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Miscible density-driven flows in heterogeneous porous media:
Influences of correlation length and distribution of permeability
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A random process and highly accurate pseudospectral method associated with compact
finite differences are incorporated to evaluate effects of permeability heterogeneity to
gravity-driven miscible porous media flows. Flows in heterogeneous permeability fields,
based on multiple sets of random realizations with identical statistical characteristics,
are simulated to elucidate the global trend of mean quantities and local variations. The
presence of heterogeneity provokes more prominent fingering competition and greater
variation of fingers’ widths, hence the mean values of interested quantitative measures,
i.e., breakthrough time, amount of fluid volumes transported, and normalized mixing
effectiveness, are generally reduced. Resonant effects, whose influences on the flow fields
are the most significant, are verified to occur in an intermediate correlation length, in
which the widths of fingers are slightly less than the correspondent correlation length.
Nevertheless, under the resonant conditions these measures are the most widely scattered
between different random realizations associated with the same control parameters. The
widest scatterings are mainly because of the enhancing sensitivity of flow path selections
under such resonant conditions, especially in a few realizations whose high or low
permeability regions align along with or transverse to the main flow direction. The
significant scatterings of these quantitative measures, which had drawn little attention
previously, suggest more cautious treatments for practical implementations in the regime
of resonant effects.

DOI: 10.1103/PhysRevFluids.4.014502

I. INTRODUCTION

Viscous fingering instability, or the Saffman-Taylor instability [1], in a porous medium or Hele-
Shaw cell has long been an ongoing subject under thorough study for many decades. Comprehensive
reviews regarding the fundamental theory and popular applications are provided by Refs. [2,3].
Because of the concerns about global warming, a recent and important application of this classic
problem related to the subsurface storage of carbon dioxide (CO2) has also drawn much attention.
A practical option of CO2 storage is injecting CO2 in a supercritical state, i.e., under a condition
of high temperature and enormous pressure, into porous rocks in the deep subsurface, such as
depleted oil and gas reservoirs [4–6]. To achieve stable long-term and large-scale storage, one of
the efficient ways is to dissolve CO2 into the surrounding brine. In saline aquifers, the supercritical
CO2 is less dense (200–700 kg/m3) than the ambient brine (900–1200 kg/m3), so that the injected
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supercritical CO2 will float on the top of saline aquifers to reside beneath the cap rocks. A tank
of supercritical CO2 will be formed above the brine water with a stable interface between them.
It is known that CO2 is partially miscible to the brine water, typically 3% in weight under the
subsurface condition [7]. Nevertheless, the CO2-brine mixture is generally about 14 kg/m3 heavier
than pure brine [8], so that the miscible system becomes unstable to trigger natural convection.
The dissolution-driven convection greatly enhances the process of dissolution of CO2 into the
brine. This interesting phenomenon had been experimentally studied in a Hele-Shaw cell [9–14],
which is commonly used to represent a homogeneous porous condition. The dissolution-driven
convection was substantiated when high-pressure CO2 (6 bar) was injected in a Hele-Shaw cell to
dissolve into the top layer of water [9,10]. Alternatively, lighter water placed over heavier propylene
glycol, whose mixture is heavier than both, also appears similar to dissolution-driven convection in
a Hele-Shaw cell [11,12]. In addition, potassium permanganate (KMnO4) in water was also used
as an analog for CO2 in brine to successfully obtain dissolution-driven convection with apparent
fingering patterns [14]. On the other hand, numerical simulations dealing with this dissolution-
driven fingering patterns for CO2 storage based on the Hele-Shaw equations, or the homogeneous
Darcy’s law, had also been presented [15,16]. More practically, Szulczewski et al. [17] conducted
simulations, by assuming a top layer of CO2 source, to investigate fingering patterns in structural and
stratigraphic layer. Fully three-dimensional simulations with high resolution were also preformed
[18].

All of the aforementioned works were studied in homogeneous and isotropic porous media or
Hele-Shaw cells. As for anisotropic porous media, there are relative fewer studies focusing on
dissolution-driven fingering problems. Recent results revealed that the amount of CO2 dissolved
in anisotropic sedimentary rocks is much larger than in isotropic rocks [19–21]. On the other hand,
intensive research had be carried out to understand the effects of heterogeneity on conventional
viscous fingering by displacements, since the pioneering experiments reported several decades ago
[22]. Subsequently, analytical and numerical studies were well presented, e.g., by highly accurate
pseudospectral simulations [23–31] or a particle-tracking method [32]. With strong variation of
permeability, fingering patterns are dictated by the permeability distribution. When the characteristic
length scale of permeability distribution is close to the fingering scale, a resonant amplification of
instability was proposed [24,33,34]. In horizontal layered heterogeneous media, several distinct
regimes of the flow displacement were also identified [35].

In practical applications, the CO2 storage sites are naturally heterogeneous. The heterogeneity
is expected to play important roles for the fingering patterns as well as quantitative measures
of interest, such as the volumes of CO2 transported downward, and mixed with the brines. In
the present study, we focus on the density-driven convection of a binary system, i.e., heavier
CO2-brine mixture and pure brine, in heterogeneous porous media with different random dis-
tributions. In addition to the qualitative observations of fingering patterns, we emphasize both
the global mean values and local variations of interested measures among the different random
realizations with identical control parameters of statistical characters. It is noticed that even the
global trend of some results had been reported before, which was mainly demonstrated in a single
particular permeability distribution, but the local variations between different random realizations
had not been discussed to the best of our knowledge. For better implementation to practical
applications, it is equally important to reveal the local behaviors of all the distinct permeability
distributions perturbed by different sets of random signals. To thoroughly investigate both the
global and local behaviors, a classic random process is elaborated in detail and adopted to generate
permeability fields with the desired statistical parameters, e.g., correlation length and variance,
with multiple realizations of random signals. All heterogeneity conditions are simulated by eight
realizations to elucidate their trends of a global statistic mean as well as local variation among
them.
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FIG. 1. Representative sketch of a square heterogeneous porous medium with dimension H , where a
clearer (darker) area corresponds to a region of higher (lower) permeability. Fluid 1 occupied on the top layer
is heavier and less viscous than the lower fluid 2, i.e., ρ1 > ρ2 and η1 < η2, so that the miscible interface is
gravitationally unstable to produce complex fingering pattern.

II. PHYSICAL PROBLEM AND MATHEMATICAL MODELS

A. Governing equations

We numerically study a binary system containing two incompressible viscous fluids in a square
two-dimensional heterogeneous porous medium with dimension H , in which the permeability
distribution is k(x, y), as shown in Fig. 1. The two fluids are miscible to each other, whose
viscosities/densities are denoted as η1/ρ1 (fluid 1), and η2/ρ2 (fluid 2), respectively. Fluid 1 is
assumed heavier and less viscous, i.e., ρ1 > ρ2 and η2 > η1. A thin layer of the fluid 1 reservoir
is placed on top of the square domain, so that fluid 1 is continuously supplied within this region.
Excluding the region of this top layer, the porous medium is initially fully occupied by fluid 2.
A Cartesian coordinate system (x, y) is defined in such a way that its origin is located at the
center of the square domain. Under the present condition, the fluid-fluid interface is gravitationally
and viscously unstable. The system in such a two-dimensional heterogeneous porous medium is
governed by the following set of Darcy’s equations [23–28]:

∇ · u = 0, (1)

∇p = −η

k
u − ρg, (2)

∂c

∂t
+ u · ∇c = D∇2c. (3)

Here u, p, η, and ρ denote the velocity vector, the pressure, the viscosity, and the density of the
binary system, respectively. g is the gravity vector pointing downward, i.e., the negative y direction.
c represents fluid concentration, such that c = 1 and c = 0 for the less viscous fluid 1 and the more
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viscous fluid 2, respectively. The constant D is the coefficient of diffusion. The correlations of
viscosity and density with concentration are assumed to be related as

η(c) = η1e
[R(1−c)], R = ln

(
η2

η1

)
, (4)

ρ(c) = ρ2 + c�ρ. (5)

R is a control parameter of the viscosity contrast, and �ρ is the density difference between fluids:
�ρ = ρ1 − ρ2.

B. Permeability heterogeneity

In order to systematically evaluate the influences of permeability heterogeneity, the permeability
field k(x, y) is assumed as log-normal distributions associated with desired statistical characteris-
tics, i.e., the correlation length l and the variance s [23–25,27–31]. In such a way, the permeability
is expressed in terms of a characteristic permeability K and a Gaussian-like zero-mean function
f (x, y), f (x, y) = 0, such that [24]

k(x, y) = Kes2f (x,y). (6)

This expression gives a logarithmic mean permeability of loge[k(x, y)] = loge[K]. Within this
description, changes in the magnitude of the permeability are determined by the variance s. Note
that, by considering the limit of vanishing variance, s = 0, one reproduces a homogeneous medium
situation.

To prescribe the typical size of more or less permeable regions by the correlation length l, an
algorithm originally proposed by Shinozuka and Jan [36] for digital simulation of a random process
is employed to generate such a random Gaussian-like function, expressed as

f (x) =
√

2
∑

[B2(x, ωi)S0(ωi)�ω]1/2 cos(ώi ) · x + ψi ), (7)

where B(x, ωi) and S0(ωi) are a two-dimensional modulating function and the target spectral
density, respectively, and x is the dimensional vector. In the present study, a simple constant B = 1
is applied. To generate a Gaussian-like function, the target spectral density S0 is taken as

S0 = l1l2

2πσ 2
e[(l1ω1 )2+(l2ω2 )2/2σ 2], (8)

in which subscripts 1 and 2 specify variables in different dimensions, e.g., x and y, so that l1 =
l2 = l in the present case. σ is the variance of the spectral density and is taken as σ = √

2π here.
To cover the entire spectral density, ω ∈ [−100, 100] is calculated in both dimensions. The set of
independent random signals ψi involved in the permeability distribution is generated by Matlab,
which is bounded between 0 and 2π . These random signals are also used to perturb ωi , so that
periodicity can be avoided. In such a way, the perturbed ώi is expressed as

ώi = ωi + δωi, (9)

where δωi = ψi�ω.
To statistically investigate the effects of permeability heterogeneity, eight permeability realiza-

tions, by applying different sets of random signals ψ , associated with identical statistical features,
e.g., correlation length l and variance s, are simulated in the present study. For readers’ easier
reference, four representative dimensionless heterogeneous permeability distributions of s = 0.6
generated by the first set of random signals associated with various correlation lengths of l = 0.08,
0.2, 0.4, and 0.8, are demonstrated in Fig. 2 and referred to as the R1 permeability distribution
hereinafter. It is noticed that the permeability is scaled by K , so that loge[k(x, y)] = 0.
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FIG. 2. Reference distributions of heterogeneous permeability fields generated by a representative set
of random signals, denoted as the R1 realizations, for various correlation lengths of l = (a) 0.08, (b) 0.2,
(c) 0.4, and (d) 0.8. The fields follow the log-Gaussian distributions with vanishing logarithm means, i.e.,
loge k(x, y ) = 0.

C. Numerical methods

In order to render the governing equations and relevant variables dimensionless, H/4, η1, �ρ,
and K are taken as the characteristic scales, such that the time, the velocity, and the pressure are
scaled by η1H/4�ρgK , �ρgK/η1, and �ρgH/4, respectively. Furthermore, to use the numerical
scheme with high order of accuracy already employed in Refs. [25,27,28], the dimensionless
governing equations are reformulated into the well-known streamfunction (φ)–vorticity (ω) system
and yield

∂φ

∂y
= u,

∂φ

∂x
= −v, (10)

∇2φ = −ω, (11)

∂c

∂t
+ u · ∇c = 1

Pe
∇2c, (12)

where

ω = −R

(
u

∂c

∂y
− v

∂c

∂x

)
− 1

k

(
u

∂k

∂y
− v

∂k

∂x

)
− k

η

∂c

∂x
.
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In the context of the present problem, dimensionless controlling parameters such as the Péclet
number Pe (relative measure of advection and diffusion effects), and the Atwood number A
(normalized viscosity difference) are defined as

Pe = �ρgHK

η1D
, A = eR − 1

eR + 1
.

Using the above settings, the simulations are performed in a square computational domain with
a dimensionless length of 4. Simulations are terminated shortly before the most downward finger
reaches close to the bottom boundary, denoted as the breakthrough time tb. The boundary conditions
are prescribed as follows:

x = ±2: φ = 0,
∂c

∂x
= 0, (13)

y = ±2: φ = 0,
∂c

∂y
= 0. (14)

As mentioned above, highly accurate numerical schemes are essential to reproduce extremely
fine structures of induced fingers. To achieve this, spatial derivatives in the concentration equation
are discretized by compact finite differences with a fourth and sixth order of accuracy for convective
and diffusive terms, respectively, associated with third-order Runge-Kutta procedure for time
integration. The Poisson equation of a streamfunction is solved by a pseudospectral method
associated with discretization of a sixth-order compact finite difference in space. The simulations
using similar schemes [25,27] were validated by comparing the growth rates in a homogeneous
condition with the respective values obtained from linear stability theory. For a more detailed
account of these numerical schemes, readers are referred to Ref. [37].

III. RESULTS AND DISCUSSION

The main theme of the present study is to evaluate the effects of heterogeneity on the miscible
viscous fingering phenomena triggered by gravitation. In the following presentations, we focus
on the situations of A = 0.76 and Pe = 4000, in which viscous fingering is vigorous even in a
homogeneous condition, i.e., s = 0 or l = 0. The magnitude of permeability heterogeneity is fixed at
s = 0.6 for all cases, such that the magnitudes of permeability vary between e−1.5 < k(x, y) < e1.5

as the representative R1 series shown in Fig. 2.

A. Flow patterns: Representative series

Figure 3 shows the fingering patterns for the representative R1 series at the corresponding
breakthrough time, when the heavier fluid reaches the bottom and is denoted as tb, for various
correlation lengths, e.g., the homogeneous case (s = 0 or l = 0) and l = 0.08, 0.2, 0.4, 0.8, 2.
As reported in the early literatures applying similar methodology [24,25,28,29], which mainly
investigated radially displacements, fingering patterns are immediately altered by the presence
of permeability heterogeneity. For the cases whose correlation lengths is relatively shorter, e.g.,
l = 0.08 and 0.2, small disturbances by the permeability heterogeneity result in rough fingering
interfaces with numerous fine structures. On the other hand, fingering interfaces appear smooth for
the cases of longer correlation lengths of l = 0.8 and 2.

Two major qualitative effects of the permeability heterogeneity to the fingering pattern are
reviewed: (1) prominent finger competition and (2) significant variation of widths of fully evolved
fingers. Fingering competition, which refers to uneven growths of a few dominant fingers, is often
observed in conventional viscous fingering instability. More prominent fingering competition in
the cases associated with permeability heterogeneity, which may provide preferable paths of high
permeability to enhance the growths of particular fingers, can be apparently identified by the
concentration images shown in Fig. 3. For the homogeneous condition, several fingers evolve
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(a) Homogeneous, tb  =77.5 (b) l = 0.08, tb = 69.5 (c) l = 0.2, tb = 53.5

(d) l = 0.4, tb = 50.0 (e) l = 0.8, tb = 40.0 (f) l = 2, tb = 52.5

FIG. 3. Concentration images at the breakthrough time (tb) in the R1 permeability realizations.
(a) Homogeneous condition (s = 0), (b) l = 0.08, (c) l = 0.2, (d) l = 0.4, (e) l = 0.8, and (d) l = 2. Notice
that the correspondent permeability fields for conditions of l = 0.08, 0.2, 0.4, and 0.8 are shown in Fig. 2. The
fastest breakthrough occurs in the case of intermediate correlation length l = 0.8.

comparably; see, e.g., Fig. 3(a). Because these capably evolved fingers to accommodate more
amount of heavier fluids, the breakthrough time is put off to occur at tb = 77.5 in the homogeneous
case. The prominence of fingering competition is enhanced in the heterogeneous conditions, in
which fewer dominant fingers outgrow their counterparts to shorten the breakthrough time. The
competition appears the most significant for the case of l = 0.8, which leads to the earliest
breakthrough time at tb = 40. Since the present fingering competition is mainly caused by the local
permeability variation instead of the conventional viscous fingering mechanism, it was referred as
to channeling effects [24,25,28–30]. In addition, under the presence of permeability heterogeneity,
the width of a finger’s body varies significantly at different sections, i.e., root, body, and tip, while
most of the fingers in the homogeneous condition evolve more evenly with nearly uniformed widths
along the entire fingers. This apparent variation of fingers’ widths is resulted from significant
transverse (x-directional) motion because of permeability heterogeneity. The transverse motion
tends to widen the flow path, so that the finger body generally appears thicker. Greater variations
of fingers’ sizes are observed in the cases of longer correlation lengths, e.g., l = 0.8 and 2. It is
noticed that the dominant width of the fully evolved finger was argued to be an important factor to
trigger the so-called resonant effect, which often occurs in intermediate correlation lengths, e.g.,
l = 0.8 in the present series, to maximize the growth rate of fingered zone (equivalent to the length
of the most downward finger in the present gravity-driven situation) [23] and trigger the earliest
breakthrough time [24,30]. More discussion regarding these two major qualitative observations is
presented below.

To elucidate the fingering competition in a temporal manner, the evolutions of concentration
along the top cross section at y = 1.97 for the cases shown in Fig. 3 are plotted in Fig. 4. It
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FIG. 4. Temporal concentration distribution measured along the top cross section at y = 1.97 through
the entire simulated period, i.e., t = 0 ∼ tb, for the cases shown in Fig. 3. (a) Homogeneous, (b) l = 0.08,
(c) l = 0.2, (d) l = 0.4, (e) l = 0.8, and (f) l = 2.

has been concluded that three major regimes can be identified in a homogeneous porous medium
[20], such as flux growth, merging, and constant flux. All three regimes are reproduced in the
present homogeneous simulation, as shown in Fig. 4(a). The regime of flux growth is manifested
by generation of an increasing number of fine fingers at a very early time stage 0 < t < 5. These
numerous fine fingers proceed active merging at the middle time stage 5 < t < 20 and finally form
a few dominant fingers after 20 < t < tb. The nearly constant number of dominant fingers at this
final stage indicates the flux flows downward to the porous medium do not vary significantly, so that
is referred to as the constant flux regime. However, even the regime of flux growth can be clearly
identified for all heterogeneous cases, and the merging regime is prolonged very significantly. The
time period of constant flux regime, whose pattern appears as formation of a nearly fixed number
of isolated fingers without interaction, is shortened for larger correlation length for cases l � 0.8.
For the resonant case of l = 0.8, the merging behavior lasts through the entire period without the
final regime of constant flux. The evolution of extremely active merging indicates a strong fingering
selection process, i.e., fingering competition. Beyond this resonant value of correlation length, e.g.,
l = 2, the merging activity is weakened, and the regime of constant flux is slightly recovered.

To further characterize the fingering competition spatially, the average concentration profiles
along the transverse (x) direction, denoted as ca , for various correlation lengths at different times
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FIG. 5. Average concentration along the x axis (ca) at different times in the R1 realizations. (a) Homoge-
neous condition, (b) l = 0.08, (c) l = 0.8, and (d) l = 2. For a homogeneous condition, the profiles are nearly
linear. Two major features can be identified for cases with heterogeneity, i.e., bumps and plateaus marked by
ellipses and rectangles in panels (b), (c), and (d).

are plotted in Fig. 5. All the profiles of average concentration appear as diffusive-like monotonic
decreases at an early time, e.g., t = 2.5. This diffusive-like behavior does not persevere after a
certain time, e.g., t � 20, 10, 10, and 20 for the homogeneous condition, l = 0.08, 0.8, and 2, re-
spectively. After these times, the average profiles start to show strong influences by the permeability
heterogeneity. For the conventional homogeneous case, since all the fingers evolve compatibly, the
average concentration profiles of different time decease nearly linearly to the bottom boundary (y =
−2) as shown in Fig. 5(a). If the permeability heterogeneity is present, the near linearity of average
profile is no longer preserved. Two apparent features are observed leading to apparent deviations
from nearly monotonic decreases as shown in Figs. 5(b)–5(d), such as local high concentration in
the middle position, and nearly flat concentration profile at the bottom region. The local peak and
flat region of average concentration profiles are referred to as the bump and plateau hereafter.

Formation of bumps in the concentration profile is mainly caused by the variation of a finger’s
width, while the plateau is formed because of the fingering competition. It can be easily observed
that formation of bump and plateau is most prominent in the case of the intermediate correlation
length whose breakthrough time is shortest: l = 0.8. To further elucidate this feature, numbers and
widths of fingers, represented by the concentration profiles along the x direction, for the cases
of homogeneous condition and l = 0.8 at several cross sections of y = −1,−0.5, 0, 0.5, and 1,
are shown Fig. 6. For the homogeneous condition as shown in Fig. 6(a), even the number of
fingers gradually decreases away from the top of domain, and widths of the fingers remain nearly
unchanged. This confirms a nearly linear decrease of average concentration profile at breakthrough
time as shown in Fig. 5(a). On the other hand, the widths of fingers vary greatly for the case
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FIG. 6. Widths of fingers for five representative cross sections at y = −1, −0.5, 0, 0.5, 1, as shown by the
lines in the left concentration images, of (a) homogeneous case and (b) l = 0.8. Widths of individual fingers at
these cross sections are marked by blue boxes, in which the heights of these blue boxes stand for a concentration
value of c = 0.8.

of l = 0.8, especially very thick fingers formed in the middle region between 0 < y < 0.5 as
shown in Fig. 6(b). This explains an apparent local bump of average concentration located at the
middle region as shown in Fig. 5(c). On the other hand, the plateau is formed because of fingering
competition, which is enhanced by local permeability heterogeneity as mentioned above. Very
prominent fingering competition results in only a single dominant finger at y < −0.5 for case of
l = 0.8, so that the local average concentration remains nearly unchanged to form a plateau on the
bottom region as also shown in Fig. 5(c).

Results presented above clearly show the most significant effects of permeability heterogeneity
on the fingering patterns occur in an intermediate correlation length of l = 0.8, which confirm
the above-mentioned resonant effects. To demonstrate the prominence of fingering phenomena,
vorticity and streamlines (superimposed on correspondent permeability field) for different cases,
e.g., homogeneous condition, l = 0.08 and l = 0.8, at an earlier time t = 30 are plotted in Fig. 7.
For better comparison, images of concentration are also shown. Except for the top layer of fluid 1
reservoir, the vorticity in homogeneous case, as shown in Fig. 7(b), is purely induced by viscosity
contrast with local maxima at the tips of fingers. As a result, the main paths of flows, i.e.,
regions with denser distributions of streamlines in Fig. 7(c), are almost straight downward. If the
correlation length is slightly increased to l = 0.08, even the number of fingers remains nearly the
same as the homogeneous case, and the local maximum strengths of vorticity are increased and
shifted to the middle region of fingers, where local permeability is higher, as shown Fig. 7(e).
Nevertheless, the overall downward orientation of the major flow paths is not altered. If the
correlation length is further raised to l = 0.8, local maximum vorticity is greatly enhanced at the
middle region, so that fingers grow faster toward the region with high permeability.
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FIG. 7. Concentration (left column), vorticity (middle column), and streamlines superimposed on the
correspondent permeability field (right column) at t = 30 in the R1 permeability realizations. Top row:
homogeneous condition; middle row: l = 0.08; bottom row: l = 0.8. The brightness in the vorticity image
indicates the strength of local flow activity.

To summarize this section, several qualitative features affected by heterogeneity, e.g., competi-
tion and width variation of fingers, formations of bumps and plateaus of the average concentration
profiles, enhancement and position shift of local maximum vorticity, are observed and discussed.
They all confirm that the strongest influence of the resonant effect occurs in an intermediate
correlation length, e.g., l = 0.8 at the present condition. We emphasize the important issue that
most of the previous studies about the influence of permeability heterogeneity on viscous fingering
had been conducted in the condition associated with active displacements rather than density-driven
flows. Recently the application of CO2 storage has drawn great attention to the density-driven
convection flows. The phenomena described in our present results, which show consistency with
the early studies by active displacements, ensure their robustness regardless the driven sources,
so they can be validly used for the CO2 storage application. In the following section, quantitative
analysis is presented to further clarify the underlined mechanism.

B. Quantitative measures: Multiple realizations of different sets of random signals

Above we discussed the influences of heterogeneity by mainly observing the fingering patterns in
a representative series of permeability distribution, i.e., the R1 distribution. A question that naturally
arises is the generality to other distributions associated with the same statistical parameters but
generated by different sets of random signals. To verify the generality of results observed in the
previous section as well as the possible variations, seven additional distributions of permeability
fields are generated based on different sets of random signals, referred to as realizations R2–
R8. Shown in Figs. 8 and 9 are the concentration contours superimposed on the correspondent

014502-11



LI, CAI, LI, LI, AND CHEN

(a) R1 (reference), t
b
 = 69.5 (b) R2, t

b
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b
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 = 60.5

FIG. 8. Concentration contours of c = 0.05, 0.25, 0.5, and 0.95 superimposed on the correspondent
permeability fields of l = 0.08 generated by various sets of random signals: (a) R1 (reference case), (b) R2,
(c) R3, and (d) R4 realizations. The overall streamline patterns are similar. Fingering competition is not
prominent in all the permeability distributions.

permeability fields associated with the same statistical characteristics of l = 0.08 and 0.8 but based
on four different sets of random signals: R1 (representative realization discussed in the previous
section), R2, R3, and R4. Visual qualitative observations of the fingering patterns appear consistent
regardless of local random realizations of permeability for both correlation lengths. Nevertheless,
while the breakthrough time varies mildly for l = 0.08, tb = 60.5 to 74.5, great variations occur
for the cases of l = 0.8, tb = 30.5 to 59.0. These inconsistent behaviors are also observed in the
profiles of average concentration as shown in Fig. 10. The four profiles of l = 0.08 nearly collapse
on each other with the monotonic decrease. On the other hand, profiles of l = 0.8, where strong
resonant effects are induced as stated earlier, appear very different with the apparent presence of
bumps and plateaus. These indicate that important quantitative measures, at least the breakthrough
time presented so far, could be affected strongly by random realizations. More thorough discussion
will be given below.

As mentioned previously, the resonant effects induced in the case of l = 0.8 result in many
interesting behaviors. The question to answer is why do the resonant effects occur in this particular
correlation length? Proposed by Chen and Meiburg [24], they argued that the resonant effects occur
if typical sizes of fingers are slightly less than the correlation length. To verify the argument, average
widths of fingers, denoted as lf , in all eight realizations are plotted in Fig. 11(a). The average width
for every realization is calculated based on 33 cross sections between −1 < y < 1, in which five
sample cross sections for the homogeneous case and l = 0.8 of the representative R1 realization
are demonstrated in Fig. 6. The global mean values of fingers’ widths in heterogeneous conditions
are generally larger than the homogeneous condition. The mean finger’s width increases for longer
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(a) R1 (reference), tb = 40.0 (b) R2, tb = 59.0

(c) R3, tb = 30.5 (d) R4, tb = 56.5

FIG. 9. Concentration contours superimposed on the correspondent permeability fields of l = 0.8 gen-
erated by various sets of random signals: (a) R1 (reference case), (b) R2, (c) R3, and (d) R4 realizations.
Prominent fingering competition results in very distinct patterns in various distributions.

correlation length before reaching a maximum at l = 0.8. It is interesting to notice that the case of
l = 0.8 is exactly the condition to induce the most significant resonant effects, in which the mean
width of a finger is slightly less than the correlation length as the normalized width (lf / l < 1)
shown in Fig. 11(b).
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FIG. 10. Average concentration (ca) at breakthrough time tb in four permeability realizations: R1 (reference
case), R2, R3, and R4 realizations. (a) l = 0.08 and (b) l = 0.8.
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FIG. 11. (a) Mean fingers’ widths (lf ) for various correlation lengths in eight permeability realizations.
Mean width in a homogeneous condition is shown by the horizontal orange lines. (b) Normalized width by
the corresponding correlation length (l). The normalized width decreases monotonically for larger correlation
length scale.

Several quantitative measures with practical interest are also worthy of discussion. Shown in
Fig. 12(a) is the breakthrough time (tb), which indicates the arrival time of fluid transported
downward. The presence of permeability heterogeneity provides additional sources of vorticity,
so that the breakthrough time is generally shorter than the homogeneous condition, e.g., the global
mean value of eight realizations. As mentioned previously, the shortest breakthrough time occurs
in an intermediate correlation length of l = 0.8, whose finger’s width is slightly less than the
correlation length. The second measure of interest is the amount of fluid 1 downward flowing
into the region originally occupied by fluid 2 at the breakthrough time, denoted as Qb shown
in Fig. 12(b). This particular measure represents the volume of CO2-brine mixture penetrating
into the ambient brine and is favorable for stable CO2 storage. Since the total amount is closely
relevant to the time allowed to flow downward, the global trend of the mean value is similar with
the breakthrough times as expected. It is also noticed that these two measures can be used to
approximately quantify the fingering competition described in the above section. In cases associated
with less fingering competition, several fingers evolve comparably without a fast growing dominant
finger, so that the breakthrough is expected to occur later. In addition, these multiple comparable
fingers can accommodate more downward fluids, i.e., higher Qb. Confirmed by Fig. 12, the strongest
fingering competition occurs for an intermediate correlation length of l = 0.8 with earliest tb and
lowest Qb.

Two additional measures of interests are the mixing interfacial length and the normalized mixing
index at the breakthrough time, respectively denoted as Lb and σ 2

n . These two measures are highly
relevant to the potential chemical reactions or pollution and shown in Figs. 12(c) and 12(d),
respectively. It is also worth notice that chemical reactions are also favorable for long-term CO2
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FIG. 12. Measures of interests for various correlation lengths in eight permeability realizations.
(a) breakthrough time (tb), (b) volume of lighter fluid penetrating into heavier fluid (Qb) at t = tb, (c) mixing
length (Lb) at t = tb, and (d) normalized mixing variance (σ 2

n ) at t = tb. Mean of the eight realizations is
connected by the black line. Value of the corresponding measure in a homogeneous condition, which is
constant, is shown by the horizontal orange line.

storage. The interfacial length in a miscible interface is approximated by

L =
∫

x

∫
y

√(
∂c

∂x

)2

+
(

∂c

∂y

)2

dx dy. (15)

Compared with the homogeneous condition, the mean interfacial length is longer for small
correlation length of l = 0.08 and becomes shorter by raising the correlation length to l = 0.4 to
reach a minimum in l = 0.8. The decrease of interfacial length up to l = 0.8 mainly results from
reduction of number of fingers as well as the fingering competition. For the case of very small
correlation length, whose fingers cannot fully recognize the local heterogeneity of permeability,
the major fingering pattern is similar to the homogeneous condition, except a stronger dispersion to
widen the finger’s width. As a result, the interfacial length is generally longer than the homogeneous
condition. Nevertheless, as the correlation length is raised, the channeling effects are enhanced
to trigger a more prominent fingering competition. The uneven developments of fingers naturally
reduce the overall interfacial length. Also, fewer fully evolved fingers in the cases of higher
correlation lengths also attribute another important effect for shorter interfacial lengths.

The mixing effectiveness is determined by a normalized mixing index σ 2
n , which is obtained by

σ 2 =
∑

(c − c̄)2

N2
, (16)

σ 2
n = σ 2

c̄(1 − c̄)
, (17)
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where c̄ is the mean concentration of the region originally occupied by fluid 2, and N2 is the
number of computational grids. The normalized mixing index of σ 2

n is the indicator of mixing
effectiveness compared with the similar flow in a fully immiscible condition. Higher σ 2

n represents
worse mixing effectiveness by the presence of heterogeneity. Again, the worst mixing effectiveness
occurs in the case of l = 0.8, in which fewer fingers are fully evolved, so that the overall interfacial
length is shorter to allow more molecular diffusion. In addition, the resonant effects accelerate the
developments of fingers, which reduce the overall diffusive time. These two reasons explain why
the worst mixing happens in the case of l = 0.8.

An important remark for all the above quantitative measures is their variation among different
random realizations. It is interesting that the widest spreads of all these measures always occur
in the resonant condition of l = 0.8, while the least scatterings usually happen in the smallest
correlation length of l = 0.08. These can be understood by the competition of two major length
scales: the finger’s width (lf ) and the correlation length (l). In the conditions of l � lf , the fingers
may not completely recognize the local heterogeneity of permeability, so that the bulk motion of
fluids is mainly dominated by the original gravitational effects. This inability to recognize the local
permeability heterogeneity is the main reason why the quantitative measures in a smaller correlation
length appear more closely distributed among distinct random realizations. On the other hand,
for the cases when l and lf are compatible, the regions with high permeability are wide enough
to influence or even fully accommodate the fingers. It might happen in few cases if the regions
of high permeability align vertically to form a connecting channel along the main flow direction
(y direction), so that few dominant fingers would quickly evolve and flow downward. Another rare,
but possible, scenario is the regions of lower permeability could align along the main flow path
instead, so that the downward flow paths are obstructed to delay the breakthrough. Enhanced by
the additional resonant effects, it is expected that the selections of flow paths in these two extreme
conditions are the most sensitive to cause significant inconsistent outcomes. As a result, the local
variations of all the quantitative measures among different realizations are always the largest in the
resonant regime.

IV. CONCLUDING REMARKS

Effects of permeability heterogeneity in miscible porous media flows driven by gravity, which
are highly relevant to the underground CO2 storage, are studied numerically. To extend the
global generality of the influences of heterogeneity, multiple permeability distributions, which are
generated randomly and characterized by the two identical statistic control parameters of correlation
length and variance but based on different sets of random signals, are emphasized to evaluate the
global trend by mean values as well as local variations among different realizations. Two major
qualitative observations of the fingering patterns, i.e., more prominent fingering competition and
greater variation of fingers’ widths, are found at the presence of permeability heterogeneity. These
two major influences result in the earlier breakthrough time with fewer fully developed fingers
in heterogeneous conditions. The resonant effects, which lead to critical behaviors, e.g., most
prominent fingering competition, occur in conditions of intermediate correlation lengths. These
results are consistent with the early findings in similar heterogeneous environments subjected to
active injections [23–25,28,29].

Important quantitative measures of interest, including breakthrough times, volumes of lighter
fluid transported, mixing lengths, and normalized mixing effectiveness, are analyzed by their
statistical means based on eight random realizations. The presence of heterogeneity reduces the
means of breakthrough times, fluid volume downward transported, mixing interfacial length and
normalized mixing effectiveness. The resonant effect is quantitatively verified to occur in conditions
in which the widths of fingers are slightly less than the correspondent correlation length and result
in the most significant influence on these measures. Nevertheless, the local flow motion might be
strongly affected by the predetermined distributions of applied random signals. Consequently, under
the conditions associated with resonant effects, in which the flow path selection is mostly affected
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by the local permeability distributions, these measures also vary the widest for a few special cases
whose regions of high (or low) permeability align along with the main downward flow. The results
strongly suggest cautious implementations in the resonant regime to consider these local variations,
but merely relying on the global means, even the statistical parameters are identical.
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