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We study the effect of different forcing functions and of the local gradient Richardson
number Rig on the vertical transport of Lagrangian tracers in stably stratified turbulence
under the Boussinesq approximation and present a wave and continuous-time random-walk
model for single- and two-particle vertical dispersion. The model consists of a random
superposition of linear waves with their amplitude, based on the observed Lagrangian
spectrum of vertical velocity, and a random-walk process to capture overturning that
depends on the statistics of Rig among other Eulerian quantities. The model is in good
agreement with direct numerical simulations of stratified turbulence, where single- and
two-particle dispersion differ from the homogeneous and isotropic case. Moreover, the
model gives insight into the mixture of linear and nonlinear physics in the problem, as well
as on the different processes responsible for vertical turbulent dispersion.
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I. INTRODUCTION

Stably stratified turbulence (SST) is common in geophysical flows, as the ocean and the
atmosphere are usually in a turbulent state and affected by stratification (and rotation at the largest
scales), making it of fundamental importance in the study of dispersion of pollutants, transport of
nutrients, and turbulent mixing in a wide range of scales [1–4]. As stably stratified turbulence is
anisotropic, it is also inherently different from homogeneous isotropic turbulence (HIT) [5–8]. In
SST, the stratification reduces the vertical velocity, confining the flow into a quasihorizontal layered
motion and generating vertically sheared horizontal winds (VSHWs) with high vertical variability
[9]. The stratification also results in a restoring force, allowing for the excitation of waves that can
coexist with the turbulence.

As a result, vertical and horizontal turbulent transports in SST are fundamentally different. It has
been speculated that horizontal transport could be more efficient than in HIT due to the presence
of VSHWs [9,10]. Indeed, horizontal dispersion is dominated by the VSHWs, as shown in direct
numerical simulations and by our recent model for horizontal particle dispersion in Ref. [11]. This
study also showed that the characteristic timescales of dispersion in the vertical and horizontal
directions are very different. This difference is used in the present work to study vertical dispersion
separately from its horizontal counterpart. For vertical transport and dispersion, stratification has
some obvious and some not-so-obvious implications [12–14]. On the one hand, the vertical velocity
in SST is intermittent, implying that arguments based solely on mean values of the vertical velocity
or its power spectrum could be misleading due to the spontaneous occurrence of extreme values
[15,16]. On the other hand, while it is well understood that in stratified turbulence as the stratification
is increased the mean vertical velocity is quenched, vertical gradients also increase with increasing
stratification, possibly balancing the vertical transport [5,17,18].

Mixing in stratified turbulence has been largely studied from an Eulerian point of view
[19–24], but Lagrangian measurements with floaters are also common nowadays, especially in
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oceanic measurements of waves and turbulence [2], where they are relevant to understand the
transport of nutrients with applications for the fishing industry. Vertical dispersion is also important
in the atmosphere [25] and particle dispersion has also been studied recently in atmospheric flows for
forecasting purposes using Lagrangian models [26]. In spite of this, there are few studies of stratified
turbulence from the Lagrangian point of view [27–29], where linear theories of SST predict the
bounding of particles in vertical layers and the saturation for long times of single- and two-particle
vertical dispersion [28]. However, these linear models cannot capture the effect of overturning, or
of thermal diffusion, which can be relevant at intermediate times and dominate the dynamics of the
vertical transport at very long times [29]. It is also worth noting that inertial particles with density
different from that of the fluid are also relevant to study transport and have received substantial
attention in HIT (see, e.g., [30,31]), with special emphasis on the mechanisms leading to its spatial
distribution and clustering. However, transport and distribution of inertial particles in SST have also
been studied only recently [4,32–34].

In this paper we present several direct numerical simulations (DNSs) of the Boussinesq equations
with Reynolds buoyancy numbers Rb > 1 in two different domains, one cubic and the other
anisotropic (an elongated domain with the horizontal sides longer than the vertical), and using two
different mechanical forcing functions. We applied random forcing (RND) or a Taylor-Green forcing
(TG), which generates a coherent large-scale flow at the largest available scales, thus affecting
vertical transport. The Boussinesq Eulerian flow is evolved together with Lagrangian particles.
We study single- and two-particle vertical dispersion and analyze the role of the Froude number,
the vertical shear, the large-scale flow, and the local gradient Richardson number in the vertical
dispersion of particles. We also present a model for single- and two-particle vertical dispersion
that is in good agreement with the DNS results. In a previous work [11], we focused on the
study of horizontal displacements of Lagrangian particles in SST and we developed a model for
single-particle horizontal dispersion; single-particle vertical displacements were considered, but at
moderate values of Rb and in cases dominated by waves. The model introduced here for vertical
dispersion, together with the results in Ref. [11] for horizontal dispersion, provides a description
of transport of Lagrangian tracers in SST in both the horizontal and vertical directions, for a wide
range of parameters, and for both early and late times in the particles’ evolution. In particular, the
superposition of linear and turbulent effects in the model for vertical dispersion presented in this
work allows us to identify the leading physical effects resulting in vertical dispersion at early and at
late times (compared with the period of the internal gravity waves). Moreover, as all parameters in
the model can be obtained from large-scale Eulerian data, the model could be used autonomously
to obtain statistical predictions of vertical particle dispersion provided a large-scale flow.

II. NUMERICAL SIMULATIONS

For this study we solved numerically the incompressible Boussinesq equations for the velocity u
and for buoyancy (or temperature) fluctuations θ ,

∂t u + u · ∇u = −∇p − Nθ ẑ + ν∇2u + f, (1)

∂tθ + u · ∇θ = Nu · ẑ + κ∇2θ, (2)

∇ · u = 0, (3)

where p is the correction to the hydrostatic pressure, ν is the kinematic viscosity, f is an
external mechanical forcing, N is the Brunt-Väisälä frequency (which sets the stratification),
and κ is the diffusivity. In terms of the density fluctuations ρ, the Brunt-Väisälä frequency is
N2 = −(g/ρ0)(d ρ̄/dz), with d ρ̄/dz the imposed (linear) background density stratification and ρ0

the mean density. We write the buoyancy field θ in units of velocity by defining θ = gρ/ρ0N . All
quantities are then made dimensionless using a characteristic length L0 and a characteristic velocity
U0. All runs in this paper have a Prandtl number Pr = ν/κ = 1.
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The Boussinesq equations were solved in a three-dimensional periodic domain, using a paral-
lelized and fully dealiased pseudospectral method and a second-order Runge-Kutta scheme for time
integration [35]. In the turbulent steady state of each simulation we also injected O(106) Lagrangian
particles and integrated their trajectories in time using

vi = dxi

dt
= u(xi, t ), (4)

where the subindex i labels each particle. Here and in the following, the velocity of Lagrangian
particles and its Cartesian components are represented as v = (vx, vy, vz ), while the Eulerian
fluid velocity is given by u = (ux, uy, uz ). Integration of particles’ trajectories was done using a
second-order Runge-Kutta method in time and a three-dimensional cubic spline spatial interpolation
to estimate Lagrangian velocities at the particles positions xi from the velocity u in the regular
Eulerian grid [36]. All simulations were done using the GHOST code (geophysical high-order suite
for turbulence), recently extended to work with noncubic boxes [37].

Equations (1) and (2) have two controlling dimensionless parameters, the Reynolds and the
Froude numbers, respectively, given by

Re = LU

ν
, Fr = U

LN
, (5)

where L and U are, respectively, the characteristic Eulerian integral length and rms velocity of the
flow. From Eq. (5) we can also define the buoyancy Reynolds number

Rb = Re Fr2, (6)

which gives an estimation of how turbulent the flow is at the buoyancy scale Lb = U/N and as a
result can be expected to play an important role in turbulent transport. In the following we will
consider simulations with Rb > 1. The Ozmidov scale LOz = 2π/kOz (with kOz =

√
N3/ε and ε

the energy injection rate) will also play an important role in the following discussion, as for scales
sufficiently small when compared with LOz the flow is expected to recover isotropy. When Rb > 1
the Ozmidov scale is larger than the Kolmogorov dissipation scale η and quasi-isotropic turbulent
transport can thus be expected to take place at small scales. Another parameter that will be useful to
quantify small-scale turbulence and transport is the local gradient Richardson number

Rig = N (N − ∂zθ )

(∂zu⊥)2
, (7)

where u⊥ is the horizontal velocity. When Rig < 1/4 the flow can develop shear instabilities [38],
while for Rig < 0 local overturning can take place.

A relevant timescale for the tracers is the Lagrangian turnover time (or the Lagrangian time)

TL =
∫ ∞

0
〈vi(t − τ ) · vi(t )〉dτ/

〈
v2

i

〉
, (8)

where the averages are done over the time t and over all particles (i.e., over the subindex i); TL

quantifies the time over which particles’ velocities are autocorrelated. Other relevant parameters for
the following sections are the Eulerian turnover time at the Ozmidov scale τOz = LOz/Uz (with Uz

the characteristic Eulerian vertical velocity) and the energy-containing (or integral) isotropic and
parallel length scales

L = 2π

∫
EV (k)k−1dk∫

EV (k)dk
, (9)

L‖ = 2π

∫
EV (k‖)k−1

‖ dk‖∫
EV (k)dk

, (10)
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where EV (k) and EV (k‖) are, respectively, the isotropic and parallel kinetic energy spectra. From
these lengths we can also define an energy-containing isotropic wave number as K = 2π/L and an
energy-containing parallel wave number as K‖ = 2π/L‖.

The numerical simulations were performed in three-dimensional periodic domains with different
aspect ratios. The first set of runs has a cubic box with domain lengths Lx = Ly = Lz (equal to 2π

in dimensionless units) and isotropic linear resolution nx = ny = nz and therefore with an aspect
ratio of the vertical to horizontal lengths of 1:1. Another set of simulations was done in elongated
boxes of sizes Lx = Ly = αLz and resolution nx = ny = αnz. Thus, the aspect ratio of the domain is
1:α and we will consider in the following α = 4 or 8. Note that in all cases the spatial resolution is
isotropic, i.e., the distance between grid points is the same in the three directions �x = �y = �z
and thus isotropy can in principle be recovered by the flow at the smallest scales.

In each domain, simulations were done using two different forcing functions. Some simulations
were forced with TG forcing (see, e.g., [10,37,39]), which only excites directly the two horizontal
components of the velocity field and has vertical shear. The geometry of the large-scale flow
generated by this forcing is that of pairs of counterrotating horizontal vortices at large scales and
the expression of the forcing is

fTG = f0(sin(x) cos(y) cos(αz),− cos(x) sin(y) cos(αz), 0). (11)

The effectively forced wave number is then k f = (2 + α2)1/2. Note that changing the aspect ratio of
the domain modifies the factor α = Lx/Lz and thus the strength of vertical gradients in the flow. For
α = 1 (cubic domain), k f ≈ 1.7, while for α = 4 or 8 we obtain, respectively, k f ≈ 4.2 or 8.1. The
flow generated by these forces (for α 	= 1) still has a large-scale circulation at kx = ky = 1 while
developing stronger shear in the vertical direction as α is increased (see [37] for more details).

Other simulations were done using a random isotropic three-dimensional forcing (RND), with
a correlation time τcorr of half an eddy turnover time. A forcing with random phases in the Fourier
shell k f = α is computed at a given time as

f1 = f0

∑
|k|∈[k f ,k f +1)

Re(ik × ûkei(k·r+ϕk ) ), (12)

where Re stands for the real part, ûk is a unit vector, and ϕk are uniformly distributed random phases.
The actual forcing fRND is obtained by slowly interpolating the forcing from a previous random state
f0 to the new random state f1 in such a way that fRND = f1 after τcorr. The process is then repeated to
obtain a slowly evolving random forcing. As the forcing wave number depends on the aspect ratio,
in the cubic box k f = 1, while in the elongated domains k f = 4 or 8, similarly to the Taylor-Green
case. However, note that in this case the choice k f = α to maintain the forcing isotropic for all aspect
ratios also implies that, as the aspect ratio 1:α is decreased and the forcing is applied (isotropically)
at smaller scales, the Reynolds number (based on the energy-containing scale) will also decrease.

All flows were evolved from u = θ = 0, and once they reached the turbulent steady state,
Lagrangian particles were injected and integrated in time together with the flow. The list of all runs
with their respective relevant parameters is presented in Table I. Runs are labeled using the forcing
(TG or RND), a subindex for the inverse aspect ratio (α = 1, 4, or 8), and a number indicating the
value of the Brunt-Väisälä frequency (N = 4, 8, or 12). As mentioned above, note that run RND48
has a lower Re than, e.g., run TG48 (although it has the same spatial resolution and kinematic
viscosity), as the isotropic forcing at k f = α = 4 in the RND48 run results in a smaller integral
length scale when compared to the TG48 run, which has a large-scale flow at horizontal scales (with
k⊥ ≈ 1) with shear at smaller vertical scales (with k‖ = 4). However, note that run RND48 also has
a larger Fr, thus resulting in a larger Rb. To explore the effect of varying Re and Rb while keeping
the forcing and aspect ratio fixed and Fr approximately the same, runs RND48 and RND48B to
RND48D were done at decreasing spatial resolution and at increasing values of ν = κ .
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TABLE I. Relevant parameters of the simulations. The aspect ratio gives the vertical to horizontal aspect
ratio of the spatial domain 1:α; nx , ny, and nz are the grid points in each spatial direction; forcing indicates the
forcing function; Re is the Reynolds number; Fr is the Froude number; Rb is the buoyancy Reynolds number;
R is the fraction of particles with Rig < 0; LOz is the Ozmidov length scale; and τOz = LOz/Uz is the Eulerian
turnover time at the Ozmidov scale.

Run Aspect ratio nx = ny nz Forcing N Re Fr Rb R 2π/N LOz τOz

TG14 1:1 512 512 TG 4 7000 0.04 11 0.12 1.57 0.28 1.2
TG18 1:1 512 512 TG 8 8000 0.02 3 0.03 0.79 0.1 0.8
TG44 1:4 768 192 TG 4 10000 0.05 25 0.25 1.57 0.36 1.4
TG48 1:4 768 192 TG 8 14000 0.03 13 0.09 0.79 0.14 0.7
TG412 1:4 768 192 TG 12 15000 0.02 4 0.03 0.52 0.07 1.0
TG88 1:8 2048 256 TG 8 35000 0.03 30 0.30 0.79 0.18 0.8
RND14 1:1 512 512 RND 4 6000 0.07 29 0.06 1.57 0.24 0.9
RND18 1:1 512 512 RND 8 8000 0.03 7 0.02 0.79 0.07 0.3
RND48 1:4 768 192 RND 8 3000 0.11 36 0.16 0.79 0.17 0.7
RND48B 1:4 512 128 RND 8 2000 0.10 20 0.07 0.79 0.14 0.6
RND48C 1:4 256 64 RND 8 800 0.17 23 0.02 0.79 0.16 0.8
RND48D 1:4 128 32 RND 8 300 0.20 12 0.25 0.79 0.15 0.2

III. SINGLE-PARTICLE VERTICAL DISPERSION IN STABLY STRATIFIED TURBULENCE

Particle dispersion in SST is inherently different from HIT as stratification suppresses vertical
dispersion. As mentioned in the Introduction, linear models of SST predict the saturation of the
vertical dispersion for t ≈ 2π/N , as the displacement of particles is in practice vertically bounded
by the stratification, resulting in an oscillatory motion of the particles [28]. This is confirmed by
numerical simulations at moderate buoyancy Reynolds number [5,12].

We computed the single-particle vertical dispersion as δz2 = 〈[zi(t ) − zi(0)]2〉i, where i is the
particle label and the average is computed over all particles. Figure 1 shows the resulting mean

(a) (b)

FIG. 1. Mean vertical dispersion δz2 for (a) runs in cubic domains (boxes with aspect ratio 1:1) and
(b) runs in elongated domains with aspect ratio 1:4, in both figures with TG and RND forcing and with
different Brunt-Väisälä frequencies. The dispersion is normalized by U 2

z /N2, the ratio of the squared mean
vertical velocity to the Brunt-Väisälä frequency, and time is normalized by the Brunt-Väisälä period. Power
laws are indicated as references. In each figure, the Lagrangian time of each run is indicated by a vertical
arrow with the same line style as the corresponding run, while the insets show the mean vertical dispersion of
some of the simulations, not normalized, and compensated by the power laws indicated in the main panels for
intermediate times.
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(a) (b)

FIG. 2. Mean-square vertical displacement δz2 for RND runs in domains with aspect ratio 1:4 and with
N = 8 (run RND48 and runs RND48B to RND48D, from higher to lower Re and Rb): (a) δz2(t ) without
normalization and (b) same as (a), normalized by the ratio U 2

z /N2 and with time normalized by the Brunt-
Väisälä period.

vertical dispersion in our simulations, for TG and RND forcing, different aspect ratios, and different
Brunt-Väisälä frequencies (and thus different Froude numbers). Time is normalized by 2π/N (the
Brunt-Väisälä period), while δz2 is normalized by (Uz/N )2 (following the normalization used in
Ref. [29]), where Uz is, as already mentioned, the (Eulerian) rms vertical velocity in the turbulent
steady state when the particles were injected in the flow (note that while Uz does not change
significantly in time and has similar values for both forcing functions, the pointwise value of
uz changes significantly in space in the runs with TG forcing, as will be discussed in detail in
Sec. IV B). With this normalization all curves collapse from t = 0 until t ≈ 2π/N , in a time range
when they display ballistic behavior δz2 ∼ t2. In Fig. 1 we also indicate with arrows the Lagrangian
time TL of each simulation. These times are very different for each run and are also different from
the time at which the ballistic behavior ends. The end of the ballistic regime at the time of the
wave period 2π/N , instead of at the Lagrangian time TL, indicates that the early-time fast vertical
dispersion is dominated by the waves, in good agreement with previous studies of SST [11,29]:
Particles are first displaced ballistically by the internal gravity waves, which for Fr < 1 are faster
than the large-scale turbulent eddies.

The ballistic behavior observed in Fig. 1 finishes after one Brunt-Väisälä period, resulting in a
change in the growth of δz2(t ). In some cases (see runs RND14 and RND18 in Fig. 1) δz2(t ) grows
very slowly or even saturates at late times, displaying a plateau. The saturation was reported before
in simulations of SST at moderate Re and Rb numbers [11,29], where a very slow growth at late
times was attributed to the effect of molecular diffusion. However, some of our runs (all TG runs
even at moderate Rb and simulations with RND forcing at higher Rb in elongated domains) display
a more efficient transport [i.e., a faster growth of δz2(t ) for t > 2π/N] when compared with the runs
that display the plateau. The enhanced dispersion after t > 2π/N seems to be controlled, at least for
RND forcing, by Rb, suggesting it may be caused by turbulence generated by shear instabilities or
by overturning events. As a reference, some power laws are shown in Fig. 1 in this late-time regime
and the mean vertical dispersions of some of the simulations, compensated by these power laws, are
shown in insets. However, note that, as will be discussed in Sec. V, the enhanced dispersion seen in
some of these runs is a combination of the effects of both the waves and the turbulent eddies and as
a result it is not captured by a unique power law and tends in some of the runs (at sufficiently high
Rb or for sufficiently strong overturning events) to a δz2 ∼ t behavior for sufficiently long times.

To further illustrate the effect of varying Rb, Fig. 2 shows the single-particle vertical dispersion
for several runs with RND forcing and with the same parameters as RND48 (runs RND48B to
RND48D), but with different spatial resolution and values of Rb (by decreasing Re). Run RND48D,

014503-6



VERTICAL DISPERSION OF LAGRANGIAN TRACERS IN …

FIG. 3. The PDFs of the Eulerian local gradient Richardson number Rig, for all runs in cubic domains
(runs TG14 and TG18 with TG forcing and N = 4 and 8, respectively, and runs RND14 and RND18 with RND
forcing and N = 4 and 8, respectively). Vertical solid lines at Rig = 0 and 1/4 are shown as references.

with the lowest values of Re ≈ 300 and of Rb ≈ 12, displays a saturation in δz2(t ) at tN/2π ≈ 7 ×
10−1, a plateau until tN/2π ≈ 5, and then a slow growth. As Rb increases the plateau shortens, until
it completely disappears for run RND48 (with Re ≈ 3000 and Rb ≈ 36). Note that while Fig. 2(a)
shows δz2 without any normalization (and thus the increase in its amplitude with increasing Rb can
be easily appreciated), Fig. 2(b) shows δz2(N2/U 2

z ). In this latter case, the change in the amplitude
seen at late times is thus associated with the fact that U 2

z also increases with increasing Rb, resulting
in a net decrease of δz2(N2/U 2

z ) with increasing Rb. However, this normalization (together with the
normalization of the time t by the Brunt-Väisälä period) makes all curves collapse again at early
times, further showing that the ballistic behavior is independent of Rb and thus of the strength of
the small-scale turbulence.

The case of TG forcing is different, as the plateau in δz2(t ) at intermediate times is not present
even in runs at moderate Rb. Although turbulence plays an important role in the dispersion at high
Rb, the TG forcing function generates a coherent large-scale flow which creates strong fronts and
helps instabilities to develop [37], enhancing vertical dispersion even at values of Rb which are low
when compared to the RND case. In the next section we study the gradient Richardson number Rig,
with a special focus on the TG simulations, to characterize the features of this flow that result in
differences in the vertical dispersion.

IV. LOCAL GRADIENT RICHARDSON NUMBER

A. General properties of the local gradient Richardson number

The local gradient Richardson number provides a measure of the vertical stability of stratified
flows. When Rig(r) < 1/4 pointwise, local shear instabilities can take place [40], while if Rig < 0,
then ∂zθ > N and an overturning instability can develop generating convection locally in the flow.
Figure 3 shows the probability density functions (PDFs) of the Eulerian Rig for all runs in cubic
domains. The PDFs of runs with N = 4 (TG14 and RND14) display larger probabilities of low
values of Rig (less than 1/4 and less than 0) than the runs with the same forcing but with N = 8
(TG18 and RND18). As N is increased (for a given forcing), the peak of the PDF moves to larger
values of Rig. This indicates, as expected, that as stratification increases vertical instabilities are
inhibited and as a result we can also expect a less efficient vertical transport (in agreement with the
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FIG. 4. Vertically averaged absolute value of the Eulerian vertical velocity 〈|uz|〉z for run TG44 (TG forcing,
N = 4, and aspect ratio 1:4). Bright regions correspond to large vertical velocities in absolute value. As the
domain is periodic in both the x and y directions, the regions with large 〈|uz|〉z can be enclosed by four circles
(cylinders when extended in the z direction), indicated as a reference by the black solid lines.

single-particle vertical dispersion observed in the preceding section). However, when we compare
TG and RND runs with the same value of N , we see that TG runs still show larger probabilities
of Rig < 1/4 and of Rig < 0. Indeed, the PDFs of the TG runs are shifted towards the left relative
to the RND set, indicating that this flow is more vertically unstable and consequently can be more
efficient at vertically displacing particles.

B. Spatial structure of the local gradient Richardson number in the TG flow

We are interested in how the TG forcing affects the structure of the local gradient Richardson
number. As the forcing generates a coherent large-scale flow, which in principle can affect vertical
transport, we show first in Fig. 4 the mean vertical value of the absolute Eulerian vertical velocity
〈|uz|〉z computed for run TG44 (where the subscript z in the brackets indicates the average was
computed along the z coordinate). As explained in Sec. II, the TG flow consists of pairs of
counterrotating horizontal vortices, separated vertically by shear layers. Pressure gradients create a
vertical circulation [37] and as a result the forcing generates a coherent structure at the largest scales
that organize the flow into regions of high and low 〈|uz|〉. As a result, some well-defined spatial
regions in the flow display a bias towards larger values of |uz| (also associated with the generation
of frontlike and filamentlike structures in the flow, as discussed in Ref. [37]). As a comparison,
the runs with RND forcing do not display such a large-scale structure (not shown). It can thus be
expected that Lagrangian particles approaching these regions in the TG flow will have a tendency
to suffer larger displacements in the vertical direction, thus increasing δz2 even at moderate Rb.

To confirm this effect, Fig. 5 shows the PDFs of the Lagrangian Rig (i.e., now computed using
the gradients as seen by the Lagrangian particles) for runs with TG forcing in the box with 1:4
aspect ratio. Gradients (as well as velocity and density fluctuations) seen by the Lagrangian tracers
are computed for each time and at each particle position using the same three-dimensional cubic
spline interpolation used to integrate the particles discussed in Sec. II. From these quantities, the
PDFs of Rig are computed. As expected, the Lagrangian PDFs coincide with the Eulerian PDFs,
which are computed at a fixed time and for all points in the Eulerian spatial grid; however, the PDFs
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(a) (b)

FIG. 5. Thick black lines show the Lagrangian PDFs of the gradient Richardson number Rig for TG runs in
boxes with 1:4 aspect ratio. This PDF is compared with (a) the PDFs of Rig restricted to Lagrangian velocities
|vz| > 〈|vz|〉 + 2σvz (where σvz is the dispersion in vz), shown as thin blue lines, and (b) the PDFs of Rig

restricted to particles in the circular regions indicated in Fig. 4. Vertical lines at Rig = 0 and Rig = 1/4 are
shown as references.

from Lagrangian data will allow us next to more easily compute statistics restricted to specific
conditions over the fluid elements. As a result, as observed before for the Eulerian statistics, for the
complete data set, as the stratification increases (i.e., for higher N) the mean gradient Richardson
number also increases and the fraction of fluid elements with Rig < 1/4 or Rig < 0 (i.e., prone to
overturning) decreases. However, as we just mentioned, the computation of Rig using the gradients
as seen by the Lagrangian particles also allows us to compute conditional statistics, e.g., only for
instants when the particles suffer large vertical velocities or when the particles are in a specific
region in space. Using the mean of the absolute Lagrangian vertical velocity 〈|vz|〉 (averaged over
all particles and over time) and the standard deviation of vz (σvz ), we computed the PDF of Rig
restricted to particles with absolute vertical velocity 2σvz larger than 〈|vz|〉 (see Fig. 5). With this
restriction, the fraction of fluid elements that can suffer overturning instabilities increases (note the
PDFs have a larger peak at Rig = 0 and display larger values for Rig < 0 and smaller values for
Rig > 0 when compared with the PDFs at the same N without any restriction). This indicates that
there is a correlation between fluid elements with Rig � 0 and large values of |vz| (and thus of
particles displacing larger distances in the vertical direction and contributing to δz2). We also see
that as N is increased, the probability of finding fluid elements with Rig � 0 decreases even when
restricted to parcels with large |vz|. Finally, Fig. 5 also shows the PDF of Rig restricted to the instants
the particles are in the spatial regions of the large-scale circulation for which the largest absolute
values of uz were observed in Fig. 4. A similar (albeit weaker) behavior as for the restriction in vz is
found, with the shift in the peak of the PDFs towards smaller values of Rig, confirming the relevance
of the geometry of the large-scale flow in the TG runs for the vertical transport of Lagrangian
particles.

To further study the effect of Rig on the vertical velocity of the particles, Fig. 6 shows the
PDFs of the Lagrangian vertical velocity for all particles in TG runs with aspect ratio 1:4 and
with varying N . As previously reported in Refs. [15,16], the vertical velocity does not follow
Gaussian statistics and displays strong tails (this feature is not exclusively associated with the TG
forcing, as the same behavior was found in simulations with random forcing, see [15]). In Ref. [16]
the extreme values were shown to be associated with intermittent overturning instabilities in the
flow. Note that the behavior reported in Ref. [16] is nonmonotonic in Fr, although for sufficiently
small Fr (or sufficiently large values of N) the maximum values of vz decrease with increasing
stratification (see Fig. 6). When we compute the PDFs restricted to particles in instants for which
Rig < 1/4 or Rig < 0, while for the runs with moderate stratification (N = 4 and 8) there are only
small changes in the tails of the PDFs (albeit extreme values of vz become more probable), for
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(a) (b)

FIG. 6. Thick black lines show the PDFs of the Lagrangian vertical velocity vz for TG runs in domains with
1:4 aspect ratio and varying N . The PDFs restricted to particles in instants with (a) Rig < 1/4 or (b) Rig < 0,
for the same runs, are shown as thin red lines.

stronger stratification (N = 12) the changes are significantly larger, with stronger tails. This further
confirms that points with Rig < 1/4 or Rig < 0 are associated with larger values of vz and can
thus be expected to be associated with the enhanced dispersion after t > 2π/N at least in the
TG runs.

This can also be confirmed in Fig. 7, which shows the joint probability density function as a
function of Rig and |vz|, P(Rig, |vz|), for the TG runs with aspect ratio 1:4 and with varying N . As the
stratification increases, the probability of finding particles with large values of |vz| decreases, while
that of finding larger values of Rig increases. For N = 4 and N = 8 note the correlation between
larger absolute values of the vertical velocity with Rig ≈ 0 values, which is significantly weaker in
the run with N = 12.

Finally, we also studied how the value of Rig affects θ and ∂zθ with increasing stratification
(note that the local value of ∂zθ is important for overturning instabilities, as the gradient of the
buoyancy fluctuations can compete with the background gradient, resulting in local inversion of
the stratification). Figure 8 shows the PDFs of θ as seen by the Lagrangian particles and the same
PDFs restricted to instants when Rig < 1/4 or Rig < 0, in all cases for the TG4 runs. For N = 4 the
PDFs of θ are close to Gaussian and the restriction in the values of Rig has a negligible effect in the
statistics. However, for N = 8, while the PDFs are still close to Gaussian, the restricted PDFs show
a lower probability for |θ | < 0.5 and higher probability for |θ | > 0.5, indicating that particles with
Rig < 1/4 or Rig < 0 are more likely to be found at points with higher potential energy density ∼θ2.
This behavior is enhanced for N = 12, for which the PDFs also display non-Gaussian tails. Finally,
Fig. 9 shows the PDFs of the Lagrangian vertical gradients of θ , ∂zθ , which are non-Gaussian and

(a) (b) (c)

FIG. 7. Isocontours of the joint probability distribution function of Rig and |vz|, P(Rig, |vz|), for runs
(a) TG44, (b) TG48, and (c) TG412.
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(a) (b)

FIG. 8. The PDFs of θ as seen by the Lagrangian particles (thick black curves) and the same PDFs restricted
(thin red curves) to (a) particles at times with Rig < 1/4 and (b) particles at times with Rig < 0. Except for the
run TG412, all PDFs are compatible with Gaussian statistics for θ .

asymmetric. The asymmetry is enhanced when the PDFs are restricted to instants when Rig < 1/4
or Rig < 0. While the nonrestricted PDFs have their maximum at ∂zθ � 0, for the restricted PDFs
the maximum is at ∂zθ ≈ N . From the ideal Boussinesq equation for θ [Eq. (2), with κ = 0], it can
be seen that ∇θ = (0, 0, N ) is a fixed point of the equations for both θ and the Lagrangian evolution
of ∂zθ , which could explain the accumulation of (restricted) particles with ∂zθ ≈ N . Also, at points
where Rig < 0, then ∂zθ > N (for which overturning events can occur). This is the reason why the
PDFs of particles restricted to Rig < 0 in Fig. 9 only take values of ∂zθ greater than N . Finally, note
that since Rig depends explicitly on ∂zθ and not on the pointwise value of θ , a restriction on the
values of Rig can be expected to affect the PDFs in Fig. 9 more strongly than those in Fig. 8, as is
indeed observed in the figures.

C. Overturning probability and the buoyancy Reynolds number

As already mentioned, the extreme vertical velocities reported in the preceding section are not
exclusive to the TG flow. In Refs. [15,16], non-Gaussian PDFs of uz, vz, and θ were reported for
RND forcing depending on the values of Fr and Rb. However, it is clear from the results shown so

(a) (b)

FIG. 9. The PDFs of the Lagrangian vertical temperature gradients ∂zθ (thick black curves) and the same
PDFs restricted (thin red curves) to (a) Rig < 1/4 and (b) Rig < 0.
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FIG. 10. Overturning probability normalized by the forcing wave number and unit length, R/k f L0, as a
function of the Reynolds buoyancy number Rb for all simulations in Table I.

far that the geometry of the TG flow facilitates the development of overturning instabilities and the
occurrence of extreme values of the vertical velocity even at moderate Rb.

In the next section we will use these results to build a simple model for single-particle vertical
dispersion, for all cases considered and independently of the two specific forcing function used. The
results in Sec. III suggest that while the ballistic behavior of δz2 for t < 2π/N is dominated by
the waves, the differences in δz2 for t > 2π/N depend on the strength of the vertical velocity and
of the turbulence. For moderate turbulence (i.e., moderate values of Rb) and without a large-scale
vertical circulation, δz2 is dominated by the waves even at late times, resulting in the observed
saturation of the single-particle vertical dispersion. However, for larger values of Rb (as in some of
the RND runs) or in the presence of a large-scale flow (as in all TG runs), strong vertical updrafts
or downdrafts can enhance vertical transport resulting in the growth of δz2 at late times. We will
measure the probability of this happening by introducing an overturning probability R, defined as
the fraction of particles (in the Lagrangian frame) or the fraction of space volume (in the Eulerian
frame) with Rig < 0. Figure 10 (see also Table I) gives R/k f L0 as a function of Rb for all runs, where
R is measured as the integral of the PDF of Rig for Rig < 0. The normalization of R by the product
k f L0 (where k f is the forcing wave number and L0 the unit length) makes all simulations with a given
forcing (either RND or TG) collapse in the vicinity of approximate linear relations independently
of the forcing wave number used. Indeed, the data follow (for the range of Rb considered) a linear
relation with Rb, with two different slopes for the TG and RND runs (even when the runs in each
set also have different aspect ratios, forcing wave numbers, Reynolds, and Froude numbers). As
expected, for fixed Rb, the TG runs display larger values of R than the RND runs.

V. SINGLE-PARTICLE VERTICAL DISPERSION MODEL

To study the vertical dispersion of single-particles observed in the DNSs of SST in Sec. III,
we now present a stochastic model that combines a random wave model (to consider the effect
of internal gravity waves) with a CTRW [41] (to capture the effect of overturning by turbulent or
large-scale eddies). Based on the results presented so far (and in particular on the observation that
at early times the behavior is dominated by waves), the wave model we present consists of a sum
of linear waves with random phases. The presence of internal gravity waves in these flows and
their dispersion relation have been studied before in spatiotemporal studies (see, e.g., [10]), further
indicating their relevance in the dynamics of SST. We can thus approximate the trajectory of a
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(a) (b)

FIG. 11. Power spectrum of the Lagrangian vertical velocity for (a) runs in cubic domains and (b) runs in
elongated domains. Frequencies have been normalized by the Brunt-Väisälä frequency. The solid vertical lines
indicate (from left to right) ω = N/2 and ω = N .

Lagrangian particle moving vertically following these waves as

zwav(t ) = Re

(∑
ω

Aωei(ωt+φω )

)
, (13)

where φω is a random phase (note that, as we are interested only in the vertical motion of the
particles, the possible dependence of traveling waves on x and y can be ignored or absorbed into the
random phase) and the sum is performed over Nω uniformly distributed frequencies in the range of
frequencies ω ∈ [ωmin, ωmax]. The amplitude of the waves satisfies the spectral relation

Aω = A0ω
−1 (14)

for the same range of frequencies and where A0 is a normalization factor. The dependence of
Aω ∼ ω−1 follows from observations that the power spectrum of the actual Lagrangian vertical
velocity has a broad maximum with approximately constant amplitude near the Brunt-Väisälä
frequency. Note that associating vz with żwav = Re(

∑
Aωωei(ωt+φω ) ), a flat power spectrum for vz

implies Eq. (14) for the amplitude of the waves. Once Nω is chosen, the normalization factor A0

can then be fixed as A0 = (2U 2
z /Nω )1/2 by imposing that for each particle 〈ż2

wav〉t (averaged over
time) must be equal to the mean-square Eulerian vertical velocity U 2

z (also equal to the mean-square
Lagrangian vertical velocity) using Parseval’s theorem.

Note also that a flat Lagrangian spectrum for a range of frequencies is compatible with oceanic
observations of the so-called Garrett-Munk spectrum and also with numerical simulations of SST
[11]. As an example, Fig. 11 shows the power spectrum of the Lagrangian vertical velocity for all
runs in Table I. There is a broad peak near ω = N , and in several of the runs an approximately flat
spectrum can be observed in its vicinity (as a reference, the figure indicates a range of frequencies
[N/2, N]), with a decay compatible with a power law for ω > N and a slowly decaying, or almost
flat, spectrum for ω � N . Also, for the runs with the smallest values of Rb considered in this study
(run TG18 with Rb = 3.2 and run TG412 with Rb = 4.3), a secondary peak at smaller frequencies
can be observed. In these runs turbulence is moderate and the waves dominate the dispersion at
intermediate times.

As the dispersion relation of internal gravity waves is ω = Nk⊥/k � N , we set ωmax = N and for
simplicity, from the results in Fig. 11, we set ωmin = N/2 in all cases. It then follows from Eq. (13)
that the vertical displacement of any particle following the waves is given by

δzwav(t ) = zwav(t ) − zwav(0) =
∑

ω

Aw[cos(ωt + φω ) − cos(φω )]. (15)
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FIG. 12. Mean dispersion obtained from a random superposition of waves as in Eq. (15) (thick black lines)
and from Eq. (16) (thin red lines), with the parameter A0 to match the Eulerian vertical rms velocity and N the
Brunt-Väisälä frequency for some of the TG runs (see the labels in the legend).

The square of this expression, when averaged over an ensemble of particles and waves, can be
approximated by (see Appendix A)

〈
δz2

wav

〉
(t ) =

⎧⎪⎨
⎪⎩

U 2
z t2 if t � N−1

Q(t ) if N−1 < t < 4N−1

4U 2
z

N2 if t � 4N−1,

(16)

where Q(t ) is a third-order polynomial function obtained by imposing 〈δz2
wav〉 and its time derivative

to be continuous in time (see Appendix A). Figure 12 shows the mean dispersion for many particles
calculated from a stochastic superposition of waves as in Eq. (15) and from the function in Eq. (16),
in both cases using values of A0 and N that adjust the vertical rms velocity and the Brunt-Väisälä
frequency of several TG runs. The function in Eq. (16) is in good agreement with the sum of random
waves, especially for short and long times. Note also that this simple model, based on a superposition
of waves, captures the early-time ballistic behavior of δz2 ∼ t2 seen for all DNSs in Fig. 1 as well
as the saturation at late times seen in Fig. 1 for some of the simulations.

The behavior shown in Fig. 12 is similar to the vertical dispersion predicted for SST by other
models based on a linear superposition of waves [28] and is reminiscent of the vertical dispersion
observed in previous DNSs of SST at moderate values of Rb [11,29]. However, this wave model fails
to reproduce the dispersion observed at long times in some of our runs. To introduce an enhanced
vertical dispersion by turbulent overturning, we add a CTRW model that mimics the trapping of
particles by eddies, resulting in vertical displacements when the flow becomes unstable such that
the total vertical dispersion will be δz(t ) = δzwav(t ) + δzCTRW(t ).

To compute δzCTRW(t ), in each step t of the random-walk process we assume that a particle has
a probability R of being trapped for a time tt inside an eddy of radius rt with velocity Ut . As in
the preceding section, R is the probability of finding particles with Rig < 0. Whether at a given
step t the particle is trapped or not is a binary decision and thus the probability of the particle not
being trapped is 1 − R (in which case the particle does not move following eddies). When trapped,
the probability of being advected by an eddy of radius rt is given by a Kolmogorov distribution
P(rt ) ∼ r4/3

t for r < LOz, compatible with an isotropic energy spectrum ∼k−5/3 for wave numbers
k > kOz; in other words, we assume that the eddies responsible for the vertical dispersion at late
times are associated with overturning instabilities in the turbulent inertial range for scales equal
to or smaller than the Ozmidov scale. The distribution of trapping times P(tt ) is continuous and
uniform between tt = 0 and the Eulerian turnover time at the Ozmidov scale τOz. Finally, at each
step t and if the particle is trapped, the particle velocity (or, equivalently, the characteristic velocity
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of the eddy trapping the particle) is Ut , given by a probability distribution P(Ut ) that is obtained
from the observed PDF of the absolute value of the Eulerian vertical velocity [which, in practice,
can be very well approximated by assuming that it follows a Rayleigh distribution, so knowledge of
the rms value of uz, Uz, is sufficient to estimate P(Ut )].

As mentioned above, in each step of the CTRW, if a particle is not trapped by an eddy, δzCTRW(t )
will remain constant (i.e., the particle will not move as a result of eddy trapping). If it gets trapped, it
will be displaced along a circle as the result of the trapping, with a vertical displacement of rt sin(θt )
which is just the projection of the circular trajectory of radius rt in the z direction and where θt =
Uttr/rt is the angle of the arc traveled during the time tr . Thus, the random-walk process just mimics
in a simplified way the eventual presence of vertical eddies that can result in upward or downward
transport of the Lagrangian particles. As described above, the model has no free parameters; all
parameters are obtained from Eulerian characteristic lengths and timescales of the flow.

We can summarize the computation of the entire model as follows.
(1) Wave model. At any time, each particle vertical trajectory is computed as the sum of

Nω harmonic motions, each with amplitude 2U 2
z /Nwω and with uniformly distributed random

frequencies ω between N/2 and N .
(2) CTRW model.
(a) At each step t , a particle is trapped by an eddy with probability R (or not trapped, with

probability 1 − R).
(b) If the particle is trapped, (i) the characteristic velocity of the eddy Ut is given by P(Ut ), a

Rayleigh probability distribution with its mean given by the mean Eulerian vertical velocity of the
flow; (ii) the eddy radius rt is chosen with a probability distribution P(rt ) ∼ r4/3 for rt � LOz, and
P(rt ) = 0 in other cases; (iii) the trapping time tt is chosen from a uniform probability distribution
P(tt ) between 0 and τOz; (iv) the central angle subtended by the arc traveled by the particle during
the trapping time is computed as θt = Uttt/rt ; and (v) the vertical displacement after the time tt is
finally computed as rt sin(θt ).

(c) If the particle is not trapped, the particle is not displaced.
(d) The final vertical displacement resulting from the CTRW for any given particle and at a given

time t = ∑n
t=1 tt is the sum over the n vertical displacements.

(3) Full model. At any given time, the total vertical displacement is obtained as the sum of the
displacements generated by the waves and by the CTRW process.

The key parameters of the full model then are N , Uz, LOz, and R, from which all other variables
and probability distributions (as well as the total displacements) can be computed.

Figure 13 shows the mean vertical dispersion obtained from several DNSs and δz2(t ) =
[δzwav(t ) + δzCTRW(t )]2 as obtained from the wave and CTRW model (i.e., the full model). For
the runs in elongated domains (with TG forcing or larger values of Rb), as the dispersion is very
similar for all runs, we rescaled δz2 using an arbitrary value [indicated in the legend in Fig. 13(a)],
so the curves can be distinguished more easily. In the other cases, the same normalization as in
Fig. 1 was used for δz2 and time. The model is in good agreement with the DNS data in all cases
and captures early- and late-time behavior independently of the forcing function (TG or RND), as
well as cases with saturation of δz2(t ) for t > 2π/N as cases in which δz2(t ) keeps growing at late
times. The inset in Fig. 13(b) shows a detail of the mean vertical dispersion for run RND18 (RND
forcing with N = 8), for which δz2 almost completely saturates after t (N/2π ) ≈ 1 and grows only
very slowly at late times. For this case, the inset also shows δz2 obtained from the wave model alone
(i.e., δz2

wav), as well as δz2 obtained from the full model. This case confirms that while the wave
model can capture the saturation, the departure from this saturation and the growth observed at late
times can only be captured if trapping by eddies is taken into account.

As mentioned in Sec. III, the apparent power laws observed at intermediate times in Fig. 1 are the
result of this competition between dispersion by waves and eddies, and for sufficiently long times
δz2 approaches a linear ∼t behavior if overturning is strong enough. To illustrate this and to show
the agreement between the model and the DNSs in more detail, Fig. 14 shows δz2(t ) in linear scale
for four selected runs (corresponding to cases with TG or RND forcing, with different Brunt-Väisälä
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(a) (b)
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FIG. 13. Mean vertical dispersion δz2 for (a) runs in elongated domains with amplitudes rescaled for better
visualization (see the legend) and (b) runs in cubic domains, for RND and TG forcing and with different
values of N . Normalizations of δz2 and of time are the same as in Fig. 1. In both (a) and (b) the thick black
lines show the results from the DNSs and the thin red lines show the results obtained from the single-particle
dispersion model. The inset in (b) shows a close-up of δz2 for run RND18 (thick dash-dotted curve) together
with the mean-square vertical displacement predicted by the full model and by the superposition of random
waves alone.

frequencies, and with different domain aspect ratios). Considering the inherent randomness of the
DNSs results and of the CTRW process, reasonable agreement is seen in all cases.

The differences between the early- and late-time behavior can now be further clarified using the
model (see Fig. 15). At early times, the waves dominate the dispersion resulting in the observed
ballistic regime up to the period of the slowest waves, t � 2π/N , for which the largest “fast”
displacements (on the timescale of the waves) can take place. If considered alone, trapping by
turbulent eddies in the CTRW model would also result in ballistic growth of δz2, but it has an
initial value significantly smaller and as a result this process is subdominant to the dispersion by the
waves. At intermediate times (t ≈ 2π/N) dispersion by the waves saturates generating the plateau.
If turbulence is moderate (and thus R is also moderate), trapping by eddies is inefficient, resulting
in a temporary saturation of the dispersion, or, in the most extreme cases, in a complete saturation
of δz2. Depending on how strong the turbulence is, at a certain time overturning events can start
enhancing the dispersion and for longer times the turbulence dominates the dynamics surpassing
the effect of the waves. Remarkably, this simple picture is also compatible with the trajectories of
individual Lagrangian particles. Figure 15 also shows as an example four trajectories projected into
the x-z plane, for four Eulerian eddy turnovers and for run TG44. Small and wavy displacements can
be seen in the vertical direction, interrupted by sudden and close to circular trajectories associated
with trapping by overturning eddies and which result in larger vertical displacements.

FIG. 14. Mean-square vertical displacement δz2 in linear scale for four cases: (a) TG48, (b) TG14,
(c) RND48, and (d) RND18. The four cases are illustrative of runs with TG or RND forcing, with different
levels of stratification and with different domain aspect ratios. The thick black curves show the results from
the DNSs, while the thin red lines show the results obtained from the model. In spite of the randomness in the
DNSs and in the CTRW model, all cases display reasonable agreement.
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(a) (b)

FIG. 15. (a) Sketch of the two contributions to vertical dispersion in the model. The random superposition
of waves dominates at early times (red dashed curve), while the effect of turbulent eddies and overturning events
become relevant at late times (blue dotted curve). The total vertical dispersion (black solid curve) results from
the superposition of both effects. (b) A few particle trajectories from the TG44 run projected on the x-z plane.
Note the small and wavy particles’ displacements in the vertical directions, interrupted by sudden and close to
circular trajectories that result in a larger vertical displacement, which we associate by trapping by overturning
eddies (see Sec. V for details).

VI. TWO-PARTICLE VERTICAL DISPERSION

We can also study the two-particle vertical dispersion ζ 2
z , which the two simple processes

presented above (dispersion by a random superposition of waves and a CTRW process to capture the
effect of turbulent overturning events) can also model. The two-particle vertical dispersion is defined
as ζ 2

z = 〈[zi(t ) − z j (t )]2〉(i, j), where i 	= j are the labels of two particles that at the initial time have
a vertical separation δz0 and a horizontal separation δr0 and where the subindex (i, j) denotes
that the average is computed over pairs of particles. Figure 16 shows the resulting two-particle

(a) (b)

FIG. 16. (a) Two-particle vertical dispersion for particles with initial vertical separation δz0 � η and two
initial horizontal separations δr0 = η (black lines) δr0 = 2η (gray lines). Results from three simulations with
TG forcing are shown. The vertical dispersion was normalized by (wK‖δr0)2/N2 and time by 1/N . With this
normalization all curves collapse during the ballistic regime. A power law at later times is indicated as a
reference. (b) Two-particle vertical dispersion from DNSs with RND or TG forcing (thick lines) and from the
model (thin lines). The amplitudes of the curves have been rescaled for better visualization (see the rescaling
factor in the legend).
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vertical dispersion for runs TG44, TG48, and TG88. We consider pairs of particles which at
time t = 0 have a vertical separation δz0 � η (where η is the Kolmogorov dissipation scale) and
horizontal separations δr0 ≈ η or δr0 ≈ 2η (see [29] for a detailed study of different choices of
the initial separation in two-particle dispersion in SST). Normalizing the vertical dispersion ζ 2

z by
(UzK‖δr0)2/N2, all curves approximately collapse during the ballistic regime. As for the case of
single-particle dispersion, we see again a growth of the two-particle dispersion at late times, which
is linear or almost linear with t in all runs. Here we also see an effect of Rb: Simulations with
larger Rb display larger two-particle vertical dispersions at late times. It is also worth pointing
out that when the initial horizontal separation δr0 is increased (for a given run), the short-time
two-particle dispersion augments proportionally, but the late-time two-particle dispersion remains
equal, indicating a decorrelation of the two particles at late times as reported before in Ref. [29]
[note that in Fig. 16, as ζ 2

z is normalized by δr2
0 , this late-time decorrelation results in different

amplitudes of (ζz/δr0)2 as δr2
0 is changed].

As mentioned above, the two-particle vertical dispersion can be modeled using an extension of
the single-particle model. As before, we consider the effect of the waves and of the turbulent eddies
separately. First, if we have two particles which are initially very close to each other (almost at the
same height, but with a horizontal displacement δr0), we can assume they will be displaced by the
same waves but with a phase difference between the two (for each wave with frequency ω) given by

φ′
ω ≈ φω + kδr0. (17)

Here φω is the phase of the wave seen by one of the particles, φ′
ω is the phase seen by the other

particle, k is the wave number, and we approximate the total separation between the two particles
by δr0 (as δz0 � η). Using the expressions for the displacements of a particle in a superposition of
random waves given by Eqs. (13) and (15), we can estimate the separation as a function of time for
a single pair as

ζi j,(wav)(t ) =
∑

ω

Aω{[cos(ωt + φω ) − cos(φω )] − [cos(ωt + φ′
ω ) − cos(φ′

ω )]} + δz0, (18)

where the subindices i and j again label the pairs of particles that at the initial time meet the
condition δr0 ≈ η (or ≈2η). Equation (18) is just the difference between two single-particle vertical
trajectories, to which we added an initial vertical separation δz0 � η. As we did in the preceding
section, the resulting dispersion, when averaged over several pairs of particles and sets of random
waves, can be approximated as (see Appendix B)

〈
ζ 2

z,(wav)

〉
(t ) ≈

⎧⎪⎪⎨
⎪⎪⎩

U 2
z

(
2.1δr0

2π
L‖

)2
t2 if t < N−1

Q2(t ) if N−1 < t < 4N−1

16U 2
z (2.1δr0π )2

(L‖N )2 if t � 4N−1,

(19)

where, as in the single-particle approximation in Eq. (16), Q2(t ) is a third-order polynomial
interpolation for the two-particle case obtained by imposing the function and its derivative to be
continuous in time and we neglected all terms in δz0 and δz2

0 as they are small when compared with
the leading-order terms.

As at late times the particles separate significantly from each other, to take into account the
effect of overturning we can assume that the two particles are uncorrelated and as a result we can
just consider two independent CTRW processes with the same properties as the one described in
the preceding section for single particles, one for each particle in the pair. This is compatible with
observations of two-particle dispersion in DNSs of SST [29] and with the results from DNSs shown
above, indicating that the late-time dispersion becomes independent of the original separation δr0.
The final result of combining ζz,(wav) with the CTRW processes is shown in Fig. 16. The model is
in good agreement with the two-particle vertical dispersion obtained from the DNSs, both in the
ballistic regime and for long times when dispersion becomes dominated by the turbulent eddies, for
both forcing functions considered, different domain aspect ratios, and different values of Fr and Rb.
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VII. CONCLUSION

In this paper we studied single- and two-particle vertical dispersion for Lagrangian trajectories
in forced stably stratified turbulence, using two different forcing functions (Taylor-Green and
random forcing), domains with different aspect ratios, and different Froude and Reynolds numbers.
Using direct numerical simulations, we showed that late-time saturation of single-particle vertical
dispersion, reported in previous studies of this problem, is obtained only for moderate values of the
buoyancy Reynolds number and that for larger values of Rb, or even for moderate Rb in the case of
the Taylor-Green flow that develops a vertical circulation, the saturation does not take place. Instead,
δz2 keeps growing in time after the ballistic regime, albeit at a slower rate than in homogeneous and
isotropic turbulence.

We showed that the gradient Richardson number plays an important role in the strength of
the vertical transport of Lagrangian tracers, as overturning fluid elements with Rig < 0 give an
important contribution to vertical displacement of Lagrangian particles. In particular, regions of the
flows with higher vertical velocity present a higher probability of having particles with Rig < 0
and vice versa. The joint probability (or restricted PDFs) between Rig and the Lagrangian vertical
velocity, temperature fluctuations, and gradients were studied, confirming this correlation.

Based on these results, we derived models for single- and two-particle vertical dispersion that
consist of a superposition of random waves (to capture the early-time ballistic regime) and an eddy-
constrained continuous-time random-walk process (to capture the effect of turbulent eddies and
overturning instabilities in the flow at late times). These models, together with the model for single-
particle horizontal dispersion in Ref. [11], provide a description for the anisotropic dispersion in
both the vertical and horizontal directions of stably stratified turbulence. The vertical dispersion
obtained from the model presented here is in good agreement with the vertical dispersions obtained
from the direct numerical simulations. This agreement strengthens the observation that the waves
dominate the dynamic of particles at short times, resulting in the initial ballistic regime, while at
intermediate times (t ≈ 2π/N) linear and nonlinear effects coexist in the dynamics, giving rise
to a transient that can develop (or not) a plateau on the dispersion depending on how strong (or
weak) the effect of overturning events is. At later times, and if turbulence is sufficiently strong [as
measured by Rb or, equivalently, by the probability of a fluid element to suffer overturning, R =
P(Rig < 0)], turbulence (modeled here by the continuous-time random-walk process) dominates.
The superposition of linear and turbulent contributions to the dispersion in the model thus allows
clarification of the relevant time and length scales involved in the dynamics of Lagrangian tracers
in stratified turbulence. Finally, as all parameters in the model can be obtained from large-scale
Eulerian properties of the flow, the model creates an opportunity for modeling turbulent dispersion
of tracers in Eulerian simulations of stratified flows that do not resolve the smallest scales in the
flow, as usually is the case in the study of atmospheric and oceanic flows.
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APPENDIX A: DERIVATION OF THE SINGLE-PARTICLE DISPERSION WAVE MODEL

We want to derive averaged expressions for the dispersion as a function of time resulting from a
random superposition of waves like that given by Eq. (15). For short times, from

δzwav(t ) =
∑

ω

Aw[cos(ωt + φω ) − cos(φω )], (A1)

we can take the square and use the trigonometric identity cos(ωt + φω ) = cos(ωt ) cos(φω ) −
sin(ωt ) sin(φω ), the Taylor expansions to first order sin(ωt ) ≈ ωt and cos(ωt ) ≈ 1, and Eq. (14)
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with A0 = (2U 2
z /Nω )1/2 to get

δz2
wav ≈ t2 2U 2

z

Nω

(∑
ω

sin(φω )

)(∑
ω′

sin(φω′ )

)
= t2 2U 2

z

Nω

⎛
⎝∑

ω

sin2(φω ) +
∑

ω,ω′ 	=ω

sin(φω ) sin(φω′ )

⎞
⎠.

(A2)

As the average over random phases φ uniformly distributed between 0 and 2π is

〈sin(φ)〉φ = 〈cos(φ)〉φ = 0, (A3)

〈sin2(φ)〉φ = 〈cos2(φ)〉φ = 1/2 (A4)

for φω and φω′ two independent stochastic variables, for short times and after averaging over an
ensemble of particles with different sets of random waves, we then have〈

δz2
wav

〉
(t ) ≈ t2U 2

z . (A5)

For long times

δz2
wav(t ) = 2U 2

z

Nω

(∑
ω

1

ω
[cos(ωt + φω ) − cos(φω )]

)(∑
ω′

1

ω′ [cos(ω′t + φω′ ) − cos(φω′ )]

)
, (A6)

which can be rewritten as

δz2
wav(t ) = 2U 2

z

Nω

⎛
⎝∑

ω

1

ω2
[cos(ωt + φω ) − cos(φω )]2

+
∑

ω,ω′ 	=ω

1

ωω′ [cos(ω′t + φω′ ) − cos(φω′ )][cos(ωt + φω ) − cos(φω )]

⎞
⎠. (A7)

As the time average over several wave periods results in 〈cos(ωt + φω )2〉t = 1/2, 〈cos(ωt +
φω )〉t = 0, and 〈cos(ωt + φω ) cos(ω′t + φω′ )〉t = 0, using Eqs. (A3) and (A4), we obtain the
average of Eq. (A7) over time and over an ensemble of particles and random waves as

〈
δz2

wav

〉
t ≈ 2U 2

z

Nω

N∑
ω=ωmin

1

ω2
. (A8)

Using �ω = (N − ωmin)/Nω, then

N∑
ω=ωmin

1

ω2
=

N∑
ω=ωmin

1

ω2

�ω

�ω
≈ 1

�ω

∫ N

ωmin

1

ω2
dω = 1

�ω

N − ωmin

Nωmin
= Nω

Nωmin
(A9)

and finally Eq. (A8) can we rewritten as

〈
δz2

wav

〉
t ≈ 2U 2

z

Nωmin
, (A10)

where we chose ωmin = N/2.
This gives the early-time (t � N−1) and late-time (t � 4N−1) expressions in Eq. (16) (note that

the choices of N−1 and 4N−1 as the two limits for the validity of the approximations are somewhat
arbitrary). To obtain a smooth [i.e., continuous in 〈δz2

wav〉(t ) and in its time derivative] interpolation
between these two expressions, we use a third-order polynomial function to interpolate 〈δz2

wav〉(t )
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between ta = 1/N and tb = 4/N . Writing a polynomial approximation 〈δz2
wav〉(t ) = Q(t ) = At3 +

Bt2 + Ct + D, then the coefficients after imposing the continuity conditions are

A = {Q′(ta)(ta − tb) − 2[Q(ta) − Q(tb)]}/(ta − tb)3, (A11)

B = −{
Q′(ta)

(
t2
a + tatb − 2t2

b

) + 3(ta + tb)[Q(tb) − Q(ta)]
}/

(ta − tb)3, (A12)

C = tb
{
Q′(ta)

(
2t2

a − tatb − t2
b

) + 6ta[Q(tb) − Q(ta)]
}/

(ta − tb)3, (A13)

D = −[
tat2

b Q′(ta)(ta − tb) + t2
b Q(ta)(tb − 3ta) + t2

a Q(tb) + (3tb − ta)
]/

(ta − tb)3, (A14)

where the values Q(ta) and Q(tb) are given by the expressions in Eqs. (16) and (19) evaluated at
t = N−1 or t = 4N−1.

APPENDIX B: TWO-PARTICLE DISPERSION WAVE MODEL

To derive averaged expressions for the two-particle dispersion resulting from a random superpo-
sition of waves, we start from Eq. (18),

ζi j,(wav)(t ) = zi,(wav)(t ) − z j,(wav)(t )

=
∑

ω

Aω{[cos(ωt + φω ) − cos(φω )] − [cos(ωt + φ′
ω ) − cos(φ′

ω )]} + δz0, (B1)

where φ′
ω is the phase of the wave with frequency ω as seen by the particle j, which is displaced

a distance approximately equal to δr0 (as δz0 � δr0) from the particle i (with phase φω). Thus
φ′

ω ≈ φω + k δr0 (note that we ignore any increase in time of the horizontal distance between the
two particles and in the following we consider only the increase in the vertical distance between
them). We can approximate k ≈ K‖/ cos α, where α is the angle of propagation of the waves with
respect to the vertical direction and K‖ is the parallel integral wave number as introduced in Sec. II.
From the dispersion relation of internal gravity waves we have ω = N sin α (or sin α = ω/N),
and using cos α = (1 − sin2 α)1/2 and that ω/N in the single-particle model is a random variable
uniformly distributed between 1/2 and 1, we can estimate the mean value of the wave number k for
an ensemble of waves propagating in all available directions as

〈k〉 =
〈

K‖
cos α

〉
ω/N

= 2K‖
∫ 1

1/2

d (ω/N )√
1 − (ω/N )2

≈ 2.1K‖, (B2)

where the factor 2 multiplying the integral comes from computing the mean of ω/N in the interval
[1/2, 1]. Thus, the mean phase shift results to be 〈δφ〉 ≈ 2.1K‖δr0.

The two-particle mean-square vertical displacement caused by the waves 〈ζ 2
z,(wav)〉 is the average

over an ensemble of particle pairs of the square of the vertical two-particle displacements for a
single pair ζi j,(wav). For a very small initial separation between the particle pairs δφ is also small
and we can use in Eq. (B1) the approximation cos(ωt + φ + δφ) ≈ cos(ωt + φ) − δφ sin(ωt + φ)
to get

ζi j,(wav) ≈
∑

ω

−kδr0Aω[sin(ωt + φω ) − sin(φω )] + δz0. (B3)

For short times we can take the first-order Taylor approximations sin(ωt ) ≈ −ωt and cos(ωt ) ≈ 1.
Also, using the trigonometrical identity sin(ωt + φω ) = sin(ωt ) cos(φω ) + cos(ωt ) sin(φω ), we
obtain

ζi j,(wav) ≈ tδr0

∑
ω

[−ωkAω cos(φω )] + δz0. (B4)
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Finally, we take the ensemble average of the square of ζi j,(wav), we use that α and ω are stochastic
variables, we use Eq. (14) for Aω, and we use Eqs. (B2), (A3), and (A4) to get〈

ζ 2
wav

〉
(t ) ≈ U 2

z (2.1K‖δr0)2t2, (B5)

where terms in δz0 and δz2
0 are neglected for being much smaller than the leading-order term.

To obtain the long-time approximation we start by neglecting the term δz0 and taking the mean-
square value of Eq. (B1),

〈
ζ 2

i j,(wav)

〉 =
〈∑

ω

A2
ω{[cos(ωt + φω ) − cos(φω )]2 + [cos(ωt + φ′

ω ) − cos(φ′
ω )]2

− 2[cos(ωt + φω ) − cos(φω )][cos(ωt + φ′
ω ) − cos(φ′

ω )]} +
∑

ω,ω′ 	=ω

(· · · )

〉
, (B6)

where the mean is taken both over time and over particle pairs. The cross-product terms in Eq. (B6)
have mean value 〈∑ω,ω′ 	=ω(· · · )〉 = 0, as discussed in Appendix A. Using again the approximation
cos(ωt + φω + δφ) ≈ cos(ωt + φω ) − δφ sin(ωt + φ), we get

〈
ζ 2

i j,(wav)

〉 ≈
〈∑

ω

A2
ω{[cos(ωt + φω ) − cos(φω )]2 + [cos(ωt + φω ) − cos(φω )

− δφ(sin(ωt + φω ) − sin(φ))]2 − 2[cos(ωt + φω ) − cos(φω )]

× [cos(ωt + φω ) − cos(φω ) − δφ(sin(ωt + φω ) − sin(φ))]}
〉
. (B7)

Finally, using Eqs. (A3), (A4), (A7), (A8), and (A10) and given that 〈sin(φ) cos(φ)〉φ = 0 with φ

uniformly distributed between 0 and 2π , we have

〈
ζ 2

z,(wav)

〉
t ≈ 〈(kδr0)2〉

〈∑
ω

A2
ω[sin(ωt + φ) − sin(φ)]

〉
t

≈ 〈(kδr0)2〉〈δz2
wav

〉
t ≈ 2(2.1K‖δr0)2U 2

z

Nωmin
.

(B8)
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