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Turbulent and other nonlinear flows are highly complex and time dependent, but are
not fully random. To capture this spatiotemporal coherence, we introduce the idea of
a linear neighborhood, defined as a region in an arbitrary flow field where the velocity
gradient varies slowly in space over a finite time. Thus, by definition, the flow in a linear
neighborhood can be approximated arbitrarily well by only a subset of the fluid-element
trajectories inside it. This slow spatiotemporal variation also allows short-time prediction
of the flow. We demonstrate that these linear neighborhoods are computable in real
data using experimental measurements from a quasi-two-dimensional turbulent flow and
find support for our theoretical arguments. We also show that our kinematically defined
linear neighborhoods have an additional dynamical significance, in that the scale-to-scale
spectral energy flux that is a hallmark of turbulent flows behaves differently inside
the neighborhoods. Our results add additional support to the conjecture that turbulent
flows locally tend to transport energy and momentum in space or in scale but not both
simultaneously.
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I. INTRODUCTION

Turbulent flows mix very efficiently. However, although turbulence tends to enhance mixing
globally, at a local level mixing is typically not spatiotemporally uniform even in a turbulent flow.
Instead, there are often distinguished spatiotemporally compact regions of fluid elements, com-
monly known as coherent structures, that evolve without significantly mixing with the surrounding
fluid [1]. We will refer to such behavior as kinematic coherence, since the coherence is defined with
respect to the (Lagrangian) kinematic evolution of fluid elements according to the Eulerian velocity
field. However, the concept of coherence can be extended to other transported dynamical fields
such as turbulent kinetic energy, which also displays coherently evolving regions [2]. Of particular
relevance in turbulent flows is the flux of energy between scales, which is also spatiotemporally
nonuniform and well correlated with the flow [3]. Few links, however, have yet been made between
concepts of kinematic and dynamical coherence [2,4].

Coherent structures have been studied from different perspectives for many different reasons,
including modeling, flow control, and transport. Here we focus on concepts of coherence as they
relate to transport and mixing. In the past few decades, there has been a proliferation of techniques
aimed at finding and characterizing regions of coherent transport based on the flow kinematics,
typically in the Lagrangian framework [1,2,5]. Many of these diagnostic methods are based on
physical intuition for what properties a kinematic coherent structure may be expected to have [5];
these include stable and unstable manifolds [6], finite-time Lyapunov exponents (FTLEs) [7,8],
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finite-size Lyapunov exponents [9], mesochronic analysis [10], extremally attractive or repulsive
surfaces [1], flow barriers under diffusion [11], and shape coherence [12]. More analytical methods
that define coherent structures by solving specified mathematical coherence problems [5] have also
been developed, such as those based on transfer operators [13,14], fuzzy clustering [15], spectral
clustering [16], and graph coloring [17]. Most of these methods are rooted in the underlying
assumptions that fluid elements inside coherent structures should not mix significantly and should
move in fairly similar ways over the lifetime of the structure, and their efficacy is validated in the
same fashion.

Here we approach coherence from a somewhat different starting point, namely that the behavior
of the set of fluid elements inside a coherent structure ought to be predictable from knowing
the behavior of just a few of them. Thus, we define this version of coherent structures, which
we term linear neighborhoods (LNs), as regions in which using an unsteady but spatially linear
approximation to the flow field based on one central trajectory is highly accurate across the entire
structure. This definition specifically requires the variation of the velocity gradient in the LN to be
slow over a finite time. In this way, we generalize our previous work on what we termed hyperbolic
neighborhoods [18] by relaxing any requirements of hyperbolicity and by incorporating a timescale
during which the LN has predictive power.

In addition to showing that this definition of coherence is computable and reasonable, we also
demonstrate its connection to the turbulent flow dynamics. We do this rather than compare our LNs
to other definitions of coherent structures (such as those described above) in detail because there
is no a priori reason why LNs should provide the same information as, say, FTLEs; thus, drawing
links with the flow dynamics is more informative than such a comparison. In previous work, we
argued that the local, instantaneous spectral energy flux between scales, the hallmark of turbulence,
is highly sensitive to the advective history of the flow [19], since advection may upset the delicate
alignment between the turbulent stress and the scale-dependent rate of strain that is required for
efficient spectral transfer [19,20]. However, since the flow inside LNs is by definition much simpler
than in the rest of the domain, we find that the spectral energy flux is enhanced inside these regions
the longer they exist. Thus, we identify a dynamical role of these LNs [4] and, with the support of
experimental data, make the conjecture that the turbulent dynamics has a tendency to move energy
between scales or in space at a single scale, but rarely both at the same time.

We begin below by describing our definition of LNs in Sec. II. In Sec. III we describe our
experimental setup and the results of applying the definition to these experimental flows. Then,
in Sec. IV, we describe the connections between LNs and the local spectral energy transfer. Finally,
in Sec. V, we summarize our results and conclude.

II. DEFINING LINEAR NEIGHBORHOODS

In any complex unsteady flow, most coherent structures will only exist over a finite-time interval.
For concreteness, we therefore consider times in an interval ¢ € [ftg, fo + T'], with the initial time
to and the time of flow T being fixed. Let x be the trajectory of a fluid element and let y be the
trajectory of another fluid element that is nearby at the initial time 7y so that

Y(10) = x (1) + 8x(10), (1

where 8x(#y) is presumed to be small. Now, because both x and y are trajectories associated with
the (unsteady and potentially turbulent) velocity field u, they must obey the integral equations

to+T
x(to+T) = x(to) + / w(x(t), 1)d1 ®)

fo

and

to+T
Yo+ T) = y(to) + / w(y(t), 1)dr. 3)

fo
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Subtracting Eq. (2) from Eq. (3), we obtain

t0+T
Sx(to + T) = dx (1) + / [(y(r), 1) — u(x(1), 1)ldt, “4)

fo

which is an exact representation of §x (o + 7). Now, if §x(#) is small, it is reasonable to make a
linear approximation for the velocity difference in Eq. (4). Doing so gives

to+T
Sx(ty+T) =6x(ty) + / Vu(x(t), )[y(t) — x@)]dt + R, 5)
fo
where the remainder term R satisfies
R<C sup [8x(t)), (6)
telto,to+T1

where the notation | - | denotes the length of a vector, for some constant C that in general will depend
on T and the smoothness and boundedness of u.

At the initial time instant 7y, we seek a neighborhood around the point x(#y) such that after
trajectories have evolved to time #y + T, the spatially linear approximation in Eq. (5) obtained by
neglecting the error term R is acceptable. In other words, we require the linear approximation for
éx(to + T) in Eq. (5) with R = 0 to be much larger than R. Since R can be exactly obtained by
comparing Eq. (4) with Eq. (5), we arrive at the condition

to+T
f Vu(x(@), 1)[y@) — x(0)]dt

to

to+T
> / {u(y(@), 1) —u(x(),t) — Vu(x(t), )[y@) — x(1)]}dt|. (7N

fo

This condition requires that the linear estimate of the displacement §x(tp +T) = y(to +T) —
x(tp + T) be very good, meaning that we can obtain the final-time deviation éx(#y + 7') with high
fidelity knowing only the initial displacement x(#) and the trajectory x.

We can therefore define the LN Ng 7 (%) of a point x(#) at the initial time 7, as the set

to+T
/ Vu(x(t),t)éx(t)dt

to

Ng,r(t) := {y :

to+T
> E|dx(tg+T)— dx(ty) — / [Vu(x(z), t)éx(t)]dt

fo

}. (8)

This set depends on both the integration time 7', which allows us to set the time span over which we
require the linear approximation slaved to the trajectory beginning at x (#y) to hold, and the constant
E > 1. We introduce E to allow the precise specification of how good the linear approximation
has to be; the larger E is, the more accuracy we are requiring and thus presumably the smaller
Ng (1) will be. We call x the center trajectory of the LN and note that all trajectories inside the
LN associated with x can be well approximated knowing it alone. This definition differs from our
previous work on hyperbolic neighborhoods [18] in that we do not require x to have any particular
properties (such as hyperbolicity) and that we explicitly build a timescale of evolution T into the
definition of LNs via the integrals. Thus, we are generalizing our previous work [18] both by
defining LNs associated with any trajectory in the flow and by requiring nearly linear evolution
over some finite-time span; the central idea of looking for regions where linear behavior dominates
over nonlinear behavior, however, is qualitatively the same.

This definition is schematically shown in Fig. 1(a). In a two-dimensional flow, the LN of a
trajectory will be a three-dimensional tube in space-time as shown in Fig. 1(b); however, for ease
of visualization, we will plot LNs at the initial time slice only in what follows (as is commonly
done for FTLE fields). One should remember, though, that any trajectory starting inside the LN
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FIG. 1. (a) Schematic of the quantities involved in defining a linear neighborhood. (b) Space-time plot
of several LNs found in the experimental data. The red curves show the projection of the LNs at the initial
time ¢.

at this initial time slice will still experience the linear flow effect described in Eq. (8) during the
entire integration time. Also, we note that the definition of LN is not restricted to two-dimensional
flows. In a three-dimensional flow, the LN will exist in a four-dimensional space-time, but is still
completely definable and computable if the velocity field is known.

III. EXPERIMENTS

Both to demonstrate that our definition of LNs is calculable in real flows and to explore what
effects LNs may have on the flow dynamics, we have applied the definition to measurements
obtained from an experimental quasi-two-dimensional turbulent flow. We briefly describe the
experiment below before presenting our results.

A. Experimental methods

As we have presented elsewhere in detail [21-24], our apparatus consists of a thin layer of
an electrolytic fluid with lateral dimensions of 86 x 86 cm? driven by electromagnetic forces.
Experiments were conducted with a 5-mm layer of a solution of 16% by mass NaCl in water, with
a density of p = 1101 kg/m> and a kinematic viscosity of v = 1.25 x 107% m?/s. A smooth flat
glass floor coated with a hydrophobic wax is used to support the electrolyte and the glass floor is
painted black on the underside to improve imaging quality. We float an additional 5-mm fresh-water
layer above the electrolyte to create a miscible density interface that defines the horizontal plane of
the flow we study.

Under the glass floor, an array of 34 x 34 permanent magnets with diameters of 12.7 mm,
thicknesses of 3.2 mm, and a center-to-center spacing of L,, = 25.4 mm (which sets the dominant
length scale of the flow) is placed to generate a vertical magnetic field in the apparatus. The
strength of each magnet is roughly 600 G on their surfaces and the magnets are arranged in stripes
of alternating polarity. A dc electric current of 3.30 A is passed laterally through the electrolyte
via a pair of copper electrodes. Because of the orthogonal current and magnetic fields, a Lorentz
body force is produced on the fluid. This force is large enough to produce complex spatiotemporal
dynamics and weak turbulence, but not so large as to drive significant out-of-plane motions [23].
We define an in-plane Reynolds number Re = u’L,, /v, where u’ is the in-plane root-mean-square
velocity and v is the kinematic viscosity of the electrolyte, as a nondimensionalization of the
strength of the forcing. In the experiments described below, this Reynolds number is 200.
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The flow is measured using particle-tracking velocimetry [23,25]. We seed the electrolyte with
fluorescent polystyrene tracer particles with diameters of 50 um [and thus a Stokes number of
0(107*)] that are small enough to follow the flow accurately [26]. The mass density of the tracer
particles lies between that of fresh water and the electrolyte and so the tracer particles stay at the
interface. We illuminate the tracer particles with light-emitting diode lamps and image their motion
in a subdomain measuring 12L,, x 9L,, in the center of the apparatus at a rate of 60 frames/s with
a 4-megapixel camera. We record roughly 30 000 particles per frame, so the velocity fields are
highly resolved in space. We work with velocity fields in what follows rather than raw particle
trajectories because they give results that are less noisy and with higher spatial resolution [27]. We
also postprocess these velocity fields by projecting them onto a basis of streamfunction eigenmodes
to remove any slight three-dimensional motion [23].

B. Experimental results

To explore the consequences of our definition of LNs, we generate a set of Lagrangian trajectories
for virtual fluid elements started initially on a regular grid by numerically integrating their equations
of motion through the measured velocity fields using second-order Runge-Kutta integration. We
then apply Eq. (8) to each trajectory to extract its corresponding LN. Note that some LNs are smaller
than our experimental resolution and appear to be empty sets.

For convenience, we define #y as O for all results that we present. Equation (8) has two tuning
parameters that can change the LN associated with a given trajectory: E, which specifies the required
accuracy of the linear approximation, and 7', the length of time for which the LN must persist. In
Fig. 2 we fix the integration time 7 to be one eddy turnover time 7;, = L,,/u’ and vary E to assess
its effect on the LNs. We plot in Fig. 2 a scalar field whose value at a given location is the area of the
LN (at the initial time) associated with the trajectory that began at that point. In general, larger LNs
are associated with “stronger” linearity, so this field gives a sense of the degree of linearity in the
flow. It is clear from Fig. 2 that the degree of linearity in the flow has a nontrivial spatial structure. In
general, we also find that the size of the LNs decreases as E increases, as expected; however, some
trajectories have a strong enough influence over their neighbors that they continue to dominate a
measurably large LN even for relatively large values of E.

In Fig. 3 we again look at the areas of LNs, but now we set £ = 20 and instead vary the
integration time 7. Just as one would expect, larger values of T lead to small LNs, since over a
longer time span there is a higher likelihood that a given trajectory inside an LN will feel effects from
outside that pull it away from the center trajectory. What is intriguing, though, is that qualitatively
the spatial structure of the LN area field remains the same even as T is varied. This result suggests
that trajectories that evolve in a fairly linear way over short times are likely to continue to experience
a linear flow even over longer times. However, this statement only holds in a gross sense; the details
of the LN area fields change for different values of T.

Looking only at the scalar field of the areas of the LNs as in Figs. 2 and 3 hides the details of
the shapes of the LNs, because these fields reduce the LNs to a single number. We therefore show
the full LNs themselves in Fig. 4(a) for E = 50 and T = 7. Each curve represents the boundary
of one LN and only those LNs with areas larger than our minimum spatial resolution are shown. It
is clear that many of these LNs overlap, showing that some regions of the flow are (as one would
expect) much less complex than others. This overlapping is also consistent with Figs. 2 and 3,
given that those figures show that LNs with large areas tend to cluster together. Building on this
observation, in Fig. 4(b) we show the union of these LNs. By construction, any trajectories beginning
in regions of the flow covered by this union can be well approximated by only a small subset of
trajectories, namely the center trajectories of the LNs that make up this union. (Indeed, to a slightly
less well defined level of approximation, one could likely use only one center trajectory for each set
of overlapping LNs.) This small subset of center trajectories can then be used to approximate the
full flow in the entire domain of the flow covered by the union of LNs.
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(c) (d)

FIG. 2. Scalar fields of the area of the LN associated with each point at the initial time. The color of each
point shows the initial-time area of the LN associated with that point. Colors are on a logarithmic scale and the
colormap is uniform for all panels. Data are shown for (a) E = 5, (b) E = 10, (c) E = 15, and (d) E = 20.In
all cases, T = T. The full measurement domain is shown, measuring 12L,, x 9L,,.

As a final note, we stress here that we have defined LNs based on a somewhat different notion
of coherence from what has been used before to detect coherent structures. Thus, there is no reason
that our LNs should look the same as what one would find using another method. However, it
would also be surprising if the LNs were completely different. Thus, to contextualize our results, we
show in Fig. 5 two other scalar fields commonly used for detecting coherent structures: the FTLE
and the Okubo-Weiss parameter [28,29]. We calculate the FTLE by first computing the flow map
®(x, 1y, T), the vector field that gives the position of the fluid element that was at x at time #; at the
later time #p 4 7. The flow map can be used to compute the Cauchy-Green strain tensor

0d; 0D,
ij= T

(©))

ax,» an ’

and the FTLE is given by In(y/Amax)/ T, Where An,x is the largest eigenvalue of the Cauchy-Green
tensor. The FTLE field is a Lagrangian measure, and ridges of the FTLE field tend to correspond
to hyperbolic structures in the flow [1]. The Okubo-Weiss parameter is defined as A = —det Vu =
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FIG. 3. Scalar fields of the area of the LN associated with each point at the initial time. Colors are on
a logarithmic scale and the colormap is uniform for all panels (and the same as in Fig. 2). Data are shown
for (a) T = 0.25T;, (b) T =0.5T;, (c) T =0.75T;, and (d) T = T;; E is fixed at 20 for all cases. The full
measurement domain is shown, measuring 12L,, X 9L,,.

(w® — 5*)/4, where s is the square of the strain rate and w? is the square of the vorticity. The
Okubo-Weiss parameter is Eulerian and is typically used to partition the flow into regions that are
instantaneously dominated by rotation (A > 0) and those dominated by strain (A < 0). There are
some qualitative similarities between these two fields and the LNs shown above, but the details are
(as one would expect) different. We leave a detailed comparison of the spatial structure of the LNs
and these (and other) coherence metrics to future work.

IV. SPECTRAL ENERGY FLUX

Instead, we here explore the connection between LNs and the flow dynamics. As we have defined
them, LNs are purely kinematic entities in that they are determined only by where fluid elements
go with no requirements as to why they go there. However, kinematics and dynamics in a real flow
are of course linked. Here we show how this linkage is reflected in the dynamical properties of the
flow associated with LNs. To do so, we use filter-space techniques (FSTs) to resolve the energetic
coupling between scales of motion simultaneously in space and in time [3,19,22,30-36].
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FIG. 4. (a) Visualization of each LN present in the flow at a single instant of time, for E = 50and T = T.
(b) Union of the LNs shown in (a). The full measurement domain is shown, measuring 12L,, x 9L,,.

The idea of an FST is straightforward. We apply a low-pass filter with a cutoff length scale
of r to the measured velocity field, which suppresses all the variation on scales smaller than r.
Mathematically, we define the filtered velocity field uﬁr)(x, t) as

“Er)(x,t)=/G(’)(x—x’,t)ui(x’,t)dx’, (10)

where G is a kernel that implements the filter. Filter-space-technique results are fairly insensitive
to the precise form of the filter G for concreteness, we here take G to be an isotropic finite
impulse response filter constructed from a sharp spectral filter with a cutoff wave number of 27 /r
smoothed with a Gaussian window function to reduce ringing.

After filtering, the equation of motion of the retained kinetic energy K = (1/2)[u"]? can be
written as

ak® 91" ul” oul”
=2 )0 i _H(V), (11)
Jt 0x; ij 8)(?]'

0.8

)

06 o

S

o 9
[N

o

Okubo-Weiss Parameter (.

S o o 9
o o »

FIG. 5. (a) The FTLE field computed for an integration time of 7 = 37} . (b) Okubo-Weiss parameter. Both
fields are shown for the same data as in Figs. 2—4.
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where summation is implied over repeated indices and Ji(’) is a spatial current that contains terms
similar to those in the equation of motion for the full kinetic energy. The term

du'”
( ) —_— ( ) (r) (r) —_— (r) (r)
" _—[(uiuj)r —u;u; ]_8 ’j =T 5 (12)

is new and arises from the filtering of the nonlinear term in the kinetic energy equation [22,32,33].
This term acts as a source or sink of kinetic energy in the retained field and so represents the energy
transfer between the resolved scales (that is, those larger than r) and the suppressed scales (that
is, those smaller than r). Here I1"” can be written as the inner product of si(;), the rate of strain of
the filtered velocity field, and ri(jr),
indicates energy transfer from large scales to small scales, while [1"”) < 0 indicates energy transfer
from small scales to large scales.

In two-dimensional flow, T can be equivalently expressed in terms of the largest eigenvalue
of the (deviatoric) stress tensor A", the largest eigenvalue of the strain rate 1{"”), and the angle ®)

between the corresponding eigenvectors &' and ! as [35-37]

a turbulent stress tensor. Our sign convention is that T1") > 0

M = 220" cos 20, (13)

This expression makes it clear that the alignment between the eigenframes of rl.(.r) and si(o is essential
for determining both the amount of energy transferred between scales and the direction of the
transfer, since the eigenvalues A" and A" are both non-negative. As we have previously suggested,
we can therefore think of |cos 20| as an efficiency of the cascade [19,20]. When ©) = 7 /4,
the flux vanishes regardless of the magnitude of the stress or the rate of strain; when ®) < /4,
the energy flux will be directed toward larger scales (inverse cascade), while when ®) > 7 /4 the
energy will flow toward smaller scales (forward cascade).

In our previous work we argued that turbulent advection tends to disturb the delicate angle
alignment between the rate of strain and stress that is required for net energy transfer between
scales, thus reducing the efficiency of the turbulent cascade [19]. Here we specifically study the
evolution of the angle ") for trajectories inside and outside LNs, with the hypothesis that because
inside LNs the flow is linear and thus less complex, the advection is not strong enough to disrupt
the stress—strain-rate alignment. Hence, we would expect that the longer a trajectory spends inside
an LN, the more ®) will tend to zero along the trajectory, meaning that the efficiency of spectral
transfer will increase. Conversely, we expect that outside the LN, the more complex advection will
keep the stress-strain alignment near its mean value (of about 0.64 radians or 37° [19]).

In Fig. 6 we test this hypothesis by plotting ensemble averages of the time evolution of ®) for
trajectories that begin inside and outside LNs for several different filter scales r. In this case, we
set T = T, but vary E. As expected, we see that ©") decreases for trajectories inside LNs as time
evolves for t < Ty, the duration within which we define the LN to have predictive capability. This
trend is stronger for higher values of E; that is, the more stringent we make the linear approximation,
the stronger an effect we see. For times longer than T, the decreasing trend in ®") stops, since the
trajectories need not remain in LNs past that time. For shorter values of T, this observation also
holds, as shown in Fig. 7, where we set E = 50 but vary T'; note that when T is short, though, the
identified LNs may actually persist for a longer time, leading to a somewhat longer time over which
the alignment increases.

Thus, we demonstrate a dynamical significance for LNs: Because the flow inside LNs is
by construction less complex than that outside the LNs, trajectories inside them display more
coherent dynamics that allows the preferential alignment of the stress and the strain rate. Linear
neighborhoods are however finite-time structures; thus, as time progresses longer than the lifetime
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FIG. 6. Evolution of the angle ©) between the turbulent stress and strain rate for trajectories that begin
inside LNs. The curves have been ensemble averaged over many LNs. Each LN was computed for 7' = T}, as
indicated by the vertical dashed lines. The horizontal dashed lines show ®) = /4, for which the energy flux
vanishes and which separates forward from the inverse energy transfer. In each panel, data are shown for four
filter scales in the inverse energy cascade range: r = 3L (red), r = 3.5L (green), r = 4L (blue), and r = 4.5L
(black). Each panel shows computations for a different value of E, with (a) £ = 30, (b) E = 50, (c) E =170,
and (d) E = 90.

of the LN, their influence is lost and trajectories that began inside the LNs return to sharing the
spectral properties of a typical trajectory in the flow.

We are thus led to an intriguing conjecture. Inside LNs, the flow is by definition less mixing
than it is in the rest of the domain, because the behavior of all of the fluid-element trajectories in
the LN can be well predicted by the behavior of just one of them. Since the amount of chaotic
or turbulent advection is typically required to mix efficiently, LNs are thus regions where spatial
mixing is not particularly strong. Yet, as we have shown, the spectral energy transfer inside LNs
is more efficient than it is outside them. Since spectral transfer is the redistribution of energy and
momentum across scales, this increased efficiency suggests that the flow inside LNs can be thought
of as strongly mixing in scale. This finding, that the flow in LNs mixes well in scale but not in space,
is in line with our previous results [19] where we showed that large fluctuations in turbulent stress
along trajectories leads to a reduction of the cascade efficiency. Thus, we suggest that, in general,
turbulent flows mix efficiently in space or in scale, but typically not both at the same time.
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FIG. 7. Evolution of @)ﬁ,’r), as in Fig. 6, for fixed £ = 50 but for (a) 7 = 0.57, and (b) T = 0.757,.. As in
Fig. 6, the horizontal dashed lines show ®") = 7 /4 and the vertical dashed lines show the time for which the
LNs were computed.

V. CONCLUSION

We have described a way of quantifying coherence in turbulent or other unsteady flows by
searching for regions in the flow in which a spatially linear approximation for the velocity is
adequate over a specified timescale. We have shown that these linear neighborhoods exist in real
flows, even when the degree of linearity is constrained to be very high. Unlike some other kinds
of coherent structures, however, these LNs also play a dynamical role in the turbulence: Since the
flow inside them is less complex, the turbulent stress and strain rate are free to align inside them,
leading to efficient spectral energy transfer. We have demonstrated this behavior in an experimental
quasi-two-dimensional turbulent flow. Thus, we are led to the conjecture that, on average, turbulent
flows tend to efficiently mix in space or between scales, but not both at the same time.
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