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Simulations of clean drops rising into a layer of dissolved surfactant
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We present simulations of clean drops rising into a layer of dissolved surfactant. Immedi-
ately after entering the surfactant layer, the drop is seen to accelerate suddenly as surfactant
adsorbs onto its surface. The drop subsequently slows down to reach a terminal velocity
that is between that of a clean drop and that of a solid object. For drops of viscosity equal to
that of the ambient fluid, the terminal drop velocity, transition length, and maximal speed
are all quantified and plotted against the Biot number, the ratio of convective to desorption
timescales, and the adsorption number, the ratio of desorption to adsorption timescales. We
find that faster sorption generally results in greater acceleration on entering the surfactant
layer, a faster transition to equilibrium, and a faster terminal velocity. Drops of two
different Reynolds numbers are considered to investigate the influence of inertial effects.
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I. INTRODUCTION

When oil spills occur in the ocean, surfactants, also known as dispersants, are sprayed on the
affected areas. This process is controversial, as it has the benefit of breaking up the oil into smaller
droplets that are more easily absorbed by the ecosystem, but it can also increase the area over
which oil spreads, and the dispersant themselves are highly toxic. It is thus important to be able to
accurately predict the effects that surfactants may have on the dynamics of the oil spill.

When oil is released from the ocean floor, it will rise and breakup in drops. Whenever surfactants
are used at the surface, the drops begin rising in surfactant-free water and eventually encounter water
containing dissolved surfactants. Predicting the spread of the oil requires an accurate knowledge of
its vertical speed, which is altered by its interactions with the dissolved surfactant.

Surfactants are substances whose molecules tend to reside on fluid-fluid interfaces. In most cases,
they have hydrophobic and hydrophilic components, and minimize their potential energy when
on the interface of water and another fluid. In that case, the surfactants’ hydrophilic component
can face the water, while their hydrophobic component faces away from the water. This, in turn,
lowers the surface tension of the interface locally, which results in regions of lower or higher
surface tension, depending on the surfactant concentration on the surface. Between these regions,
Marangoni forces act to even out the surfactant concentration by spreading surfactants from regions
of higher concentration to regions of lower concentration. All of these surface forces alter the rise
speed of the droplets, and therefore the macroscopic dynamics of the system.

A considerable amount of research has been done on the effects of surfactants on the motion of
buoyancy driven drops and bubbles. In the Stokes limit, the speed of buoyancy driven drops and
bubbles was first calculated exactly in the absence of surfactants [1,2]. However, these results did
not match subsequent experimental results [3–5], which found that the drops and bubbles moved
more slowly than predicted, and in some cases, behaved like solid spheres. The physical basis
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for this discrepancy was explained by Frumkin and Levich [6] and was attributed to the presence
of surfactants, which is very difficult to avoid experimentally. When surfactants are present, the
flow on the outside of the drop drags the surfactant molecules toward the rear of the drop, where
they accumulate. The resultant Marangoni forces act to counterbalance the increase of surfactant
concentration at the rear, and so add to the drag on the drop, which lowers its rising speed. In
regions of high surfactant concentration, stagnation, relative to the drop, was observed on the drop
surface [5].

More recently, a number of numerical studies have quantified the effects of the degree of
surfactant contamination [7], drop shape [8], and desorption rate [9]. A theoretical understanding
of the dynamics has divided the parameter space into a number of different regimes. In terms of the
degree of contamination, three regimes have been studied: clean (surfactant-free) or nearly clean
drops, surfactant-laden drops with a stagnant or nearly stagnant cap, and a transition between the two
[10,11]. Holbrook and Levan studied the nearly clean and nearly stagnant regimes asymptotically
[12], and the intermediate region numerically [13]. Once the entire surface becomes stagnant, the
drop behaves like a solid particle, and further increases of surfactant concentration will not change
the speed of the drop, or the surrounding flow field.

The behavior of a surfactant-laden drop or bubble can also be categorized based on the relative
importance of surface convection, bulk diffusion, and sorption rate. When bulk diffusion is slow, or
the rate of sorption is small, compared to surface convection, sorption becomes negligible. If surface
diffusion is also negligible, the drop surface becomes partitioned into two regions—a clean surface,
toward the front of the drop, and a surfactant cap, toward the rear of the drop, where the flow field is
stagnant [14–16]. In the limit of low Reynolds number, this so-called stagnant cap regime has been
solved exactly [17,18].

When bulk diffusion and sorption occur on a similar timescale to surface convection, sorption
effects cannot be ignored. In regions where bulk diffusion is slow but non-negligible, a boundary
layer forms near the surface of the drop, in which the surfactant level rapidly decreases [10]. Early
studies of sorption effects on drop velocity used a linear relation for both the sorption process and the
relation between surfactant and surface tension [10,12,13]. Subsequent studies incorporate nonlinear
sorption models and surfactant effects on surface tension, both for the Stokes limit [19,20], and at
finite Reynolds number [21–23], including deformation [24–27] and transient effects [28].

We present here a numerical study of clean drops as they enter a surfactant layer. To the best of
our knowledge, all existing studies of surfactant-laden drops consider drops that are already covered
with surfactants. In addition to extending the parameter regimes previously studied in the long-term
limit, we describe in detail the transition from surfactant-free to surfactant-laden, and the associated
acceleration. We do so via an accurate and efficient numerical scheme that allows the exploration of
the effects of changes in adsorption rate, desorption rate, and inertial effects. In Sec. II we formulate
the problem–both the physical setup and the mathematical equations. In Secs. III and IV we present
and validate, respectively, our numerical method for tracking sorption effects on a rising drop. In
Sec. V we present the results of our simulations, and in Sec. VI we summarize and draw conclusions
from those results.

II. SETUP AND GOVERNING EQUATIONS

We simulate a drop of radius R0 rising along the central axis of a cylindrical container of radius
8R0 and height 32R0, as shown in Fig. 1. The drop begins at height Z = 1.5R0 in a surfactant-free
fluid. It rises and nearly reaches terminal velocity before, at a height of 10R0, entering a transition
layer of thickness 0.1R0 where the surfactant concentration increases linearly. The drop then reaches
a layer of constant surfactant concentration, � = �0, where it continues to rise, eventually reaching
steady state. The system is axially symmetric, and we only simulate the radial, R, and axial, Z,
coordinates. We apply no-slip no-penetration boundary conditions to the walls of the cylinder but
keep the walls far enough away from the drop that they only have a weak influence on the rising
drop. Thus, our simulations model an infinite domain.
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FIG. 1. The axially symmetric computational domain, with the axis on the left, and the wall on the right.
The colors represent the concentration of dissolved surfactant: red for � = �0 and blue for � = 0. The
surfactant layer begins at Z = 10R0.

We use the drop radius, R0, as a length scale, and the drop density, �d , to scale the fluid density.
We scale the fluid velocity using the Hadamard-Rybczynski speed, UHR, given by

UHR = 4g(�a − �d )R2
0

15μ
. (1)

The quantity UHR represents the speed of a drop with density �d rising in an ambient of density
�a under the influence of a gravitational acceleration, g, when the Reynolds number is zero, and
no surfactant is present [1,2]. We assume for simplicity that the drop and ambient both have
viscosity, μ.

The drop surface, xs , moves with the fluid and therefore obeys the equation

dxs

dt
= u|xs

, (2)
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where u is the fluid velocity. The fluid velocity satisfies the incompressible Navier-Stokes equations,
which are, in dimensionless form:

∇ · u = 0, (3)

ρ
∂u
∂t

+ ρu · ∇u = −∇p + 1

Re
∇2u + 15

4Re
φk, (4)

where p is the dynamic pressure, obtained by subtracting the static pressure ps = −ρagz from the
true pressure, and Re is the Reynolds number, given by Re = �dR0UHR

μ
, which quantifies the ratio

of inertial to viscous forces. In Eq. (4), k is a unit vector in the positive vertical direction, and
φ = φ(r, z) is an indicator function that equals 1 inside the drop and 0 outside. The dimensionless
fluid density, ρ, can be represented using the indicator function:

ρ(r, z) = (1 − D)φ(r, z) + D where D = �a

�d

. (5)

We denote the dimensional surfactant concentration on the drop surface as � and that in the
bulk fluid as �. The bulk exchange term, J , measures the net rate at which surfactants adsorb onto
(J > 0) and desorb from (J < 0) the interface. It is given in dimensional form by the Langmuir-
Hinshelwood kinetic equation [29,30]:

J (�,�|s ) = kad�|s
(

1 − �

�∞

)
− kde�, (6)

where kad (with units m/s) and kde (with units s−1) are kinematic constants of adsorption and
desorption, respectively, �|s is the bulk concentration evaluated on the drop surface (at xs), and �∞
is the maximum packing concentration on the surface. We scale bulk surfactant concentration by its
initial value, �0, in the upper layer. An equilibrium surfactant concentration, �0, can be obtained
by setting J = 0 in Eq. (6). This results in the equation of state [29,30]:

�0

�∞
= Ad

1 + Ad
where Ad = kad�0

kde�∞
. (7)

The dimensionless quantity in Eq. (7) is the adsorption number, which measures the relative rate
of adsorptive to desorptive processes. In natural and laboratory systems, the adsorption number is
usually of order one. We note that the quantity Ad is inversely proportional to the maximum packing
fraction, so reducing Ad can also be thought as increasing �∞ for a fixed equilibrium concentration.
Using these scales, we obtain a dimensionless exchange term

j (γ, λ|s ) = Bi[λ|s (1 + Ad − Adγ ) − γ ], (8)

where λ = �/�0 and γ = �/�0. The new dimensionless quantity appearing in Eq. (8) is a Biot
number, given by

Bi = R0kde

UHR
, (9)

which measures the desorption rate against the rising speed and the adsorption number.
We advance both the surface and bulk concentrations in time using advection-diffusion equations

supplemented with surface-bulk exchanges [30]. They can be expressed in dimensionless form
introducing Péclet numbers. On the drop surface we have

∂γ

∂t
+ ∇s · (γ u) = 1

Pe�

∇2
s γ + j (γ, λ|s ) where Pe� = UHRR0

kγ

, (10)
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and the operator ∇s is a gradient projected onto the drop surface. In the bulk we have

∂λ

∂t
+ u · ∇λ = 1

Pe�

∇2λ − ηδsj (γ, λ|s ), where Pe� = UHRR0

kλ

and η = �0

R0�0
. (11)

The constants kγ and kλ are diffusion coefficients on the drop surface and in the bulk, respectively.
Here δs is a one-dimensional delta function located on the interface. The term δsηj (γ, λ|s ) captures
the rate of surfactant exchanges between the interface and the bulk and effectively replaces a
boundary condition on the normal derivative of λ. The number η represents the dimensionless
thickness of a layer of bulk surfactant concentration that contains as much surfactant as the surface
at equilibrium [31]. For simplicity, here we will set η = 1.

We relate the surface tension, σ , to the surfactant concentration using a linear elasticity equation
[30,32], given in dimensionless form by

σ = 1 + β(1 − γ ). (12)

The surface tension is normalized by the value, �0, obtained at equilibrium in the surfactant layer,
where γ = 1. The drop’s surface tension when in the lower layer is therefore σ = 1 + β, and
σ would approach one as t → ∞, if the drop were stationary in the upper layer. The elasticity
coefficient can be written as

β = −∂σ

∂γ
= − �0

�0

∂�

∂�
. (13)

Here, as is the case throughout the paper, the lowercase letters represent dimensionless quantities
and the capital letters represent their respective dimensional quantities. The dimensionless version
of Eq. (13) shows that β represents the rate at which surface tension decreases with increasing
surfactant concentration. The dimensional version shows that β scales directly with the surfactant
concentration, and inversely with the surface tension.

The surface tension affects the dynamics of the system through the stress boundary conditions,
at the fluid-fluid interface [33]:

−Re[p] + n · [∇u + ∇uT ] · n = Re

We
σκ, (14)

n · [∇u + ∇uT ] · t = Re

We

∂σ

∂s
= −Mg

∂γ

∂s
. (15)

Here κ represents the total curvature (i.e., twice the mean curvature), n represents an outward
unit normal to the drop surface, and t represents the unit tangent to the surface in the direction
of increasing arc-length, s, measured from the bottom of the drop. Two new dimensionless numbers
appear in Eqs. (14) and (15). The Marangoni number,

Mg = βRe

We
= �0β

μUHR
, (16)

is a ratio of tangential surface stress to viscous stress and represents the importance of Marangoni
effects relative to the viscous drag on the drop. We keep Mg = 2 in all our simulations. The Weber
number,

We = �dR0U
2
HR

�0
, (17)

is a ratio of inertial to surface tension forces. In our setup, the Weber number represents how much
the drop is likely to deform. We keep the Weber number small (see Table I), so that the drop remains
approximately spherical. In the simulations we present, the drop aspect ratio varied by less than 2%.

In our simulations, rather than enforcing Eqs. (14) and (15) as boundary conditions, we include
the surface stresses in the momentum equation using a delta function, δs , that is nonzero only on the
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TABLE I. Parameter definitions and ranges in our simulations.

Parameter Definition Range

Re UHRR0�d/μ 1,20
We U 2

HRR0�d/�0 0.2
β −∂σ/∂γ 0.02, 0.4
Mg �0β/μUHR 2
D �a/�d 1.1
Pe� UHRR0/kρ 104

Pe� UHRR0/kγ 100
Ad kad�0/kde�∞ 0–16
Bi R0kde/UHR 0.05–10
η �0/R0�0 1

interface [34–36]. Thus, for computational purposes, Eq. (4) becomes

ρ
∂u
∂t

+ ρu · ∇u = −∇p + 1

Re
∇2u + 15

4 Re
�ρφk + δsFs , (18)

where

Fs = 1

We
(σκn + ∇sσ ) = σκn

We
− Mg

Re

∂γ

∂s
t. (19)

Because of the large number of dimensionless parameters in this system, we have summarized
them in Table I. The range of values we consider for each parameter is presented in the rightmost
column.

III. NUMERICAL METHOD

We solve Eqs. (3)–(18) using an approach described in more detail in Refs. [33,36]. Here,
we briefly summarize the method used and provide a detailed description of the bulk-interface
exchange term, which had not been previously presented. We use finite differences calculated on a
staggered marker and cell (MAC) grid. A projection method [37] is used to compute a pressure that
automatically enforces continuity. This gives rise to a Poisson equation for the pressure, which is
inverted using iterative methods. We advance the solution in time using Euler’s method and employ
a volume of fluid (VOF) method [34] to track the fluid concentration, φ. The front is tracked
using markers that are advanced in time according to Eq. (2). We relate the Lagrangian front to
the Eulerian grid using bilinear interpolation. We interpolate between markers using cubic splines
to obtain a smooth representation of the surface. The markers are redistributed at each time step
to maintain a distance of

√
2 grid cells between markers. Each grid cell is a square of size 1/32

drop radii. The pressure term is corrected to eliminate parasitic currents resulting from the pressure
discontinuity at the interface [35]. This correction calculates a more accurate pressure gradient by
taking into account the precise location of the interface and calculating the fraction of each cell on
either side of the pressure discontinuity.

The surfactant concentration on the interface is tracked using a Lagrangian method that
automatically conserves surfactant mass in the absence of sorption [33]. Before advancing the front,
we compute the surfactant mass associated to each marker. After advancing the front, we correct
the computed surfactant concentration to preserve mass over each curve segment between markers,
and thus over the entire interface. Subsequently, we compute a surface diffusion term from finite
differences on the markers, and a bulk-exchange term, which we discuss below.

Bulk surfactant concentration is advanced in time using Eq. (11) discretized at the centers of
our MAC grid. The diffusive and advective terms are approximated with finite differences. Once

014302-6



SIMULATIONS OF CLEAN DROPS RISING INTO A …

Pi,j

Ui,j Ui+1,j

Vi,j

Vi,j+1

(a) (b)

FIG. 2. Illustrations of the MAC grid used in our simulations. (a) Everywhere in the domain, the pressure,
Pi,j , is stored at cell centers (red dots), and the horizontal (blue squares, Ui,j ) and vertical (green triangles, Vi,j )
velocities are stored on cell edges. (b) When an interface is present, surfactant concentration are also tracked.
The dissolved surfactant concentrations, λi,j are stored at cell centers everywhere (red dots), along with bulk
sorption terms, ji,j . The arc-lengths, sk , surfactant concentrations on the surface, γk , and surface sorption terms,
jk , are stored at the markers (blue squares). The bounds of integration in Eq. (21) are located at the intersections
of the cells and front (green diamonds).

the sorption term is added, the concentration is advanced in time using Euler’s method. To prevent
sorption from crossing the interface, we enforce a symmetry boundary condition at the fluid surface
[33], using a discrete approximation, φi,j , to the indicator function, φ, described in the previous
section.

The two bulk-surface exchange terms are numerically very different. The surface concentration
term that will be added to the kth marker, jk , is accurately computed by evaluating a local line
integral along the surface about each marker:

jk = 1

sk+1/2 − sk−1/2

∫ sk+1/2

sk−1/2

j (γ, λ|s ) ds. (20)

The changes in the surfactant concentration in the bulk, ji,j , are added to the numerical cells
intersecting the drop surface. They are computed by averaging over one grid cell. The delta function
converts the area integral into a line integral along the surface:

ji,j = 1

h2

∫∫
celli,j

ηδsj (γ, λ|s ) dA = η

h2

∫ s2

s1

j (γ, λ|s ) ds, (21)

where h is the mesh width and s1, s2 are the locations (measured by arc-length along the interface)
where the interface intersects the cell. The surface integrals in both of (20) and (21) are computed
numerically using composite trapezoidal integration. The integrand, j (γ, λ|s ), is given by Eq. (8),
and depends only on arc-length. The surface concentration, γ (s), is obtained by linear interpolation
from the markers, and the bulk concentration, λ|s , is obtained using bilinear interpolation from
the adjacent cells. Figure 2 illustrates the role of the MAC grid in computing the surfactant
concentrations.

IV. VALIDATION

Our simulations of drops rising in the presence of insoluble surfactants (no sorption term) have
previously been shown to perform well in terms of conservation of drop mass, surfactant mass,
and total energy of the system [33,36,38]. In particular, we found that variations in drop mass and
total energy converged linearly with mesh width, h. In the simulations presented in Sec. V, h =
1/32, a resolution for which previous validations have shown that over the course of 38 000 time
steps (approximately four dimensionless time units), drop mass varies by less than 0.1%, system
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TABLE II. Percentage error in surfactant mass versus mesh width for a stationary drop undergoing
desorption, at t = 3 with Bi = 1. The error is measured as (Mc − Mth )/Mth, where Mc is the surfactant mass
obtained from the simulation, and Mth comes from Eq. (23).

Percent error of

Mesh width Mγ Mλ

h = 1/8 3.6×10−4 0.0116
h = 1/16 1.2×10−4 0.0040
h = 1/32 4.3×10−5 0.0014
h = 1/64 1.5×10−5 5.0×10−4

energy varies by less than 1.6%, and surfactant mass is conserved up to round-off error. We have
also validated our method by comparing it to a known theoretical solution in the simple case of a
perturbed, irrotational drop [39]. For h = 5/512, computed oscillation frequency differed from the
theoretical oscillation frequency by less than 0.33% [33,36]. Our method for advancing Eq. (11) in
time has also been validated in the absence of sorption, and we found that the mass conservation
of a stratifying agent showed better than second-order convergence [33]. For h = 1/32, the mass
of the stratifying agent varied by about 1.93×10−5% over approximately 20 units of dimensionless
time.

We tested our computation of the surfactant exchange between the bulk and the surface in two
ways: by computing an exact solution for a simple test case, and by measuring the conservation
of total surfactant mass for a more strenuous test. Our simple test case involves a drop at rest in a
stationary fluid that only undergoes desorption. In particular, we set kad = 0 in Eq. (6) and set the
initial bulk concentration to zero. This gives, in nondimensional form,

j (γ, λ|s ) = −Biγ. (22)

The drop is placed in the center of a cylindrical domain of radius and height equal to four drop radii,
and remains stationary. We assume that the surfactant is initially uniformly distributed on the drop
surface, γ (s, t = 0) = 1. Then the total surfactant mass on the surface and in the bulk at time t are
given, respectively, by

Mγ (t ) = 4πR2
0e

−Bit and Mλ(t ) = 4πR2
0 (1 − e−Bit ). (23)

We allowed surfactant to desorb from the surface until t = 3, with Bi = 1, computed the total
surfactant mass on the surface and in the bulk, and compared them against the values obtained
from Eq. (23). The results, shown in Table II, demonstrate better than first-order accuracy.

We also tested the conservation of total surfactant mass for a deformed and oscillating drop, with
Bi = 0.02 and Ad = 10. As before, the drop was placed in the center of a cylindrical domain with
radius and height of four drop radii. In this case, we made our test more strenuous by introducing
motion to the drop. In particular, we started the simulation with a spheroidal drop with aspect ratio
Rz/Rr = 1.5 and allowed the system to relax over three units of dimensionless time. We started the
simulation with no surfactant in the bulk and measured our error against the total initial surfactant
mass. We found the error to be small, and to decay significantly with resolution, though the decay
appears uneven for coarse resolutions (Table III). The change in bulk, surface, and total surfactant
mass for a mesh width of h = 1/32 have also been plotted; see Fig. 3. Overall, we find that a
resolution of h = 1/32 is sufficient to provide good conservation of all the quantities of interest,
and we therefore use this resolution in the remainder of the paper. Simulations with large Bi or large
Ad tended to have an increased resolution requirement and may therefore have a somewhat reduced
accuracy.
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TABLE III. Fractional change in surfactant mass versus mesh width for an oscillating drop undergoing
sorption at t = 3 with Bi = 0.02 and Ad = 10. The variation is measured as [M (3) − M (0)]/M (0), where
M (t ) is the total computed surfactant mass of the system at time t .

Mesh width Variation of M

h = 1/8 1.6 × 10−3

h = 1/16 1.3 × 10−3

h = 1/32 7.24 × 10−4

h = 1/64 4.48 × 10−4

V. RESULTS

We now present results obtained for a model of an oil drop rising to the surface of the ocean. In
most oil spills, surfactants are sprayed at the surface, so our setup is that of a clean drop encountering
a layer of surfactants of uniform bulk concentration. We elected to focus here on the case of drops
of equal viscosity entering a sharp concentration jump, to emphasize the effects of the presence
of surfactants. Another relevant setup to consider in the context of oil drops in the ocean would
be that of a drop entering a surfactant concentration gradient. Although we focus here on drops
with viscosity equal to that of the ambient water, realistic oil drops have a larger viscosity, which
would dampen the effects seen for drops of equal viscosity. We begin our simulations with a drop
at rest and allow it to accelerate to a steady rising speed before entering a layer where soluble
surfactant is dissolved in the ambient fluid. The ambient surfactant concentration transitions sharply
from a clean lower layer (λ = 0) to an upper layer of constant concentration (λ = 1), over the
course of 0.1 drop radii. The transition is initially linear and takes place over the range 9.95 � z �
10.05. For simplicity, we fix the Marangoni number at Mg = 2. Bulk diffusion was kept as small
as our simulations allowed, with Pe� = 104, which is comparable to the numerical diffusion in our
simulations. The short-term effects of the dynamics of the bulk concentration boundary layer around
the drop may therefore not be captured with great accuracy, but these are expected to be short-lived
[40]. In addition, we could accurately capture the surface diffusion, assumed to be greater, Pe� =
100 and therefore likely to be dominant. In addition, we found that the observations reported here,
such as the drop speed, varied by less than 1.5% when the resolution was doubled.
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FIG. 3. Fractional change in surfactant mass over time for an oscillating drop undergoing sorption
(Bi = 0.02, Ad = 10). The mesh width is h = 1/32.
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FIG. 4. The speed U of a clean drop as a function of height z as the drop enters a layer of soluble surfactant
at z = 10. The reference value of the governing parameters are Re = 1, Ad = 1, and Bi = 1, and in panel (a)
we vary Bi, in panel (b) we vary Ad, and in panel (c) we vary Re.

A. Drop speed and concentration profiles

Figure 4 shows plots of the speed of the rising drop as it enters the surfactant layer. In all cases,
the drop accelerates after entering the surfactant layer and subsequently decelerates to a steady
ascent speed which is lower that the ascent speed in the lower layer. This is due to the surface
tension gradient acting on the drop, as illustrated in Fig. 5(a) where the concentration profile along
the drop surface is shown at different levels of the drop center. The top of the drop enters the bath
first, adsorbing surfactant. The surfactant thus lowers the surface tension at the top of the drop
relative to that of the bottom, resulting in a surface tension gradient that “sucks” the drop into the
layer, in a manner similar to what is observed when a drop enters a layer where compositional
differences reduce surface tension [41]. As the drop rises, convection carries surfactant toward the
bottom of the drop, producing a gradient in the opposite direction that inhibits the rising of the drop.
Eventually, the surfactant concentration reaches a steady-configuration with a higher concentration
at the bottom, as seen in Fig. 5(a), which causes a surface tension gradient opposing the drop’s rise,
and results in a decreased steady-state speed.

As shown in Fig. 4(a), larger Biot number, corresponding to faster adsorption and desorption,
results in a more vigorous suction, owing to the sharper surface tension gradient generated. The
terminal speed also increases with an increased Biot number, because a high sorption rate tends
to even out the surfactant concentration on the surface: higher concentrations of surfactant desorb
faster, while lower concentrations adsorb faster. This results in weaker surface tension gradients
opposing the drop motion, and thus rise speeds approaching those of a clean drop.

FIG. 5. Surfactant concentration as a function of arc-length along the drop’s surface, starting from the
bottom, where s = 0. Results are shown (a) as the center of the drop reaches various heights z, with Ad = 1,
Re = 20, and Bi = 0.05, (b) for various Biot numbers with Ad = 1, Re = 20, and z = 20.0, and (c) for various
adsorption numbers with Bi = 1, Re = 20, and z = 20.
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Figure 4(b) shows a similar dependence of speed profile on the adsorption number, a ratio of
adsorption to desorption rates. After the initial acceleration, surfactants accumulate at the bottom of
the drop, leading to Marangoni effects opposing the drop’s rise. This effect is seen to be strongest
for small Ad, as the concentration at the top of the drop remains low due to slow adsorption, and the
concentration at the bottom approaches its equilibrium value. This results in large surface tension
gradients opposing the drop’s rise, and thus reduces both the peak and terminal speeds. For large
values of Ad, the adsorption is nearly instantaneous, and the concentration gradient becomes weak.
As the adsorption rate becomes large, the concentration of surfactants becomes nearly uniform, and
the drop speed again approaches that of a clean drop. We note that the limit case Ad = 0 is shown
for completeness, but corresponds to the unrealistic situation where surfactants are not adsorbed,
but have a nonzero concentration on the interface because the neighboring bulk concentration is
nonzero, and thus still affect surface tension.

Similar speed profiles are obtained at Re = 1 and Re = 20, as shown in Fig. 4(c), though there
are two key differences. First, the drop speed is overall lower at Re = 20, which is a result of our
nondimensionalization using the inertia-free drop speed. For the same drop size and mass, including
inertial effect in general results in a slower rise speed. Second, we see that the suction effect is
somewhat delayed at the low Reynolds number. This is somewhat counterintuitive, as one might
anticipate that the drop’s inertia would delay its response to changing forces. However, this effect
is dominated by the amount of fluid entrained by the drop. In the more viscous regime, more fluid
is entrained, which temporarily shields the drop from Marangoni effect, delaying the onset of the
acceleration. For Re = 20, less clean fluid is entrained by the drop and Marangoni effects are felt
faster. For all the drops we considered, no substantial wake was observed, as streamlines did not
detach significantly from the drop. Higher Reynolds numbers would likely yield a more pronounced
wake that would have a potentially different effect on the drop, but this regime falls beyond the scope
of the present study.

We see in Figs. 5(b) and 5(c) that similar surfactant concentration profiles are obtained when the
rate of adsorption varies, through either the Biot or adsorption number, but that the magnitude of
the concentration difference between the bottom and top of the drop decreases as adsorption takes
place faster (larger values of Ad and Bi). In such cases, the system is able to reduce surface gradients
through faster adsorption or desorption, leading to weaker Marangoni effects once the drop has fully
transitioned into the upper layer.

B. Terminal velocity

The most extensively studied quantity in the long-term dynamics of the drop is its terminal
velocity in the surfactant layer, away from the transition region. Denoting the terminal velocity
as U∞, we have quantified how it is affected by the adsorption rate, through both Bi and Ad. The
normalized terminal velocity is shown in Fig. 6 as a function of the Biot number (a) and adsorption
number (b) for two values of the Reynolds number. We ran simulations for Biot numbers as low as
0.02, but for the smallest Bi the terminal velocity was not reached within our computational domain
and are therefore not included in Fig. 6. When adsorption is fast relative to convection, i.e., large
Bi, the surface concentration gradients are nullified by the quick adsorption and the concentration
of surfactant approaches its equilibrium value on the entire drop. We therefore expect that U∞ will
approach the speed of a clean drop as Bi → ∞, as has been reported by previous researchers [19].
On the other hand, as Bi approaches zero, adsorption becomes so slow that surfactants are effectively
insoluble. In that case, U∞ will approach the speed of a drop contaminated by insoluble surfactant
[33], corresponding to approximately 0.8 when normalized by Uclean, (see column 4 of Table IV).
Our results agree well qualitatively with previous results obtained for creeping flow [19], though
a direct quantitative comparison is not possible as the parameters used do not match exactly. We
note that the limit Bi → 0 does not correspond to a clean drop, as adsorption is still taking place,
albeit slowly, and the terminal velocity then refers to the speed reached if time were also allowed to
approach infinity. However, the distance required to reach that terminal velocity, as discussed below,
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FIG. 6. Terminal velocity vs (a) Biot number and (b) adsorption number, for a drop rising in a surfactant
layer, at two different Reynolds numbers. The terminal velocity is normalized by the steady-state speed of a
clean drop for the same Reynolds number.

will increase indefinitely in that limit. The effects of the Biot number are also seen to be stronger at
lower Reynolds number.

Figure 6(b) shows that increasing Ad results in a terminal velocity approaching that of a clean
drop, similar to what is seen at large Bi, as Marangoni effects cannot be maintained when adsorption
happens quickly. Our nondimensionalization is such that varying Bi or Ad corresponds to changing
adsorption or desorption rates for a fixed equilibrium surfactant concentration. Increasing Ad
therefore corresponds to increasing the adsorption rate relative to the desorption rate. As shown
in Fig. 5, surface concentration gradients, and hence Marangoni effects, are greatest for small Ad,
and consequently the terminal velocity is then reduced. Our approach emphasizes the effects of
changing sorption rates but does not describe the effects of varying the potency of the surfactants
(our Marangoni number was kept constant). Those effects have been described in previous studies
[20], where the definition of the adsorption number includes the equilibrium concentration. In that
notation, reducing the adsorption number also corresponds to reducing the equilibrium surfactant
concentration, which leads to nonmonotonic effects as the surfactant potency changes together with
its adsorption rate. Our results, especially for high Ad or Bi, fall into the so-called remobilization
regime, in which the drop behaves more like a clean drop as Ad or Bi increases. If the equilibrium
concentration is close to the maximum packing concentration, increasing Ad results in stagnation
on the interface, and decreased drop speed, as was studied by previous authors [19,22]. This regime
was not considered in the present study.

C. Transient effects

Two key elements may be used to describe the transition from the clean layer to the surfactant
layer: the strength of the suction experienced by the drop upon entering the surfactant layer, and the

TABLE IV. Rising speeds for clean and insoluble surfactant-laden drops, obtained in a previous study [33].
For various Reynolds number, we give the rising speed of a clean drop relative to the Hadamard-Rybczynski
speed (second column), a contaminated drop relative to the Hadamard-Rybczynski speed (third column), and
a contaminated drop relative to a clean drop (fourth column).

Re Uclean/UHR U (Mg = 2)/UHR U (Mg = 2)/Uclean

1 0.7486 0.6016 0.8036
10 0.5501 0.4438 0.8068
20 0.4723 0.3705 0.7845
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FIG. 7. Maximum speed attained as a clean drop enters a surfactant layer, normalized by the steady-state
speed of a clean drop for the same Reynolds number. (a) The maximum speed’s dependence on the Biot
number, with Ad = 1 fixed; (b) its dependence on the adsorption number, with Bi = 1 fixed.

duration of its effect. We quantify the strength of the suction effect by the maximum speed reached,
while the duration of the suction is measured by recording the distance over which its effects are felt.
We note that preliminary results have shown that when the drop is more viscous than the ambient,
as oil drops in the ocean would be, the suction effect is less vigorous, but the distance over which it
is felt is larger.

Figure 7 shows the maximum speed reached, normalized by the steady-state speed of a clean
drop, plotted against the Biot number in Fig. 7(a) and the adsorption number in Fig. 7(b). The results
are given for Re = 1 and Re = 20 and show that the suction is slightly stronger at low Reynolds
numbers. In the limit Bi → 0, we expect Umax to approach the terminal speed of a clean drop, as
adsorption occurs infinitely slowly. As the Biot number increases, the rate of adsorption increases,
and the acceleration of the drop is more vigorous. As Bi gets large, we expect the terminal speed
to approach a maximal finite value, determined by a balance between convection and diffusion.
Similarly, the dependence on Ad shows a stronger acceleration for larger adsorption numbers,
though we anticipate this effect will level off as Ad is increased further.

To quantify the duration of the transition from the clean to the surfactant layer, we recorded the
height, ztrans, at which the drop speed has come to within 1% of its terminal value in the upper layer.
In Fig. 8 these transitional heights are plotted against the Biot number [Fig. 8(a)] and adsorption
number [Fig. 8(b)]. The results are again given for Reynolds numbers of Re = 1 and Re = 20,
emphasizing the longer delay due to entrainment at low Reynolds numbers. We expect that ztrans will
go to infinity as Bi → 0 since this limit corresponds to adsorption being present but happening at a
rate approaching zero. On the other hand, as Bi → ∞, ztrans approaches a value of approximately six
radii above the transition level, as the transition to equilibrium is determined entirely by convection.
Increasing the adsorption number is also seen to reduce the extent of the transition region, though the
effect of Ad is weaker. Notably, when inertial effects are increased, changing the rate of adsorption
has only a minimal effect on the extent of the transition region. This is likely due to the reduced
entrainment at higher values of Re, which results in adsorption taking place relatively quickly even
for Ad ∼ 1.

D. Predicted profile

In all cases considered, we postulate that the vertical component of the surface tension gradient
is the primary factor determining changes in the speed profile of the drop. This hypothesis can be
tested by forming a predicted speed profile, based on the surface tension gradient alone:

Upred = U |z=10 + a∇σ · k, (24)
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FIG. 8. Height, ztrans, at which the drop comes within 1% of its terminal speed vs the Biot number (a) and
the adsorption number (b), at two different Reynolds numbers. The height is measured from the bottom of the
cylindrical domain, and the surfactant layer begins at z = 10.

where a > 0 is a calibration parameter corresponding to a speed over drag ratio, per unit surface
area. The quantity ∇σ · k is the vertical component of the surface tension gradient, averaged over
the surface of the drop, given by

∇σ · k = 1

sd

∫ sd

0

dσ

ds
sin ϕ ds, (25)

where sd is the total arc-length from the bottom to the top of the drop (generally, sd ≈ π ), and ϕ

is the angle to the vertical. Here Eq. (24) assumes that the forces acting on the drop are always at
equilibrium, which is valid at low Reynolds numbers.

We computed ∇σ · k by evaluating the right-hand side of Eq. (25) numerically. Figure 9 shows
predicted and computed velocities versus height for given adsorption and Biot numbers for Reynolds
numbers that are low, Re = 1, (a) and moderate, Re = 20, (b). Our prediction is highly accurate for
a Reynolds number of Re = 1. The predicted speed is less accurate when Re = 20, where the most
noticeable discrepancy is a lag in our predicted speed, or a delay in speed changes. This is consistent
with inertial effects impacting the rise speed. In addition, the predicted speed is shifted vertically

FIG. 9. For a clean drop entering a surfactant layer, computed speed vs a prediction based on surface
tension gradients [see Eq. (24)], for Re = 1 (left), using a calibration parameter of a = 1.34, and Re = 20
(right), using a calibration parameter of a = 16.76. In both plots Ad = Bi = 1.
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from the actual speed, which we suspect is due to the drop’s own inertia. The results are similar
for different Biot and adsorption numbers. A more detailed model could be developed based on
Newton’s second law by tracking the acceleration of the drop in terms of the instantaneous forces
acting on the drop. However, capturing the dependence of the forces on the Reynolds number is
beyond the scope of the present work, and we therefore limit our conclusions to stating that in the
small Reynolds number regime, Eq. (24) yields an accurate prediction.

VI. SUMMARY AND CONCLUSION

We have applied a Volume-of-Fluid front tracking method to study rising surfactant-laden drops,
examining a clean drop entering a surfactant layer. We have found that a drop rising at steady state
into a layer of soluble surfactant undergoes changes in velocity based on the surfactant concentration
gradient on the surface. As the drop first enters the surfactant layer, surfactant adsorbs onto the top of
the drop, resulting in a surface tension gradient that quickly accelerates the drop. Past this transient
stage, surfactant is advected by the flow and accumulates at the bottom of the drop, reversing the
surface tension gradient and causing additional drag. At low Reynolds number, the drop velocity is
nearly completely predicted by its instantaneous surfactant concentration distribution.

We have described the effects of the Biot and adsorption number on drops rising into a surfactant
layer, as well as the effect of changing the Reynolds number from 1 to 20. Faster adsorption,
corresponding to larger Biot and adsorption numbers, results in sharper surfactant concentration
gradients during the suction phase, and milder gradients later on, increasing the rise velocity of
the drop in both cases. Moreover, the duration of the transition is reduced when adsorption takes
place faster, and when entrainment is reduced through an increase in inertial effects. In general, the
terminal velocity of the rising drop is between that of a clean drop (Hadamard-Rybczinskii velocity
in the absence of inertia) and that of a drop covered with insoluble surfactants which behaves as a
solid ball (Stokes velocity in the absence of inertia). Faster sorption leads to behavior resembling
that of a clean drop, as variations in surface tension are then quickly smoothed away. We anticipate
that fast diffusive effects would have a similar effect. We found that our results for steady-state
velocity are in good agreement with existing results for varying Biot numbers in creeping flow [19],
and fall into the less studied [20] regime in which increasing the adsorption number increases drop
speed. We note that the acceleration described here is similar to that experienced by drops entering
a compositionally different layer where their surface tension becomes smaller [41]. In that case,
the acceleration is even more pronounced, as compositional differences are effectively adsorbed
instantaneously.

We focused in this study on characterizing the effects of adsorption. However, this system is very
rich and complex, and other aspects of it therefore remain to be explored. Due to the large number
of parameters at play, we held the Marangoni number and adsorption depth constant and considered
only Reynolds numbers 1 and 20. However, real oil drops occur over a broad range of sizes and
therefore of Reynolds numbers. We also restricted our attention to small Weber numbers, for which
drops are only weakly deformed. Although work has been done on drop deformation at steady state
[25], deformation effects upon entering a layer of dissolved surfactant remain to be investigated.
The effects of the adsorption rate on the breakup of larger drops is an important consideration
that remains to be investigated, as it determines the long-term size distribution of drops. We
also kept diffusive effects small through large fixed values of the Péclet numbers. However, the
presence of boundary layers depleted of surfactants around rising drops is known to influence their
speed [10,40], and a study of their effects on transient motion remains to be undertaken. Also for
simplicity, we used a linear surfactant relation throughout our study. For a more realistic physical
picture, the effects of the Langmuir surfactant relation should be investigated for drops entering a
surfactant layer, and perhaps even the full Frumkin relation, as has been done for steady-state motion
[19]. Finally, we focused here on sharp transitions from clean to surfactant layers. In natural settings,
the transitions are likely to be smoother, and considering a constant ambient surfactant concentration
gradient would help provide a more complete picture of how oil drops rise in the oceans.
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