

shows that 2St2/Cf is quite close to unity at Ro = 0, confirming that the Reynolds analogy
holds for nonrotating channel flow. For Pr = 1, 2St2/Cf is even closer to unity in nonrotating
channel flow [20]. However, 2St2/Cf monotonically grows with Ro, showing that the Reynolds
analogy is invalid for rotating channel flow and that turbulent scalar transfer is rapid compared to
momentum transfer, in agreement with previous results. This difference will not disappear if Pr = 1
assuming that the relation between St and Pr does not fundamentally change with Ro. The ratio
2St1/Cf for case 1 is not shown but was computed for the unstable and stable sides separately by
Brethouwer [10]. On the stable side it is near unity but on the unstable side it shows similar behavior
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as in case 2 with a ratio diverging from unity with Ro, which again highlights the efficient scalar
transfer on the unstable side in rotating channel flow.

VI. SPECTRA AND SCALING OF DISSIPATION RATES

In the next part, the length scales of the velocity and scalar field are compared. In nonrotating
channel flow, one-dimensional spectra of the velocity and scalar are similar across the channel [3],
but this similarity is lost in rotating channel flow away from the wall on the unstable side [10]. To
assess if this similarity or difference depends on the scalar boundary conditions, I have computed
one-dimensional spanwise spectra of the velocity, EK (kz), being the sum of the spectra of the three
velocity components, and of the scalars, Eθθ (kz), as well as the one-dimensional streamwise spectra
EK (kx ) and Eθθ (kx ), as in Antonia et al. [3]. The spectra are scaled, i.e.,∫ ∞

0
EK (ki )dki = 1,

∫ ∞

0
Eθθ (ki )dki = 1. (8)

Figure 11 shows the premultiplied spanwise spectra kzEK (kz) and kzEθθ (kz) as a function of λ+
z

and streamwise spectra kxEK (kx ) and kxEθθ (kx ) as a function of λ+
x at Ro = 0, 0.3, and 0.75 at

four positions: near the wall at y+ ≈ 11 and y+ ≈ 95, in the outer region at y = −0.56 on the
unstable side, and at the centerline or closer to the stable side. Here, λ+

z and λ+
x are the spanwise

and streamwise wavelength, respectively, in wall units. At all Ro, the spectra of cases 1 and 2 hardly
differ up to at least y = −0.56, showing that the scalar lengths are not significantly affected by the
scalar boundary conditions in this region. Closer to the stable side, on the other hand, the scalar
structures are noticeably larger in case 2 for Ro = 0.3 and 0.75 [Figs. 11(c)–11(f)]. This difference
in the center region is less obvious at Ro = 0 [Figs. 11(a) and 11(b)]. The spanwise spectra kzEK (kz)
and kzEθθ (kz) are similar at Ro = 0, in agreement with Antonia et al. [3], Brethouwer [10], and the
same applies to the streamwise spectra, although the scalar structures appear to be slightly wider
than the turbulent scales away from the wall [Figs. 11(a) and 11(b)]. The strong correspondence
near the wall is mostly a consequence of the similarity between the streamwise velocity and scalar
field, whereas further away from the wall kiEθθ (ki ) shows a closer correspondence with kiEK (ki )
than with the spectra of the streamwise velocity, as noted by Antonia et al. [3]. The spanwise as well
as the streamwise scalar and turbulence spectra at Ro = 0.3 are still very similar at y+ ≈ 11, but
at y+ ≈ 95 differences are noticeable and at y = −0.56 the scalar spectra are clearly more shifted
toward longer wavelengths than the turbulent spectra [Figs. 11(c) and 11(d)], implying that the scalar
field contains larger structures than the turbulent field. The differences become more pronounced
at Ro = 0.75 when also the scalar scales at y+ ≈ 95 are longer and wider than the turbulent scales
[Figs. 11(e) and 11(f)]. Also closer to the stable channel side at y = 0.24 and 0.42 the scalar scales
in case 2 are substantially larger than the turbulent scales if Ro = 0.3 and 0.75, whereas in case 1
they are more similar. Near the wall at y+ ≈ 11 the scalar scales are by contrast slightly narrower
and shorter than the turbulent scales. The peak of kzEθθ (kz) at y+ ≈ 95 and in the outer region
at Ro = 0.3 and 0.75 is at wavelengths wider than λz = h, demonstrating that the scalar field in
rotating channel flow contains large structures. Rotation causes thus not only differences in the
momentum and scalar transfer but also in the size of scalar and turbulence structures.

It has been shown that the mean turbulent kinetic energy dissipation rate ε and mean scalar
dissipation rate εθ of scalar variance θθ/2 become independent of the viscosity and diffusivity
at sufficiently high Reynolds numbers [30]. This implies that ε�/υ3 should become constant at
high Reynolds numbers if � and υ are turbulent length and velocity scales, respectively, that are
independent of the viscosity. Similarly, εθ�/υθ2 should become constant too in that case. Donzis
et al. [30] and Abe and Antonia [31] show that these ratios are approximately constant in isotropic
turbulence and nonrotating channel flow away from the wall, respectively, in agreement with these
predictions, but an open question is if these ratios are independent of rotation. To answer this
question, appropriate length and velocity scales have to be defined at first. Since in nonrotating
channel flow EK and Eθθ are similar, as shown before, it appears that Lq = Luu + Lvv + Lww and

014602-13



GEERT BRETHOUWER

10 1 10 2 10 3
0

0.4

0.7

1.1

1.5 (a)

10 2 10 3 10 4
0

0.1

0.2

0.3

0.4
(b)

10 1 10 2 10 3
0

0.4

0.7

1.1

1.5 (c)

10 2 10 3 10 4
0

0.1

0.16

0.24

0.3 (d)

10 1 10 2 10 3
0

0.4

0.7

1.1

1.5
(e)

10 2 10 3
0

0.1

0.18

0.28

0.36
(f)

FIG. 11. Premultiplied one-dimensional [(a), (c), (e)] spanwise spectra as a function of λ+
z and [(b), (d),

(f)] streamwise spectra as a function of λ+
x at Ro = 0 [(a), (b)], Ro = 0.3 [(c), (d)], and Ro = 0.75 [(e), (f)].

Shown are spectra at y+ ≈ 11 (dotted lines), y+ ≈ 95 (dashed lines), and y = −0.56 (solid lines) shifted in
the vertical with an offset. Also spectra (dash-dotted lines) at y = 0, 0.42, and 0.24 for R = 0, 0.3, and 0.75,
respectively, are shown. The red lines show kiEK (ki ) and the green and blue lines kiEθθ (ki ) for case 1 and 2,
respectively.
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FIG. 12. Cε1 (black solid); C1
εθ (solid); C2

εθ (dashed). Red: θ1; blue: θ2. (a) Ro = 0, (b) Ro = 0.3, and (c)
Ro = 0.75.

Lθθ are appropriate length scales. Here,

Luu =
∫ ∞

0
Ruudr, Ruu(r ) = u(x + r )u(r )

u′2 , (9)

and similarly for the other velocity components and scalars. To compute the length scales the two-
point correlations are integrated up to the first zero crossing point or Lx/2 if the correlation remains
positive. Using these length scales, the following nondimensional parameters can be defined:

Cε1 = εLqq/(u′q ′2), C1
εθ = εθLθθ/(u′θ ′2), (10)

where q ′2 = uiui [31]. Another nondimensional parameter for the scalar dissipation rate that can be
defined is

C2
εθ = εθLqq/(u′θ ′2). (11)

Figure 12 shows Cε1, and C1
εθ and C2

εθ for both scalar cases at Ro = 0, 0.3, and 0.75. The parameters
are not shown for the stable side at Ro = 0.75 because the length scales are ill defined when the
flow relaminarizes. Abe and Antonia [31] found that Cε1 and C1

εθ are fairly constant away from
the wall in nonrotating channel flow with Cε1 being slightly larger than C1

εθ . The present results
at Ro = 0 are in agreement with this finding; moreover, they show that C1

εθ is nearly the same for
the two scalar cases. Also the profiles of εθ/θ

′2 (not shown) are similar, although the profiles of
εθ differ. The results suggest that the timescale of the scalar dissipation rate has a similar relation
to the large-scale timescale Lθθ/u

′ in the two cases. Another timescale ratio used in modeling is
r = θ ′2ε/(q ′2εθ ). In case 2 it varies between 0.5 and 0.56 in the center region (not shown), in good
agreement with Béguier et al. [32] and Abe and Antonia [31], whereas in case 1 it is between 0.55
and 0.7 and thus larger, but not very much. The smaller scalar scales apparently share similarities in
the two cases and the same modeling assumptions can be used even though the scalar fluctuations
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and mean scalar gradients are vastly different in the center region. Also C2
εθ is fairly constant in the

center region but larger. At Ro = 0.3 and 0.75 both Cε1 and C1
εθ are clearly larger on the unstable

side and Cε1 and C1
εθ show larger changes with Ro than C2

εθ . There is also a larger difference between
Cε1 and C1

εθ and C1
εθ for the two scalars differ more. Moreover, C1

εθ varies considerably with y at
Ro = 0.75, in contrast to Cε1 and C2

εθ , which are more constant. This shows that Cε1 and C1
εθ may

become independent of the viscosity and diffusivity at sufficiently high Reynolds number but not of
the rotation rate. Only C2

εθ varies less with Ro, demonstrating that the choice of the length scale is
crucial.

VII. CONCLUSIONS

Passive scalar transport in fully developed turbulent channel flow subject to spanwise rotation is
studied with the help of DNS. At high Ro the flow partly relaminarizes on the stable channel side.
Two scalar cases are considered; in the first case the scalar transport is driven by an assigned scalar
difference at the walls resulting in a mean wall-normal scalar gradient; in the second case the scalar
transport is forced by a constant mean streamwise scalar gradient. The aim is to further study the
influence of rotation and also the influence of scalar boundary conditions on the scalar transport in
channel flow.

In the second case with the imposed mean streamwise gradient the mean scalar flux at the wall
on the unstable and stable sides grows and decays with Ro, respectively, and rotation reduces
the streamwise turbulent scalar flux in the outer region and Nusselt number. Although the mean,
fluctuations, and turbulent flux of the scalar obviously differ in the two cases with different boundary
conditions, they are mostly similar near the wall in terms of wall units. Also the scalar spectra are
similar, at least up to y = −0.56 on the unstable channel side. On the other hand, closer to the
center there are differences in the two cases. Scalar fluctuations and the turbulent Prandtl number
are then smaller in the case with the mean streamwise scalar gradient, implying that the turbulent
momentum and scalar transport differ more. This could be related to the small wall-normal mean
scalar gradient in that case, as suggested by Abe and Antonia [20]. The scalar scales in the center
region near the stable side in rotating channel flow are also substantially larger in the case with the
mean streamwise scalar gradient. On the other hand, the timescale of the scalar dissipation rates is
quite similar in the outer region, suggesting that the scalar has the same small-scale properties in
the two cases.

Brethouwer [10] showed that there is no Reynolds analogy for scalar-momentum transfer in
rotating channel flow in the case with the assigned scalar difference at the walls. This result is
basically not affected by the scalar boundary conditions. Also in the case with an imposed mean
streamwise scalar gradient the turbulent Prandtl number is much smaller than unity on the unstable
channel side in rotating channel flow, showing that turbulent scalar transfer is much faster than
momentum transfer. Moreover, the scalar structures are larger than turbulence structures in rotating
channel flow in the outer region of the unstable side. This is in obvious contrast to nonrotating
channel flow for which the Reynolds analogy is valid with the exception of the center region
where the difference between momentum and scalar transfer is larger in the case with the mean
streamwise scalar gradient. More differences for that case are discussed by Antonia et al. [3], Abe
and Antonia [20]. The clear failure of the Reynolds analogy for Ro > 0 stems from the different
influence of rotation on the turbulent scalar flux compared to the Reynolds shear stress. Rotation
induces a Coriolis term −2�(u2 − v2) in the governing equation of uv but a different Coriolis term
−2�uθ in the governing equation of vθ . As a result, rotation slows down the scalar transfer in
turbulent channel flow, as shown by the declining Nusselt numbers, but the momentum transfer
decays even faster with Ro, with the result that the turbulent scalar transfer is rapid compared
to momentum transfer. A similar phenomenon, rapid heat compared to momentum transfer, was
observed by Pirozzoli et al. [33] in their DNS of mixed convection in turbulent channel flows at
sufficiently high Richardson numbers. They speculated that this difference was caused by the large
roll cells found in their DNS. Large roll cells are also observed in the present DNS at moderate Ro,
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indicating that these roll cells indeed could play a role in the breakdown of the Reynolds analogy.
However, Brethouwer [10] also observed low turbulent Prandtl numbers at Ro = 0.9 and 1.2 when
large roll cells are absent, showing that these large-scale structures are not a prerequisite for efficient
heat transfer. Motoki et al. [34] showed theoretically through an optimization study that certain
structures like quasistreamwise near-wall vortices induce very efficient heat transport compared to
momentum transport in a wall-bounded flow. In future studies it could be of interest to examine if
there are similarities between these structures and those in rotating channel flow.
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