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Time evolution equation for advective heat transport as a constraint
for optimal bounds in Rayleigh-Bénard convection
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Upper bounds on the heat transport and other quantities of interest in Rayleigh-Bénard
convection are derived in previous work from constraints resulting from the equations of
time evolution for kinetic energy, the root mean square of temperature, and the temperature
averaged over horizontal planes. Here we investigate the effect of a constraint derived from
the time evolution equation for the advective heat transport. This additional constraint leads
to improved bounds on the toroidal dissipation.
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I. INTRODUCTION

Thermal convection is among the best studied problems of fluid mechanics. Its most basic
idealization is Rayleigh-Bénard convection in which a fluid fills a plane layer infinitely extended
in the horizontal directions, heated from below and cooled from above. The applied temperature
difference, or the amplitude of the driving of the flow, is commonly expressed in terms of the
Rayleigh number. Numerical simulations and experiments can investigate convection only up to
a certain Rayleigh number. It is also possible to derive rigorous bounds on, for example, the heat
transport across the convecting layer [1–5]. The bounds derived in these references are valid at all
Rayleigh numbers, but they tend to overestimate the actual heat transport. If power laws are fitted
to both the bounds and numerically computed time averages, the fit to the bounds has a larger
prefactor and usually a larger exponent. Furthermore, the bounds do not show any Prandtl number
dependence.

These deficiencies arise because the derivation of the bounds does not exploit the full equations
of evolution but only a few integrals deduced from them: the energy budget, the relation between
advective heat transport and dissipation, and the temperature equation integrated over horizontal
planes. Seis [5] also makes use of the maximum principle for temperature. An improvement of
the bounds necessarily requires one to take advantage of additional constraints. This process is
already well understood for systems of ordinary differential equations such as the Lorenz model
[6]. In the context of convection, the implementation of further constraints is more cumbersome.
Vitanov and Busse [7] split the energy budget into two equations, one for the poloidal and one
for the toroidal energy. The resulting optimization problem preserves a dependence on the Prandtl
number (and also on rotation if one is interested in rotating convection). But there is a price to
pay in this approach. The optimization problem is not convex, and its Euler-Lagrange equations
have to be solved numerically. Because of extensive coupling between different modes in a spectral
decomposition of these equations, a numerical solution can only be obtained at low resolution and
hence at low Rayleigh numbers.

The approach pursued in this paper is to solve a semidefinite program (SDP). Previously obtained
bounds on Rayleigh-Bénard convection can be reproduced by this method [8]. It has already been
demonstrated how one can obtain increasingly sharp bounds on solutions of systems of ordinary
differential equations by including more and more constraints [6,9]. While the same systematic
procedure is in principle possible for the Navier-Stokes equation [10], it becomes unpractical
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for Rayleigh-Bénard convection even at modest Rayleigh numbers because all energy unstable
modes need to be retained which leads to a large SDP. Fantuzzi et al. [11] study bounds for
Bénard-Marangoni convection and in this context discuss in depth limitations of the SDP approach
and possible future lines of investigation. At present, the most straightforward approach remains
to formulate an optimization problem in the form of an SDP with many decoupled linear matrix
inequalities rather than a problem with a few but large linear matrix inequalities. The goal of the
present paper is to derive a Prandtl number-dependent optimization problem for Rayleigh-Bénard
convection which is convex and whose solution does not imply a significantly larger computational
burden than optimization problems solved previously to find bounds on various observables of
interest in Rayleigh-Bénard convection.

II. THE OPTIMIZATION PROBLEM

Let us consider the problem of Rayleigh-Bénard convection within the Boussinesq approxima-
tion for stress-free boundaries. This choice of boundary conditions is not essential for obtaining
the constraint, but it simplifies the calculation. A Cartesian coordinate system (x, y, z) is chosen
such that a plane layer is infinitely extended in the x and y directions, and the boundaries of the
layer are separated by the distance h along the z direction. Gravitational acceleration g is acting
along the negative z direction. The layer is filled with fluid of density ρ, kinematic viscosity ν,
thermal diffusivity κ , and thermal expansion coefficient α. Top and bottom boundaries are held at
the fixed temperatures Ttop and Ttop + �T , respectively. We will consider the equations of evolution
immediately in nondimensional form, choosing for units of length, time, and temperature deviation
from Ttop the quantities h, h2/κ , and �T . With this choice, the equations within the Boussinesq
approximation for the fields of velocity v(r, t ), temperature T (r, t ), and pressure p(r, t ) become

1

Pr
(∂tv + v · ∇v) = −∇p + Raθ ẑ + ∇2v, (1)

∂tθ + v · ∇θ − vz = ∇2θ, (2)

∇ · v = 0. (3)

In these equations, T = θ + 1 − z, so that θ represents the deviation from the conduction profile.
The Prandtl number Pr and the Rayleigh number Ra are given by

Pr = ν

κ
, Ra = gα�T h3

κν
, (4)

and ẑ denotes the unit vector in z direction. The boundary conditions on temperature require that
θ = 0 at z = 0 and 1, and the stress-free conditions chosen here lead to ∂zvx = ∂zvy = vz = 0 at
the boundaries.

It will be helpful to reduce the number of dependent variables by introducing poloidal and
toroidal scalars φ and ψ such that v = ∇ × ∇ × (φ ẑ) + ∇ × (ψ ẑ) and ∇ · v = 0 is satisfied by
construction. The z component of the curl and the z component of the curl of the curl of Eq. (1)
yield the equations of evolution for φ and ψ ,

1

Pr
{∂t∇2�2φ + ẑ · ∇ × ∇ × [(∇ × v) × v]} = ∇2∇2�2φ − Ra�2θ, (5)

1

Pr
{∂t�2ψ − ẑ · ∇ × [(∇ × v) × v]} = ∇2�2ψ, (6)

with �2 = ∂2
x + ∂2

y . For brevity, v is not replaced by its expression in terms of φ and ψ in these
equations. The stress-free boundary conditions translate into φ = ∂2

z φ = ∂zψ = 0.
The currently known methods for obtaining upper bounds on fluid dynamic quantities cannot

exploit the equations of evolution in full detail but extract averages from the original equations.
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Several types of averages will become important: the average over the entire volume, denoted by
angular brackets without subscript, the average over an arbitrary plane z = const, denoted by 〈· · · 〉A,
and the average over time, which will be signaled by an overline.

Three useful relations between averages can now directly be obtained. The average of Eq. (2)
over planes z = const leads to

∂t 〈θ〉A = 〈∂z(θ�2φ)〉A + 〈
∂2
z θ

〉
A
. (7)

Multiplication of Eq. (2) with θ and a subsequent volume average yields

∂t

〈
1

2
θ2

〉
= −〈θ�2φ〉 − 〈|∇θ |2〉. (8)

Finally, the dot product of v with Eq. (1), followed by a volume average, leads to

∂t

〈
1

2
v2

〉
= −PrRa〈θ�2φ〉 − Pr〈|( ẑ × ∇)∇2φ|2 + |∇∂xψ |2 + |∇∂yψ |2〉. (9)

These three equations form the basis of the previous work on bounds on, for instance, the Nusselt
number Nu given by Nu = 1 − 〈θ�2φ〉 = 1 + 〈vzθ〉.

An additional relation will be derived below by computing ∂t 〈vzθ〉 from the time evolution
equation of the advective heat transport vzθ . There are at least two reasons why such a relation looks
promising. Bounds have been computed for double diffusive convection. In this problem, salinity
S drives convection together with temperature, and salinity obeys the same advection-diffusion
equation as temperature except for a different diffusion constant. This problem looks superficially
identical to ordinary convection, and one may think that adding the equation for ∂t 〈 1

2S2〉 to Eqs. (7)–
(9) provides us with enough information to derive bounds on double diffusive convection. In fact, it
does not. It is necessary to include the equation for ∂t 〈θS〉 to derive bounds [12]. This demonstrates
the usefulness of considering cross-products of different physical quantities and motivates us to also
look at ∂t 〈vzθ〉. Another type of flow to which bounding methods were applied in the past are flows
in periodic volumes driven by a body force f [13–16]. In these problems, it is essential to include
the equation for ∂t 〈 f · v〉 obtained by forming the dot product of the momentum equation with f . In
Rayleigh-Bénard convection, the buoyancy force plays the role of the body force in the momentum
equation. From this analogy, we have another reason to look at ∂t 〈vzθ〉.

If we multiply the z component of Eq. (1) by θ , Eq. (2) by vz, add the two equations, and average
the sum over the volume, we obtain the time evolution equation for the advective heat transport:

∂t 〈vzθ〉 = 〈
v2

z

〉 + PrRa〈θ2〉 − (1 + Pr)〈∇θ · ∇vz〉 − 〈θ∂zp〉. (10)

Thanks to the stress-free boundary conditions and the boundary condition on temperature, one
deduces from Eq. (1) that ∂zp = 0 at the boundaries. The divergence of Eq. (1) yields ∇2p =
−∇ · [(v · ∇)v] + PrRa∂zθ . It is therefore possible to split the pressure p into two terms p1 and p2

such that p = p1 + p2 and

∇2p1 = −∇ · [(v · ∇)v], (11)

∇2p2 = PrRa∂zθ, (12)

with the boundary conditions that ∂zp1 = ∂zp2 = 0 at z = 0 and 1.
It will now be shown that the expression 〈θ∂zp2〉 is quadratic in θ and positive. To this end, we

first consider a layer with periodic boundary conditions and finite periodicity length in the lateral
directions. At the end of the calculation, we will send the periodicity length to infinity in order to
obtain the desired result for the infinitely extended layer. It helps to introduce two functions f and
g defined by f = ∂zp2/(PrRa) (so that ∇2f = ∂2

z θ ) and ∇2g = θ with the boundary conditions
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g = 0 at z = 0 and 1. These definitions imply that f and g are periodic in x and y and that f =
∂2
z g = g = 0 at z = 0 and 1. It is possible to compute

∫
θ∂zp2 dV , where the integration extends

over the volume V of a periodicity cell in the layer, by a sequence of integration by parts in which
the boundary integrals all vanish:

1

PrRa

∫
θ∂zp2 dV =

∫
(∇2g)f dV =

∫
g(∇2f ) dV =

∫
g∂2

z ∇2g dV

= −
∫

(∂zg)(∂z∇2g) dV =
∫

|∂z∇g|2 dV. (13)

We can now divide this equation by the volume V and take the limit V → ∞ to conclude that

〈θ∂zp2〉 = PrRa〈|∂z∇�−1θ |2〉, (14)

where �−1 denotes the inverse Laplacian for homogeneous Dirichlet boundary conditions.
Before proceeding further, let us look at the form of the optimization problem which yields

optimal bounds from Eqs. (7)–(10). There are various ways to formulate such an optimization
problem. The formulation presented here is most closely related to the method of auxiliary functions
[6,10,17]. To facilitate the exposition of the numerical implementation later, the formulation
presented here is identical to Ref. [8]. Suppose we want to bound some objective function Z which is
defined in terms of the velocity and temperature fields. We chose test functions ϕn(z), n = 1, . . . , N ,
which depend only on z and on which we project Eq. (2):

∂t 〈ϕnθ〉 = 〈ϕn∂z(θ�2φ)〉 + 〈ϕn∇2θ〉. (15)

We now construct the functional F (λ1, . . . , λN , λR, λE, λM, θ, φ,ψ ) as

F (λ1, . . . , λN, λR, λE, λM, θ, φ,ψ ) =
N∑

n=1

λn∂t 〈ϕnθ〉 − λR∂t

〈
1

2
θ2

〉
− λE

Pr
∂t

〈
1

2
v2

〉
+ λM∂t 〈vzθ〉

(16)

and replace all time derivatives by their expressions given in Eqs. (8), (9), (15), and (10). The task
now is to find a set of coefficients λ0, λ1, . . . , λN, λR, λE, λM such that the inequality

−Z + λ0 + F (λ1, . . . , λN, λR, λE, λM, θ, φ,ψ ) � 0 (17)

holds for all fields θ (r ), φ(r ), and ψ (r ) which obey the free slip boundary conditions and θ = 0 at
z = 0 and 1. If such a set of λ’s is found, the above inequality holds in particular for the fields taken
from an actual time evolution. Taking the time average of relation (17) thus leads to Z � λ0 − F =
λ0. The time average of F is zero because it is the linear combination of time derivatives. Replacing
the time derivatives by their expressions in Eqs. (8), (9), (15), and (10), the best upper bound for Z

is given by the λ0 which solves the optimization problem

minimize λ0,

subject to −Z + λ0 +
N∑

n=1

λn[〈ϕn∂z(θ�2φ)〉 + 〈ϕn∇2θ〉] + λR[〈θ�2φ〉 + 〈|∇θ |2〉]

+ λE[Ra〈θ�2φ〉 + 〈|( ẑ × ∇)∇2φ|2〉 + d2] + λM

[〈
v2

z

〉 + PrRa(〈θ2〉 − 〈|∂z∇�−1θ |2〉)

− (1 + Pr)〈∇θ · ∇vz〉 − 〈θ∂zp1〉
]
� 0, (18)

with d2 = 〈|∇∂xψ |2 + |∇∂yψ |2〉. The minimization occurs over all λ’s and the inequality needs to
hold for all d and all eligible θ and φ.

This is nearly in a form which leads to an SDP after a suitable discretization. The problematic
term is 〈θ∂zp1〉, which involves a triple product in terms of θ , φ, and ψ . However, this term is
readily reduced to a quadratic term by invoking the maximum principle, which guarantees that
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in a statistically stationary state, the temperature takes on values in the interval bounded by the
temperatures at the top and bottom planes of the layer, which means that 0 � T = θ + 1 − z � 1,
or equivalently, |T − 1

2 | � 1
2 .

To make best use of the maximum principle, we want to compute 〈θ∂zp1〉 in the form 〈(T −
1
2 )∂zp1〉 + 〈(z − 1

2 )∂zp1〉. This expression can be simplified with the same artifice as before: we
first integrate over a volume V with periodic boundary conditions in the horizontal before taking
the limit V → ∞. The second term of the above expression requires us to compute∫ (

z − 1

2

)
∂zp1 dV =

∫
dz

(
z − 1

2

)
∂z

∫∫
dx dy p1, (19)

in which only the horizontal average of p1 appears, which obeys∫∫
dx dy ∇2p1 =

∫∫
dx dy ∂2

z p1 = −
∫∫

dx dy ∇ · [(v · ∇)v]

= −∂z

∫∫
dx dy ∇(vvz) = −∂2

z

∫∫
dx dy v2

z . (20)

We can thus solve ∂2
z

∫∫
dx dy∂zp1 = −∂2

z

∫∫
dx dyv2

z with the boundary conditions that∫∫
dx dy ∂zp1 = 0 at z = 0 and 1 to find

∫∫
dx dy ∂zp1 = − ∫∫

dx dy v2
z since vz = 0 at z = 0 and

1. Inserting this into Eq. (19) yields∫ (
z − 1

2

)
∂zp1 dV = −

∫
dz

(
z − 1

2

)
∂z

∫∫
dx dy v2

z =
∫

v2
z dV (21)

after another integration by parts.
The only triple product left in problem (18) is λM〈θ∂zp1〉. This can be reduced to a quadratic

term only at the price of an inequality:

λM

∫ (
T − 1

2

)
∂zp1 dV � |λM |

∫ ∣∣∣∣T − 1

2

∣∣∣∣ · |∂zp1| dV � 1

2
|λM |

∫
|∂zp1| dV. (22)

The last expression is quadratic in v and could be combined with (18) to obtain a convex
optimization problem which can be represented as an SDP for numerical purposes. However,
the solution of this problem would be very expensive. The success of the previous applications
of semidefinite programming to Rayleigh-Bénard convection [8] relied on the fact that if the
dependence in x and y is represented as Fourier series, the equations decouple in the wave number
of the Fourier modes and only a small number of amplitudes of Fourier modes needs to be taken into
account in a numerical computation. The term

∫ |∂zp1|dV unfortunately destroys that decoupling.
The decoupling can be restored at the expense of a further inequality. It is shown in the Appendix

that

〈|∂zp1|〉 � 1

2

〈∑
i,j

(∂ivj )2

〉
. (23)

Inserting this into Eq. (22), and (22) together with (21) into (18), leads to the following optimization
problem for the optimal bound λ0 of the objective function Z, where the minimum is sought over
all λ’s:

minimize λ0,

subject to −Z + λ0 +
N∑

n=1

λn[〈ϕn∂z(θ�2φ)〉 + 〈ϕn∇2θ〉] + λR[〈θ�2φ〉 + 〈|∇θ |2〉]

+ λE[Ra〈θ�2φ〉 + 〈|( ẑ × ∇)∇2φ|2〉 + d2]
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+ λM [PrRa(〈θ2〉 − 〈|∂z∇�−1θ |2〉) − (1 + Pr)〈∇θ · ∇vz〉] � 1

4
λabs

〈∑
i,j

(∂ivj )2

〉

λabs � λM � −λabs. (24)

The last line implies |λM | � λabs. Since the right-hand side of the first inequality constraint in (24)
is positive, λ0 is smallest when λabs is chosen as small as possible, which implies that λabs = |λM | at
optimum. The velocity field is left as a variable in (24) so that it is easier to trace the various terms
to the preceding development, but eventually, vz is replaced by vz = −(∂2

x + ∂2
y )φ and〈∑

i,j

(∂ivj )2

〉
= 〈|( ẑ × ∇)∇2φ|2〉 + d2.

Problem (24) contains Eq. (10) as a constraint which keeps Pr as a parameter in the optimization.
The effect of Pr is expected to be strongest for Pr → ∞. It will be of interest to also study a
reduced optimization problem which results from (24) by introducing λ′

M = λMPr, λ′
abs = λabsPr.

The dissipation is known to be bounded uniformly in Pr [1–3], so that in the limit Pr → ∞, the
right-hand side of the inequality constraint disappears and we are left with a simpler problem:

minimize λ0,

subject to −Z + λ0 +
N∑

n=1

λn[〈ϕn∂z(θ�2φ)〉 + 〈ϕn∇2θ〉] + λR[〈θ�2φ〉 + 〈|∇θ |2〉]

+ λE[Ra〈θ�2φ〉 + 〈|( ẑ × ∇)∇2φ|2〉 + d2]

+ λ′
M [Ra(〈θ2〉 − 〈|∂z∇�−1θ |2〉) − 〈∇θ · ∇vz〉] � 0. (25)

The virtue of this formulation is that it is independent of any sloppiness that may have eased the
derivation of Eq. (23). The optimization (25) would not be changed by a sharper inequality than
(23).

The numerical solution of problems (24) and (25) proceeds in exactly the same way as in Ref. [8]
so that a brief summary will suffice here. The variables φ and θ are decomposed into N Chebychev
polynomials Tn for the z direction and into plane waves in x and y, as, for example, in

θ =
N∑

n=1

∑
kx

∑
ky

θ̂n,kx ,ky
Tn(2z − 1)ei(kxx+kyy). (26)

The test functions ϕn are chosen as delta functions centered at the collocation points zn defined by

zn = 1

2

[
1 + cos

(
π

n − 1

N − 1

)]
, n = 1, . . . , N, (27)

ϕn(z) = δ(z − zn). (28)

Inserting all this into the optimization problems transforms the inequality constraints into the
condition that some symmetric matrix be positive semidefinite. This is the standard form of an SDP.
The constraints decouple in k2 = k2

x + k2
y . Only a small number of wave numbers actually constrain

the solution. This set of wave numbers is determined automatically [8]. The matrix occurring in
the SDP would be much larger if the constraints did not decouple in k, hence the effort put into
obtaining Eq. (23). Some improvements of the basic method accelerate the computation but are not
essential. These include a partial integration of Eq. (15) and the exploitation of symmetry in z [8].
The resulting SDP was solved with the package cvxopt.
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FIG. 1. The bound D as a function of Pr for Ra = 1.6 × 104 (left panel) and 8.192 × 106 (right panel).

III. RESULTS

The optimization problem (24) distinguishes itself from previous problems by the terms multi-
plied by λM and λabs, which include all the terms containing Pr. In order to test the power of the
constraint, it seems best to choose an objective function which varies dramatically as a function of
Pr. The dissipation of the nonpoloidal components fulfills this criterion, because the flow is purely
poloidal at infinite Pr, whereas it contains both poloidal and toroidal components at finite Pr. The
choice Z = d2 thus promises to be a gratifying objective function.

Call D the optimal λ0 of problem (24) for Z = d2. Figure 1 shows D as a function of Pr for
different Ra. It is seen that D is constant for low Pr until it monotonically decreases as a function
of Pr and asymptotes towards a value different from zero at high Pr. The optimization problem (24)
thus is not powerful enough to show that the toroidal dissipation disappears at infinite Pr. Let us
denote with D0 the value of D at small Pr and with D∞ the limiting value of D as Pr tends to
infinity. D0 and D∞ are functions of Pr.

D0 is equal to the upper bound one obtains without the constraint derived from ∂t 〈vzθ〉, or
with λM = λabs = 0 in (24). This bound is the same as the one computed in Ref. [8] and obeys
approximately D0 = 0.021 × Ra3/2 at high Ra. The constraint introduced in this paper becomes
active and reduces the upper bound for Pr > Pra . From plots like Fig. 1 one finds Pra as a function
of Ra, which is shown in Fig. 2. Pr needs to be larger than Pra = 1.18 × Ra1/2 to obtain improved
bounds.

101

102

103

104

105

102 103 104 105 106 107 108 109

P
r a

Ra

FIG. 2. The Prandtl number Pra that has to be exceeded for constraint (10) to reduce the bound D, plotted
as function of Ra. The straight line is given by 1.18 × Ra1/2.
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FIG. 3. (D0 − D∞)/D0 as a function of Ra.

Just as D0 can be computed from a simplified optimization problem, so can D∞ be computed
from the reduced problem (25), which has the advantage that it does not depend on Pr anymore, and
it is independent of how sharp the estimate in (23) is. D∞(Ra) is the lowest bound found for any
Pr at a given Ra, so that (D0 − D∞)/D0 is a measure of the maximum fractional improvement of
the bound due to the additional constraint (10) at the given Ra. This fraction is shown in Fig. 3. As
can be seen from this figure, the constraint (10) can improve the bound by more than a factor of 2 at
small Ra, but dishearteningly, the improvement vanishes for large Ra. Bounding methods should be
useful at high Ra when ordinary time integrations become too expensive. But it is precisely in this
limit that the added constraint does not improve the previously known bound.

The objective function most often considered in the context of optimum theory is Z = 〈vzθ〉,
which is the Nusselt number minus one. With this choice, the fractional improvement of previous
known bounds is found to be less than 2 × 10−3, and since this is less than the tolerances and errors
in the numerical procedure, the improvement could be exactly zero. The potential improvement is
at any rate so small that it was not considered worthwhile to determine it accurately, or to show that
it vanishes.

IV. CONCLUSION

Previous work has derived bounds on the Nusselt number or other flow quantities in convection
from the time evolution equations for 〈θ〉A, 〈 1

2θ2〉, and 〈 1
2v2〉. The present paper adds 〈vzθ〉 to the list.

This additional constraint does not improve the bounds on the Nusselt number by an unambiguously
detectable amount. The bounds on the toroidal dissipation on the other hand can be improved
by more than 50%, but there is no improvement at large Ra. This fact is remarkable because it
contradicts the behavior one may intuit from other results in the optimum theory of turbulence. In
order to derive bounds for flows in three-dimensional (3D) periodic boxes driven by a body force f ,
it is necessary to take into account the time evolution equation for 〈 f · v〉. For convection within the
Boussinesq approximation, the momentum equation contains a driving term proportional to θ ẑ. The
term analogous to 〈 f · v〉 of the 3D periodic box is therefore 〈vzθ〉. For an immediate analogy with
previous work, the forcing should be solenoidal, so that we should first consider 〈v · (θ ẑ − ∇p̃)〉,
where p̃ is chosen such that ∇ · (θ ẑ − ∇p̃) = 0. However, for a solenoidal velocity field with zero
normal component at the boundaries, the expression 〈v · (θ ẑ − ∇p̃)〉 reduces to 〈vzθ〉. It is therefore
surprising that there is not a more striking improvement of bounds for convective flows if the time
evolution equation of 〈vzθ〉 is included in the optimization problem. At finite Pr, the bounding
problem relies on inequality (23), which can possibly be improved. In the limit of large Pr, however,
the results are independent of this inequality and no improvement of the results presented here can
be achieved without adding yet another constraint.
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APPENDIX

The goal of this appendix is to prove Eq. (23). To this end, we have to compute 1
V

∫ |∂zp1| dV ,
where V is an arbitrarily large volume in the plane layer, and p1 is given by

∇2p1 = q (A1)

with ∂zp1 = 0 at z = 0 and 1. The variable q is used as an abbreviation for q = −∇ · [(v · ∇)v].
We will proceed by finding the Green’s function G(r, r ′) such that ∇2G(r, r ′) = δ(r − r ′) so that
p1(r ) = ∫

G(r, r ′)q(r ′) d3r ′ where the integral extends over the horizontally infinitely extended
layer. Once the Green’s function is known, we can estimate the desired integral from

1

V

∫
|∂zp1| dV = 1

V

∫
d3r

∣∣∣∣
∫

d3r ′∂zG(r, r ′)q(r ′)
∣∣∣∣ � 1

V

∫
d3r

∫
d3r ′|∂zG(r, r ′)| · |q(r ′)|

� 1

V

∫
d3r ′|q(r ′)| · max

r ′

∫
d3r|∂zG(r, r ′)| (A2)

and taking the limit V → ∞:

〈|∂zp1|〉 � 〈|q|〉 · max
r ′

∫
d3r|∂zG(r, r ′)|. (A3)

Because of the translational invariance, the last factor in Eq. (A3) simplifies to

max
z′

∫
d3r

∣∣∣∣∣∣∣∂zG

⎛
⎜⎝r,

⎛
⎜⎝

0

0

z′

⎞
⎟⎠

⎞
⎟⎠

∣∣∣∣∣∣∣. (A4)

The Green’s function for Eq. (A1) with Neumann boundary conditions describes, for example, the
potential flow out of a point source in a plane layer. The maximization in expression (A4) asks for
the distance z′ from the lower boundary of the layer at which one has to place the point source
so that the absolute value of the z component of the velocity integrated over the entire layer is
maximum. One intuitively expects that the maximum is reached when the point source is located
on one of the boundaries of the layer. It seems very likely that the Green’s function for exactly this
problem is given somewhere in the existing literature, but I was not able to find a suitable reference.
However, the Green’s function for Eq. (A1) with the Dirichlet boundary conditions p1 = 0 at z = 0
and 1 describes the electrostatic potential of a point charge between two parallel infinitely extended
metallic plates kept at zero potential, and the Green’s function for this electrostatic problem can
be found in the textbook by Jackson [18]. Adapting the result in this textbook from Dirichtlet to
Neumann boundary conditions leads to

G

⎛
⎝r,

⎛
⎝0

0
z′

⎞
⎠

⎞
⎠ = 1

2π
ln s − 1

π

∞∑
n=1

K0(nπs) cos(nπz) cos(nπz′) + C, (A5)

where the position r is given in cylindrical coordinates (s, ϕ, z) and C is a constant left unspecified
by the Neumann boundary conditions and which is irrelevant because we are only interested in ∂zG.
K0 is a modified Bessel function of the second kind in the usual notation.

We will abstain from formal proofs for two properties which we will deduce from numerical
evaluation of Eq. (A5) and which match the intuition about G one may have from its interpretation
as a potential flow out of a point source. The first observation concerns the z′ at which the maximum
in (A4) is realized. Figure 4 shows

∫
d3r|∂zG| as a function of z′ computed numerically from the

first 40 terms of Eq. (A5). As expected, this integral is maximal for z′ = 0 (or z′ = 1 by symmetry).
The value of the maximum is numerically close to 1/2.
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FIG. 4. The integral J = ∫
d3r|∂zG(r, r ′)| as a function of z′, the z coordinate of r ′.

This second point can be made more precise with the help of a weaker observation. Let us
introduce for brevity g(r ) as the Green’s function corresponding to a point source located at
the origin, g(r ) = G(r, 0). A contour plot of g(r ) in cylindrical coordinates is shown in Fig. 5.
The second property to extract from numerical calculation and which is again expected from the
interpretation of g(r ) as potential flow is that ∂zg has the same sign everywhere. This second
property is important because it implies that we can avail ourselves of the absolute values in
expression (A4). Using the formulas

∫ ∞
0 sK0(s) ds = 1 and

∑∞
n=1

1
n

sin(nα) = π−α
2 , one finds

max
z′

∫
d3r

∣∣∣∣∣∣∣∂zG

⎛
⎜⎝r,

⎛
⎜⎝

0

0

z′

⎞
⎟⎠

⎞
⎟⎠

∣∣∣∣∣∣∣ =
∫

d3r|∂zg(r )| =
∫

d3r∂zg(r )

=
∫ 1

0
dz

∞∑
n=1

sin(nπz)n
∫ ∞

0
ds2πsK0(nπs) = 1

2
(A6)

so that Eq. (A3) leads to

〈|∂zp1|〉 � 1
2 〈|∇ · [(v · ∇)v]|〉. (A7)

FIG. 5. Contour plot of g(r ) in a cross section of the layer.
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For solenoidal fields v, this can be brought into a form which is more pleasant for the SDP:

1

V

∫
|∂zp1| dV � 1

2

1

V

∫ ∣∣∣∣∣∣
∑
i,j

(∂ivj )(∂jvi )

∣∣∣∣∣∣ dV � 1

2

1

V

∫ ∑
i,j

|∂ivj ||∂jvi | dV

� 1

2

1

V

∑
i,j

√∫
(∂ivj )2 dV

√∫
(∂jvi )2 dV

� 1

2

1

V

∑
i,j

1

2

[∫
(∂ivj )2dV +

∫
(∂jvi )

2 dV

]
, (A8)

which in the limit V → ∞ leads to Eq. (23).
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