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Shock-particle interaction is a fundamental problem in many engineering applications,
with the dynamics being heavily influenced by the incident-shock Mach number and the
particle volume fraction. In this paper we present fully resolved inviscid simulations of an
incident-shock wave traveling through a bed of randomly distributed spherical particles.
We vary the strength of the incident shock along with the particle volume fraction in order
to study the complex wave interaction during shock-particle interaction. In this study we
are interested in the early-time behavior during which the particles do not move and hence
in our simulations all the particles are fixed in space. We compute the streamwise average
of flow field quantities to generate the x-t contour plots to study the unsteady oscillations
inside the particle bed. We observe that the transmitted shock slows down under certain
conditions and it is partly due to tortuosity and partly due to weakening caused by energy
dissipation. We also present the force histories of the streamwise drag and lift forces for
all the particles. The random distribution of particles leads to high variability in the drag
force experienced by the particles. We compute the mean peak drag force as a function
of the streamwise location to study the mean behavior of the transmitted shock. Based on
our findings, we propose simple modifications to improve the current point-particle models
used in Euler-Lagrange simulations of shock interacting with a bed of particles.
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I. INTRODUCTION

It is important to understand the dynamics of a shock interacting with a bed of particles due to
its extensive industrial applications [1–5] and occurrence in nature [6,7]. Currently, there is a lack
of understanding and data in terms of the physical mechanisms at play during shock interacting
with a bed of particles and the forces experienced by the particles. The primary goal of this study
is to fill this knowledge gap by performing fully resolved inviscid simulations of an incident shock
traveling through a bed of monodispersed randomly distributed spherical particles. We note that in
a fully resolved simulation the standard governing equations (Navier-Stokes or Euler) are solved
by resolving the flow to the finest relevant scale. In the Euler simulations that are discussed here,
the smallest relevant spatial scale is the particle diameter apart from the shock thickness. We vary
the strength of the incident shock and the particle volume fraction to study the effect of these two
parameters on the flow field and the forces experienced by the particles.

Previously, shock interaction with a single particle has been studied in depth by various
researchers [8–12] by carrying out experiments and performing numerical simulations. Recently, a
number of fully resolved numerical simulations of shock interacting with multiple cylinders [13–15]
and multiple spheres [16–18] have been reported. For example, Sridharan et al. [16] investigated the
effect of interparticle spacing and incident-shock Mach number on the drag force experienced by
spherical particles arranged one after the other in a simple one-dimensional horizontal array. Mehta
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et al. [17] carried out simulations of shock interaction with a one-dimensional transverse array of
particles and reported that in some cases the secondary wave interactions due to fluid-mediated
particle-particle interaction can lead to forces higher than those induced by the incident shock.
Mehta et al. [18] reported results from numerical simulations of incident shock interacting with a
face-centered-cubic array of particles. They varied the incident-shock Mach number and particle
volume fraction to study the effect of these parameters on the streamwise drag force experienced by
the particles. The complex physical mechanisms occurring during shock-particle interaction were
identified and their effect on the overall flow and the drag forces experienced by the particles was
studied.

More recently, Mehta et al. [19] performed fully resolved three-dimensional inviscid simulations
of an incident shock propagating through a random bed of monodispersed spherical particles, similar
to the one considered in this study. They varied the particle volume fraction but held the incident-
shock Mach number Ms constant at 3. They reported that the random distribution of the particles
significantly altered the force history of each particle compared to that of an isolated particle, and
the fluid mediated particle-particle interaction resulted in high variability in the peak streamwise
drag force experienced by each particle. It was also found that the incident shock weakened as it
traveled through the particle bed. The weakening of the incident shock was attributed to dissipation
of energy due to formation of shocklets and bow shocks inside the particle bed.

The goal of this work is to extend the simulations of Mehta et al. [19] to cases where the incident-
shock Mach number is smaller than Ms = 3. We note that the critical Mach number for an isolated
particle is 0.6. If the relative Mach number of the postincident-shock flow is equal to or greater than
the critical Mach number then the flow will accelerate locally over the particle to reach sonic or
supersonic velocity. For a given incident shock, the postincident-shock flow can have three regimes
based on its Mach number Mps . These distinct flow regimes are subsonic and subcritical (Mps <

0.6), subsonic and supercritical (0.6 � Mps < 1), and supersonic and supercritical (Mps � 1). The
inviscid flow behavior for these different flow regimes is distinctly different and results in unique
flow features around the particles. For Mps � 1 a bow shock will form upstream of the particle and
for 0.6 � Mps < 1 a shocklet will form along the particle surface. Both of these flow regimes are
supercritical and the steady-state streamwise drag force on a particle will be nonzero. Both the bow
shock and the shocklet also dissipate energy from the flow resulting in weakening of the incident or
transmitted shock as it travels through the particle bed [18,19]. For Mps < 0.6 the reflected waves
are weak compression waves and the postincident-shock inviscid drag force on a particle will be
zero. As mentioned previously, the critical Mach number stated here is for an isolated spherical par-
ticle and we expect it to be different for a bed of particles. In fact, the critical Mach number for a bed
of particles will depend on the particle volume fraction along with the incident-shock Mach number.

In view of the above observations, we consider three incident-shock Mach numbers Ms = 1.22,
1.66, and 3. The corresponding postincident-shock Mach numbers are Mps = 0.31, 0.73, and 1.36,
respectively, which covers all three flow regimes discussed above. The particle volume fraction φ1

is also varied from 2.5% to 10% to 20%. Varying the incident-shock Mach number and particle
volume fraction results in nine unique combinations for the numerical simulations. The numerical
simulations performed in this study can be thought of as virtual experiments, where we can study
the effect of the particle volume fraction and the incident-shock Mach number on the particles
and investigate the effect of the particles on the flow under certain specific conditions during
shock propagation. For all the simulations considered here, we observe large particle-to-particle
variations in the drag force. The unsteady flow inside the particle bed due to the secondary wave
interactions and locally oblique shocks results in transverse forces on the particles. The magnitude of
the transverse forces can be up to 40% of the streamwise drag force and hence will have a significant
impact on the particle motion at later times and also on the overall flow dynamics. Fluid-mediated
particle-particle interaction after passage of the incident shock can sometimes lead to forces much
higher than the drag force induced by the incident shock on the particles. These effects due to
presence of multiple particles are not captured by the current point-particle force models (see, for
example, [20–23]).
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We also observe that for some of the simulations presented here the transmitted shock slows down
as it travels through the particle bed. Depending on the incident-shock Mach number and the particle
volume fraction, the transmitted shock slowing down is due to either tortuosity or a combination of
tortuosity and transmitted shock weakening. The presence of particles results in a tortuous path for
the transmitted shock and causes it to slow down. For simulations with supercritical postincident-
shock flow the transmitted shock weakening can be attributed to the formation of shocklets and
bow shocks, which dissipate energy from the flow. For Ms = 1.22 and φ1 = 10% and 20%, the
postincident shock can reach sonic or supersonic velocities inside the particle bed at later times
due to nozzling of the flow. We compute the vorticity magnitude inside the computational domain
to measure the baroclinic generation of vorticity. We also compute the streamwise average of flow
quantities like pressure, density, and velocity to characterize the strength of the reflected waves and
the transmitted shock, along with the fluctuations inside the particle bed. Finally, we present three-
dimensional isosurface contour plots of velocity magnitude to identify the various flow features
resulting due to shock interaction with the particle bed.

This paper is organized as follows. In Sec. II we discuss the governing equations, the numerical
method, and the simulation setup employed in this study. The results of the numerical simulations
are presented in Sec. III, where we present the contour plots of flow properties and x-t plots for
all the simulations and discuss the slowing down of the transmitted shock followed by the force
histories of all the particles. In Sec. IV we present a summary and the conclusions.

II. NUMERICS

In this paper we investigate an air-shock interacting with a bed of randomly distributed
monodispersed spherical particles, similar to that considered by Mehta et al. [19]. We limit our
discussion to early times during which viscous mechanisms are weak and thermal effects are
negligible. In prior work we discussed the importance of the timescales associated with the problem
of shock-particle interaction [18] and validity of neglecting viscous effects and particle motion
during early times. Hence, we solve the standard three-dimensional Euler equations and the system
of equations is closed by assuming an ideal gas equation of state for air. These equations are solved
using a finite-volume method with body-conforming unstructured tetrahedral meshes (see [19] for
details). An exhaustive grid resolution study for this setup was previously performed by Mehta
et al. [18,19] and grids used for this study follow the guidelines provided by them to minimize the
numerical error along with minimizing the computational cost.

Shock interaction with a particle leads to unsteady forces on the particle. In this investigation we
present these unsteady forces in terms of the nondimensional drag coefficient given by

�CD =
�F

1
2ρpsu2

psA
, (1)

where �F is the force, ρps the postincident-shock density, ups the corresponding postincident-shock
velocity, and A the cross-sectional area of the particle. For a sphere, A = πd2

p/4, where dp is the
particle diameter.

In this study we vary the particle volume fraction φ1 from 2.5% to 20% and the incident-
shock Mach number Ms is varied from 1.22 to 3, resulting in nine combinations of φ1 and
Ms for the simulations. The three-dimensional simulation setup is shown in Fig. 1. Along the
streamwise direction the computational domain is separated into an upstream shocked region (red)
without particles, xupstream, and a downstream quiescent ambient region (blue) containing a random
distribution of particles, xpart. The leftmost edge of the particle curtain is located at x/dp = 0. The
computational domain details for all the particle volume fractions considered in this study are given
in Table I. The transverse length of the computational domain is given as (y, z)/dp in Table I.

To characterize the random distribution of particles, we compute the local volume fraction
associated with each particle. VORO++ [24], a three-dimensional Voronoi library, is used to compute
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FIG. 1. Simulation setup at time zero.

the local volume fraction φi,1 associated with each particle. Based on the local volume, we compute
the fluctuation in the local volume fraction φf lui

for each particle and it is given by

φf lui
= φi,1 − φ1

φ1
. (2)

Here φf lui
is the relative difference between the local volume fraction of ith particle and the global

particle volume fraction φ1. The histograms of the distributions for φf lui
for φ1 = 2.5%, 10%, and

20% are plotted in Figs. 2(a), 2(b), and 2(c), respectively. A normal distribution fit is obtained for
the data and plotted as the red curve in Fig. 2. The local volume fraction fluctuation is due to the
random distribution of the particles and follows a Gaussian-like distribution.

The unshocked state is quiescent ambient air with P1 = 101.325 (kPa) and ρ1 = 1.2048 (kg/m3).
The postincident-shock conditions for an incident air shock are determined by the Rankine-
Hugoniot relations for an ideal gas with γ = 1.4 and R = 287.04 (J/kg K). Note that the
postincident-shock pressure pps for all the shock Mach numbers considered in this study remains
well below the yield strength for most materials (0.2 GPa) and so we do not expect the particles to
deform.

The upstream or the left boundary of the domain is treated as a constant inflow boundary with
inflow set at postincident-shock properties. All the other boundaries, including the particle surfaces,
are treated as slip walls.

III. NUMERICAL SIMULATION RESULTS

In this section we present numerical simulation results of an incident shock propagating through
a random bed of particles that are held fixed in space. We compute the individual force histories
for all the particles as well as the peak streamwise drag force experienced by each particle. The
objectives of this study are twofold: (i) to find out the effect of the particles on the incident shock
and its behavior as it travels through the particle bed and (ii) to find the impact of the incident shock
on a random bed of particles in terms of the forces experienced by them. To this end we compute
the cross-streamwise planar average of flow field properties like pressure and velocity to compute
the strength of the transmitted shock and generate x-t contour plots to identify the different physical

TABLE I. Computational domain details for the particle volume fractions considered in this study.

φ1 dp (μm) Np xpart/dp xupstream/dp (y, z)/dp

2.5% 50 400 33 16 16
10% 100 200 17 9 8
20% 100 400 17 9 8
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FIG. 2. Histogram plot of φf lui
along with the normal fit for (a) φ1 = 2.5%, (b) φ1 = 10%, and

(c) φ1 = 20%.

mechanisms at play during shock-particle interaction. We also present the force histories for all the
particles and compute the mean peak drag force to gain insights on the drag force variability.

A. Flow-field plots

In this section we study the effect of the particles on the flow. An incident-shock impingement on
a bed of particles results in complex wave dynamics; i.e., a transmitted shock propagates through the
particle bed and a reflected wave travels upstream, and there are complex wave interactions inside
the particle bed. Contour plots of nondimensional pressure, Mach number, and nondimensional
vorticity magnitude are presented in Figs. 3–5. Note that the figures paint a picture of the flow
field at one particular instant of time, but in reality the flow is transient and highly unsteady with
three-dimensional flow features.

To highlight the three-dimensional nature of the problem and to observe the complex wave
structure inside the particle bed, we present isosurface plots of the velocity magnitude in Fig. 3. The
velocity magnitude umag has been nondimensionalized by ups . Results for Ms = 3 and φ1 = 2.5%
and 20% are presented in Figs. 3(a) and 3(b), respectively. The nondimensional velocity magnitude
for Fig. 3(a) is 0.6 and for Fig. 3(b) is 0.4. In both figures we observe wakes that form behind
the particles. For the φ1 = 2.5% case we can observe that the reflected shock has not fully formed
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(a) (b)

FIG. 3. Isosurface plot of the nondimensional velocity magnitude for Ms = 3 and for (a) φ1 = 2.5% and
(b) φ1 = 20%.

yet, but we can observe the nearly planar transmitted shock at the far end of the particle bed. For
φ1 = 20% we can observe the reflected shock and the transmitted shock along with the stationary
wave that forms at the front edge of the particle bed.

Two-dimensional contour plots of flow properties are presented in Figs. 4 and 5. A cut section
is taken through the three-dimensional computational domain. The white circles in the figures

FIG. 4. Contour plot of nondimensional pressure at t/τ = 12 along the x-z plane at y = 0 for φ1 = 2.5%,
10%, and 20% and (a)–(c) Ms = 1.22, (d)–(f) Ms = 1.66, and (g)–(i) Ms = 3, respectively.
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FIG. 5. Zoomed-in contour plot of the Mach number along the x-y plane at z = 0 and t/τ = 7 for (a)
Ms = 1.22, (c) Ms = 1.66, and (e) Ms = 3 and contour plot of the nondimensional vorticity magnitude along
the x-z plane at y = 0 and t/τ = 12 for (b) Ms = 1.22, (d) Ms = 1.66, and (f) Ms = 1.66, with φ1 = 20%.

represent the particles in the computational domain. Contour plots of nondimensional pressure along
the x-z plane at y = 0 and t/τ = 12 are plotted in Fig. 4. For Ms = 1.22 [Figs. 4(a)–4(c)] it is clear
that the reflected waves for all the particle volume fractions are quite weak. In fact, it is difficult
to observe the reflected waves traveling upstream of the particle bed for the cases of φ1 = 2.5%
and 10%. We can observe a weak reflected shock traveling upstream for the case φ1 = 20%. This
behavior indicates that the reflected compression waves for Ms = 1.22 and low particle volume
fractions are weak and do not coalesce to form a reflected shock, but they are strong enough for
the case of φ1 = 20% to form a reflected shock. For all three particle volume fractions there are
small oscillations in the pressure field inside the particle bed. For Ms = 1.66 and 3 and all three
particle volume fractions considered here, we can clearly observe the signature of the reflected
shock and the transmitted shock. The magnitude of the wave oscillations also increases as compared
to Ms = 1.22 case. We observe the wakes that form behind the particles and shocklets stretching
out from the particles because of locally supercritical flow around the particles. The transmitted
shock exhibits a corrugated structure as it deforms around the particles and a nonplanar shock
will result in transverse forces on the particles. The reflected shock is formed by coalescence of
individual reflected waves from the particles and requires a finite time to form. The strength of
the reflected shock and the time it takes to form is affected by the particle volume fraction. This
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can be observed in Figs. 4(d)–4(f) and 4(g)–4(i), where the reflected shock has barely formed for
φ1 = 2.5%, whereas it is slightly more developed for φ1 = 10%, but it is not yet planar, while it is
fully formed and planar for φ1 = 20%.

Contour plots of Mach number for φ1 = 20% along the x-y plane at z = 0 and t/τ = 7 are
presented in Figs. 5(a)–5(c) for Ms = 1.22, 1.66, and 3, respectively. These contour plots are
enhanced to focus on the flow inside the particle bed. The overall qualitative behavior of the Mach
number contour plots is similar to that of the pressure plots. Even though the postincident-shock
Mach number for Ms = 1.22 is well below the critical Mach number (0.6), we can observe that
locally it accelerates to supersonic velocities (indicated by the arrows). This acceleration of the flow
can be attributed to local nozzling of the flow due to the presence of particles. This will result in
nonzero postincident-shock drag force on the particles and can also lead to dissipation of energy
and hence weakening of the transmitted shock. For Ms = 1.66 and 3, the postincident-shock Mach
number is supercritical and we can see shocklets extending from particle to particle (indicated by the
arrow). Also, we can observe wakes forming behind the particles. As mentioned earlier, formation
of shocklets and secondary wave interactions leads to nonzero drag forces on the particles at later
times and weakening of the transmitted shock due to dissipation of energy. The strength of the
reflected wave increases as the particle volume fraction increases for a given incident-shock Mach
number, highlighting the effect of the particle volume fraction. From the contour plots it is clear
that each particle has a slightly different flow field around it and will result in particle-to-particle
variation in the drag force.

We plot the nondimensional vorticity magnitude in Figs. 5(d)–5(f) for φ1 = 20% and Ms = 1.22,
1.66, and 3, respectively, along the x-z plane at y = 0 and t/τ = 12. The vorticity magnitude
is nondimensionalized by the inverse of the shock timescale τ . Since we are performing invis-
cid simulations, vorticity generation is due to baroclinic mechanism. Previously, we performed
simulations of shock interacting with structured (simple cubic and face-centered-cubic) arrays of
particles and found out that vorticity production was negligible under similar conditions that are
considered here. Therefore, we believe that vorticity generation in this study is a result of breakage
of symmetry due to the random distribution of particles. The impact of numerical dissipation on
the vorticity magnitude is negligible as previously reported by Mehta et al. [19]. For Ms = 1.22 the
vorticity magnitude is negligible for all the particle volume fractions considered in this study. The
vorticity magnitude for low particle volume fraction of φ1 = 2.5% and Mach numbers 1.66 and 3
is also negligible. For Ms = 1.66 and 3, the vorticity magnitude increases as the particle volume
fraction increases from 10% to 20%. We can observe that most of the vorticity is concentrated in the
wakes behind the particles. Particles that are downstream and in the wake of the upstream particles
will experience Saffman-lift-like vorticity-induced force. Current point-particle drag models do not
account for rotational forces, even though their impact on the motion of the particles and overall
flow might be significant.

B. Cross-sectional average of the flow properties

It is clear from the flow field contour plots that a complex wave structure is set up inside the
particle bed once the incident shock travels through it. To characterize the strength of these waves
we compute the planar spatial average of density, pressure, and streamwise velocity at different
streamwise locations as a function of time. The averaging process employed in this study is similar
to the one previously used by Mehta et al. [19]. The computational domain is divided into 200 slices
along the y-z plane for φ1 = 10% and 20% and 400 slices for φ1 = 2.5% and the flow properties
are averaged on each slice. The cross-sectional average of a flow variable F (x, y, z, t ) is defined as

〈F 〉(x, t ) = 1

Ag

∫
Ly

∫
Lz

Ig (x, y, z)F (x, y, z, t )dy dz, (3)

where Ly and Lz are the sizes of the computational domain along the transverse directions. Here
Ig (x, y, z) is the indicator function that identifies the region occupied by the gas; Ig = 1 in the
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FIG. 6. The x-t contour plot of the nondimensional cross-sectional averaged pressure 〈P 〉/Pps for φ1 =
2.5%, 10%, and 20% and (a)–(c) Ms = 1.22, (d)–(f) Ms = 1.66, and (g)–(i) Ms = 3, respectively.

gas and Ig = 0 inside the particle. Thus, the integral is defined only over the cross-sectional area
occupied by the gas and correspondingly Ag = ∫

Ly

∫
Lz

Ig (x, y, z)dy dz is the cross-sectional area
occupied by the gas. The averaging process results in the data being a function of x and t .

The averaged flow properties are nondimensionalized by the corresponding postincident-shock
properties. We generate x-t contour plots of the averaged data and plot them in Figs. 6 and 7. These
plots provide interesting insights into the effect of the particles on the overall flow. We can observe
the signature of the transmitted shock (right-moving front) and the reflected wave (left-moving
front). Note that the zigzag (steplike) pattern observed for the transmitted shock in some of the
x-t plots is due to the interpolation of the data (having fewer data points in time compared to x).
The cross-sectional average pressure inside the particle bed for Ms = 1.22 and φ1 = 2.5% and
10% is nearly constant, indicating that the flow is nearly steady (on average) with some minor
fluctuations. For Ms = 1.66 and 3 and all the particle volume fractions considered in this study,
the reflected wave is a shock, whose strength increases as the incident-shock Mach number and
particle volume fraction increase. As the particle volume fraction increases from 2.5% to 10% to
20%, we can observe that oscillations appear inside the particle bed and their strength increases as
the incident-shock Mach number increases. For a fixed particle volume fraction the speed of the
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FIG. 7. The x-t contour plot of the nondimensional cross-sectional averaged streamwise velocity 〈u〉/ups

for φ1 = 2.5%, 10%, and 20% and (a)–(c) Ms = 1.22, (d)–(f) Ms = 1.66, and (g)–(i) Ms = 3, respectively.

reflected wave decreases as the incident-shock Mach number increases. This is because the speed of
the postincident-shock flow, which is in the opposite direction of the reflected shock, also increases.

It is interesting to observe from the x-t plots that the flow properties change abruptly across
the left edge of the particle bed located at x/dp = 0. This indicates that apart from the transmitted
shock and the reflected wave (shock), there can be other waves inside the particle bed. In this case
it appears that there is a stationary wave, since its position in time does not change, located at the
leftmost edge of the particle bed. The particle volume fraction changes from 0 to φ1 at the leftmost
edge of the particle bed, and this sudden change results in formation of the stationary wave. Mehta
et al. [19] have studied this stationary wave in detail and described it as the isentropic expansion
of the subsonic flow in a converging nozzle. For the simulation parameters considered by Mehta
et al. [18] in the previous study, they observed that the head of the expansion fan coincides with the
stationary wave, resulting in a resonant expansion fan at the leading edge of the particle bed. The
combination of these two waves results in a sudden jump in flow properties at the leading edge of
the particle curtain.

The x-t plots of the nondimensional streamwise velocity are presented in Fig. 7. The overall
qualitative behavior is similar to that of the pressure plots. The signature of the oscillations inside
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FIG. 8. The x-t plot of the transmitted shock for (a) Ms = 1.22, (b) Ms = 1.66, and (c) Ms = 3.

the particle bed is more pronounced in Fig. 7 compared to Fig. 6. The overall qualitative behavior
of the cross-sectional average density x-t plots is similar to that of the pressure and velocity plots
and hence not shown here.

C. Slowing down of the transmitted shock

To quantify the effect of the particles on the transmitted shock, we compute its location as a
function of time. To determine the location of the transmitted shock we compute the gradient of the
cross-sectional averaged pressure. A large spike in the gradient of pressure represents the location of
the transmitted shock. The x-t plots for the transmitted shock for Ms = 1.22, 1.66, and 3 are plotted
in Figs. 8(a), 8(b), and 8(c), respectively. The y axis for these plots has been shifted such that
(t − tleft )/τ = 0 when the incident shock arrives at the leftmost edge of the particle bed. The dashed
green curve in the plots represents the x-t curve for the incident shock in the absence of particles
(φ1 = 0%) and thus provides a benchmark for comparing the effect of the particles (particle volume
fraction) on the speed the transmitted shock.

For the low particle volume fraction case of 2.5% (black curve) and Ms = 1.22 and 1.66, the
x-t plot coincides with the dashed green curve, indicating that the transmitted shock does not slow
down for these cases, but for Ms = 3 we can see it slows down slightly at later times. Through this
behavior we can clearly observe the effect of postincident-shock Mach number on the decay and
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FIG. 9. Plot of tortuosity as a function of particle volume fraction for Ms = 1.22 (black curve), Ms = 1.66
(red curve), and Ms = 3 (blue curve).

eventual slowing down of the transmitted shock even for low particle volume fractions. For Ms =
1.22 and φ1 = 10% and 20%, we can observe that the transmitted shock slows down slightly at later
times. This behavior is the same for Ms = 1.66 and 3 and the effect of particles on slowing down
the transmitted shock is even more pronounced due to the formation of bow shocks and shocklets.
For Ms = 1.66 and 3.0 the slowing down of the transmitted shock is partly due its decay caused
by energy dissipation because of formation of shocklets and bow shocks inside the particle bed.
However, it is interesting to observe the slowing down of the transmitted shock for Ms = 1.22 and
φ1 = 10% and 20%. For these two cases, the flow could locally reach supercritical or sonic velocities
due to nozzling in the converging channels formed locally by the particles. Locally supercritical
flow would result in dissipation of energy because of formation of shocklets, which can contribute
to decay and slowing down of the transmitted shock.

At low Mach numbers a more important physical mechanism responsible for slowing down the
transmitted shock is tortuosity. Tortuosity is defined as the ratio of the length of the actual flow path
of the fluid particles to the shortest path length in the streamwise direction. Tortuosity highlights the
local complexity of flow paths through the particle bed. The effect of tortuosity on shock propagation
through porous media has been previously investigated by a number of researchers [25,26]. Here
we are interested in exploring the effect of tortuosity on slowing down of the transmitted shock.
Following Matsumura and Jackson [27], we define tortuosity as

T = umag

|u| , (4)

where umag is the magnitude of the velocity (umag = √
u2 + v2 + w2) and the overbar signifies the

average taken over the entire particle bed. We compute the tortuosity at the final time when the
transmitted shock is close to the farthest end of the particle bed. The part of computational domain
that does not include the particle bed has been neglected while computing the tortuosity. A higher
value of tortuosity indicates that a parcel of fluid will have to travel more in the transverse direction
than it will for a case which has lower tortuosity. Hence, a higher value of tortuosity indicates that
the flow in the streamwise direction will be slower and thus it is partly responsible for slowing down
of the transmitted shock as measured in terms of its streamwise propagation. We plot tortuosity as a
function of particle volume fraction in Fig. 9 for all three incident-shock Mach numbers. For a given
incident-shock Mach number the tortuosity increases as the particle volume fraction increases. This
is expected since increasing particle volume fraction makes the particle bed more tortuous and hence
results in slowing down of the transmitted shock. However, it is interesting to observe that for fixed
particle volume fraction, the tortuosity increases as the incident-shock Mach number increases. This
can be interpreted as the magnitude of transverse velocities v and w increases at a higher rate as
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compared to the increase in the streamwise velocity as the incident-shock Mach number increases.
The values of tortuosity presented in Fig. 9 are consistent with the results of slowing down of the
transmitted shock presented in Fig. 8.

D. Streamwise drag force

In the previous sections we studied the complex flow field that is set up inside the particle bed
due to propagation of an incident shock. In this section we study the effect of the flow field on the
particles in terms of the forces experienced by them. There is a rapid increase in the drag force
experienced by a single particle when a shock wave starts interacting with it. The streamwise drag
force reaches its peak value (first peak) when the incident shock is just about halfway across the
particle and then it starts to decrease rapidly as the shock travels completely over the particle.
The postincident-shock drag force depends on the postincident-shock flow and its Mach number.
The qualitative behavior of the drag force histories for the particles in the random pack are
similar to that of an isolated particle and any difference between them is due to the presence of
multiple particles in the random pack. The streamwise drag force histories for all the particles in the
computational domain are plotted in Figs. 10–12. Since the incident shock travels at a finite speed
and the particle bed also has a finite thickness in the streamwise direction, each particle interacts
with the incident shock at a different time with respect to the simulation start time. Therefore, the
time axis for Fig. 10 is shifted based on the incident or transmitted shock arrival time for each
particle such that (t − tarrival )/τ = 0 when the incident shock arrives at the left stagnation point of
the particle. Shifting the time axis aligns the initial rise in the streamwise drag force for all the
particles. The streamwise drag force after (t − tarrival )/τ > 2 appears to be tangled in appearance
due the reflected waves from neighboring particles interacting with each other. The force histories
plotted in Fig. 10 are normalized by the corresponding peak force, CD,peak (first peak), experienced
by each particle when the incident or transmitted shock is interacting with the particle.

Results for Ms = 1.22 and φ1 = 2.5%, 10%, and 20% are plotted in Figs. 10(a)–10(c), respec-
tively. From these plots we can observe that the peak normalized force experienced by most of
the particles is 1.0. This is an artifact of the normalization, since the peak force experienced by
most of the particles is induced by the incident shock. It is interesting to note that scaling the force
histories by their corresponding incident-shock-induced peak force CD,peak does not make all the
force histories collapse on each other at later times. This indicates that there is no perfect correlation
between the peak streamwise drag force and the drag force at later times and the “favorable”
conditions which result in high peak streamwise force may not hold at later times. This is due
to the highly unsteady and transient nature of the flow.

Comparing the results from Figs. 10(a)–10(c) against the drag force experienced by an isolated
particle, we can observe the effect of particle volume fraction on the streamwise drag force. For
φ1 = 2.5% the magnitude of the streamwise drag force at later times [(t − tarrival )/τ > 2] is quite
small and gradually approaches zero. For higher particle volume fractions, φ1 = 10% and 20%,
the magnitude of the postincident-shock drag force is higher compared to the φ1 = 2.5% case. In
addition, there is also much higher particle-to-particle variability. This behavior indicates that as
the particle volume fraction increases, the strength of the secondary wave interactions and wakes
inside the particle bed also increases as observed in Figs. 6 and 7. The reflected waves have to
travel farther in space in order to reach the neighboring particles for the low particle volume
fraction case compared to the higher particle volume fraction cases. Hence, for the low particle
volume case, the impact of the reflected waves on the streamwise drag force at later times is
small since oscillations decay. It is also clear that the strength of the reflected waves decreases
at later times, indicating that an equilibrium state can be achieved eventually. When the equilibrium
state is achieved, the oscillations inside the particle bed will decay and the postincident-shock
drag force will be zero for all the particles. The possibility and the time it will take to reach the
equilibrium state will depend on the particle volume fraction and the postincident-shock Mach
number.
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FIG. 10. Plot of the normalized nondimensional drag force CD as a function of nondimensional shifted time
(t − tarrival )/τ for φ1 = 2.5%, 10%, and 20% and (a)–(c) Ms = 1.22, (d)–(f) Ms = 1.66, and (g)–(i) Ms = 3,
respectively.

The force histories for all the particles for an incident-shock Mach number of Ms = 1.66 and 3
are presented in Figs. 10(d)–10(f) and 10(g)–10(i), respectively. The overall behavior of the force
histories is similar to that discussed previously for Ms = 1.22. For an incident shock of Ms = 1.66
and 3 the postincident-shock Mach number is supercritical. Owing to this, the postincident-shock
flow accelerates to locally sonic or supersonic velocities around the particles and result in the
formation of shocklets and bow shocks as seen in Figs. 4 and 5. The formation of shocklets and
or bow shocks around the particles results in nonzero streamwise drag force on the particles at later
times.

In Fig. 10 we can observe that some of the particles have peak streamwise drag force substantially
higher than CD,peak. In Fig. 11 we plot the force histories of some of the particles which have
normalized streamwise drag force CD/CD,peak greater than 1.0 for the φ1 = 20% and Ms = 3 case.
The shifted time axis has been plotted on a logarithmic scale. From this figure we can observe
that the normalized streamwise drag force increases from zero to 1.0 initially when the incident
or transmitted shock is just about halfway across the particle. This is the first peak that a particle
experiences and it is induced by the incident or transmitted shock. At later times the normalized
streamwise drag force increases beyond 1.0 for some of the particles. This increase in drag force is
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FIG. 11. Plot of the normalized drag coefficient CD/CD,peak as a function of logarithmic shifted nondimen-
sional time log[(t − tarrival )/τ ] for six particles in the random bed for Ms = 3 and φ1 = 20%.

due to the fluid-mediated particle-particle interactions (secondary wave interactions). Some of the
particles have drag forces up to 80% higher than CD,peak. As mentioned previously, point-particle
force models are used for simulating flows with millions of particles. These point-particle models
are derived or generated for a single particle; i.e., they predict the drag force on each particle in
the particle bed as if every particle is isolated. This induces an inherent error by not accounting
for the variation in the drag force due to the presence of neighboring particles. It is clear from
the normalized force history plots that the secondary wave interactions and fluid-mediated particle-
particle interactions can result in significantly higher forces than CD,peak. These higher forces can
significantly alter the particle motion and the overall flow and need to be accounted for when
developing point-particle force models.

In Figs. 10 and 11 we can clearly observe the particle-to-particle variability in the postincident-
shock drag force, but it is difficult to observe the variation in the peak drag force because of
the normalization and shifting of the time axis. To characterize the effect of the incident shock
on the particles and to condense the information from the force history plots, we plot only the
CD,peak (first peak) for each particle for all particle volume fractions and Ms = 1.22, 1.66, and
3 in Figs. 12(a), 12(b), and 12(c), respectively. The x axis for these plots is the nondimensional
streamwise location of the corresponding particle. It can be observed from these figures that there is
a substantial particle-to-particle variation in CD,peak. The reason for this particle-to-particle variation
is the random distribution of particles; every particle has a unique neighborhood of particles
surrounding it, which modifies the incident shock and results in a slightly different CD,peak for
that particle. The mean strength of the transmitted shock varies as it travels through the particle bed
and that also causes fluctuations in the values of CD,peak.

To gain insight into the varying strength of the transmitted shock we obtain an exponential fit for
the CD,peak data. It is plotted as the solid line in Fig. 12. The exponential fit is given by

〈CD,peak〉 = a exp−b(x/dp ) +c, (5)

where a, b, and c are the fit parameters. The exponential fit can be thought of as the mean peak drag
force at a particular streamwise location in the particle bed and hence it can also be interpreted as
the mean shock strength at that streamwise location.

For Ms = 1.66 and 3.0 and all the particle volume fraction cases, the mean CD,peak decreases
as a function of the streamwise location. This behavior is expected since the postincident-shock
Mach numbers are supercritical for these incident-shock Mach numbers and that causes dissipation
of energy because of formation of bow shocks and shocklets. For a fixed incident-shock Mach
number the rate of decrease of mean CD,peak increases as the particle volume fraction increases. For
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FIG. 12. Plot of the peak drag coefficient CD,peak along with the exponential curve fit for φ1 = 2.5%, φ1 =
10%, φ1 = 20%, and (a) Ms = 1.22, (b) Ms = 1.66, and (c) Ms = 3.

Ms = 1.22 and φ1 = 2.5% the mean CD,peak is nearly constant, indicating that the mean strength
of the transmitted shock remains constant as it travels through the particle bed. However, it is
interesting to observe that for Ms = 1.22 and φ1 = 10% and 20% there is a sharp decrease in the
mean CD,peak initially (close to the front edge of the particle bed) and then it reaches a near constant
value. The particles close to the front edge of the particle bed interact with an undisturbed planar
shock and the CD,peak for these particles is close to that of an isolated particle. Once the shock
travels over these first plane of particles it deforms as it wraps around the particles. This is the
“entry” effect. For high particle volume fractions (10% and 20%) the transmitted shock is always
slightly deformed as it is traveling through the particle bed. For the case of Ms = 1.22 the amount
of dissipation is quite small resulting in a “steady” state for the transmitted shock and hence the
slope the mean CD,peak is nearly constant after a few diameters inside the particle bed. For higher
incident-shock Mach numbers (1.66 and 3) its hard to observe the entry effect due to the bulk effect
of the particles on the transmitted shock. For these incident-shock Mach numbers there is dissipation
resulting in weakening of the transmitted shock and hence negative slope for 〈CD,peak〉.

In Figs. 12(b) and 12(c) we observe a large variation in the peak drag force experienced by
each particle. The physical mechanisms for particles experiencing variable drag force have been
previously discussed by Mehta et al. [18,19]. They attributed the local variations in the peak drag
force to be due to either a constructive or a destructive interference of the shock wave. In other
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FIG. 13. Plot of the normal distribution fit for the fluctuating peak drag coefficient for (a) Ms = 1.22 and
φ1 = 2.5%, (b) φ = 2.5%, (c) φ = 10%, and (d) φ = 20%.

words, shock focusing leads to an increase in the peak drag force and shock defocusing results in a
decrease. Following Mehta et al. [19], we compute the local fluctuation in CD,peak. It is given by

CD,f lui
= [CD,peak − [CD,peak](x)]/[CD,peak](x), (6)

where [CD,peak](x) is obtained from the linear (least-squares) fit for the CD,peak data. The histogram
of the fluctuating peak drag force for φ1 = 2.5% and Ms = 1.22 is plotted in Fig. 13(a). The
mean and standard deviation for the distribution is computed and a normal distribution fit for
the fluctuating CD,peak data is obtained. The magenta curve in Fig. 13(a) is the normal fit for the
data. The normal fits for Ms = 1.22 (black curve), Ms = 1.66 (red curve), and Ms = 3 (blue curve)
are plotted for φ1 = 2.5%, 10%, and 20% in Figs. 13(b), 13(c), and 13(d), respectively. Through
these plots we can observe the impact of the particle volume fraction and the incident-shock Mach
number on the fluctuations in CD,peak. We can observe that for all the cases considered here, the
fluctuations in the peak drag force follow a Gaussian like distribution. The x axis in the plot can be
thought of as the percentage variation in CD,peak. The percentage variation in CD,peak increases as the
incident-shock Mach number and the particle volume fraction increase. The fact that the variation
in the peak drag force follows a Gaussian-like distribution can be helpful in improving the current
point-particle drag models. For example, we can add a stochastic variation (bound by the Gaussian
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distribution) to the mean peak drag force predicted by the existing model to capture the variation in
the peak drag force.

E. Lift forces

As the incident or transmitted shock travels through the particle bed, it deforms when it wraps
around the particles as seen in Figs. 4 and 5. This local deformation is on the particle length scale
(particle diameter) and disrupts the planarity of the shock wave. Nonplanar oblique shocks induce
transverse or lift forces on the particles. Another important physical mechanism responsible for
transverse forces experienced by the particles is the unsteady flow inside the particle bed as a result
of the random distribution of the particles. It has been previously discussed by Mehta et al. [18] that
lift forces for a transverse periodic face-centered-cubic array of particles are zero. Thus, it should
be noted that in the case of an incident shock interacting with certain arrangement of particles,
lift forces can be zero (it depends on the arrangement of the particles). In the present study we
have a random distribution of particles, which results in random fluctuations in the flow field and
hence transverse forces on the particles. The lift force in the y direction, CD,y , experienced by
all the particles in the domain for Ms = 1.22 is plotted in Figs. 14(a)–14(c), for Ms = 1.66 in
Figs. 14(d)–14(f), and for Ms = 3 in Figs. 14(g)–14(i), for φ1 = 2.5%, 10%, and 20%, respectively.
The lift force in the z direction has similar overall behavior and magnitude compared to CD,y and
hence is not shown here. The lift forces exhibit tangled behavior, similar to that shown by the
streamwise drag force CD . For most of the particles the lift forces are nonzero at (t − tarrival )/τ = 0.
This indicates that the transmitted shock induces some lift force on the particles when it interacts
with them. This is possible only if the transmitted shock is locally oblique when it interacts with the
particles. However, it is interesting to note that the peak lift force for particles do not align with each
other after shifting the time axis as they did for the streamwise drag force in Fig. 10. This behavior
indicates that the fluctuations in the flow, at later times, generated by the random distribution of the
particles can lead to substantial lift forces. Thus, the magnitude and instance when the peak lift force
occurs depend on the local neighborhood of the particles and vary from particle to particle. For a
fixed incident-shock Mach number, the magnitude of the lift force increases as the particle volume
fraction increases. For all the cases considered in this study, we can see that the mean lift force as a
function of time will be close to zero. However, it is important to note that the lift forces can be 20%–
40% of the streamwise drag force and hence will play a big role in the motion of the particles and
shock transmission. Traditionally, numerical simulations of incident shock interacting with particles
that employ point-particle force models do not account for the lift forces on the particles.

IV. CONCLUSION

In this paper we studied the effect of an incident shock interacting with multiple particles. Fully
resolved three-dimensional inviscid simulations of shock traveling through a bed of particles were
carried out. A uniform random distribution of particles was considered and both the incident-shock
Mach number and the particle volume fraction were varied. We plotted the contour plots of pressure,
Mach number, and vorticity magnitude to identify the complex physical mechanism at play during
shock-particle interaction. The baroclinic mechanism of vorticity generation was responsible for the
vorticity inside the particle bed and it was generated due to breakage of symmetry by the random
distribution of the particles. We computed the cross-sectional average of flow quantities to identify
the complex wave structure inside the particle bed to characterize the strength the reflected waves
and transmitted shock. The transmitted shock weakened as it traveled through the particle bed for
all the cases with supercritical postincident-shock flow. In terms of decrease in the mean peak drag
force (as a function of streamwise location) and overall weakening of the transmitted shock, there
is not much difference between supersonic and supercritical postincident-shock flow cases. The
postincident-shock flow being supercritical had a major impact on the transmitted shock weakening
and that also resulted in a decrease in the mean peak drag force.
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FIG. 14. Plot of the nondimensional y lift force CD,y as a function of the nondimensional shifted time
(t − tarrival )/τ for φ1 = 2.5%, 10%, and 20% and (a)–(c) Ms = 1.22, (d)–(f) Ms = 1.66, and (g)–(i) Ms = 3,
respectively.

The presence of multiple particles altered the force history of each particle compared to the force
history of a single isolated particle for a given incident shock. We plotted the peak streamwise drag
force CD,peak for each particle to characterize the variability in the drag force and computed the
mean peak drag force as a function the streamwise location. The streamwise drag force histories
of all the particles were normalized by the peak drag force each particle experienced due to the
incident or transmitted shock. We observed that this normalization did not result in collapse of
the force histories on top of each other, indicating that there is no perfect correlation between the
peak drag force and the drag force at later times. We also observed that some of the particles had
normalized peak drag forces greater than 1. This behavior was a result of fluid-mediated particle-
particle interaction, which can lead to forces higher than CD,peak after the incident or transmitted
shock has traveled around the particle.

Based on our findings, we postulate that significant improvements can be made to current
point-particle force models used in Euler-Lagrange simulations. The current point-particle force
models cannot capture the variability in the drag force and cannot predict forces greater than CD,peak,
because they are derived for a single isolated particle. We can make simple improvements to the
point-particle models such as adding a stochastic force (bound by the Gaussian fit) to the varying
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mean peak drag force to capture the variability in the peak drag force. Other improvements would
be to include lift forces and account for rotational forces on the particles due to the vorticity inside
the particle bed.
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