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Stall of airfoils with blunt noses at low to moderately high Reynolds numbers
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The onset of leading-edge stall on stationary, smooth, thin, two-dimensional airfoils with
various blunt nose shapes of the form y = ±k(ax )

1
a (where a � 2 and k is a constant) at

moderately high chord Reynolds numbers (Re) is studied. A reduced-order, multiple-scale
model problem is developed and is complimented by direct numerical simulations for
low Re and numerical computations using a Reynolds-averaged Navier-Stokes (RANS)
flow solver for moderately high Re. The asymptotic theory results in a description of the
flow around a thin airfoil composed of an outer region about a majority of the airfoil’s
chord, and an inner region, surrounding the nose, that match each other. The classical
thin airfoil theory dominates the outer region. The coordinates in the inner region are
scaled with respect to a characteristic length of the nose and the Reynolds number is
modified (ReM ) in order to account for the acute velocity changes in the inner region, where
both near-stagnation and high-suction areas appear. The far field of the inner region is
described by a symmetric effect due to nose shape and an asymmetric effect with a lumped
circulation parameter (Ã) due to angle of attack and camber. The inner flow problem is
solved numerically using a transformation from the physical domain to a computational
domain and a second-order finite-difference scheme for integrating the vorticity and stream
function. The computed results demonstrate numerical convergence with mesh refinement.
The inner region solutions reveal, for various values of a, the nature of the flow around the
nose and the inception of global separation and stall as Ã increases above a certain critical
value, Ãs , at fixed a and ReM . For a � 2, the value of Ãs decreases with ReM up to a
limit value, ReM,lim, above which unsteady effects increase Ãs and delay the onset of stall.
For airfoils with the same thickness ratio and position of maximum thickness, global stall
is delayed to higher angles of attack as a is increased above 2. The results of the RANS
computations for various a show matching with the asymptotic results in a certain region
of ReM values, as well as extend the stall predictions of Ãs to higher ReM . Parametric
studies provide data for the design of novel airfoils with blunt noses and higher stall angles
of attack at various Re.
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I. INTRODUCTION

The stall of airfoils is a fundamental physical phenomenon in fluid mechanics and aerodynamics
which refers to the sudden separation of flow from the surface of the airfoil, resulting in a precipitous
loss of lift, increase of drag, and change of pitching moment when the oncoming flow angle of
attack is above a certain critical value. Stall may have both detrimental and beneficial effects
on various engineering flow systems. It presents a significant limitation to the design of aircraft
wings and stabilizers, propeller and rotorcraft blades, jet-engine compressors and turbine blades,
and submarine fins and control surfaces. On the other hand, stall is useful for decelerating systems
(spoilers) of aircraft and high-speed cars and for limiting the speed of rotating wind turbine blades
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in order to prevent overpower situations and catastrophic failures. Stall also appears in the flight of
birds and insects (landing and hovering) as well as in marine life motion.

The classical experimental investigations of Jones [1], Jacobs and Sherman [2], Abbott and von
Doenhoff [3], and Tani [4] and the modern works by Selig et al. [5] and Yen and Huang [6] provide
the stall angle of attack for various thin airfoil shapes with small camber and parabolic noses. The
experiments demonstrate that the stall angle is a function of chord Reynolds number (Re) and
airfoil geometry. Stall angle increases with Re for Re > 100 000 as well as with the increase of
the thickness ratio, δ, or the nose radius of curvature, Rn.

Two types of stall phenomena are known to occur on stationary airfoils. Leading-edge stall occurs
on airfoils that are relatively thin, having thickness ratios of no more than 14%, typical of wing
sections of common aircraft that operate at both low and high subsonic speeds. In this case, the
separation zone is generated very close to the leading edge of the airfoil and grows as the angle
of attack of the airfoil is increased. The loss of lift resulting from this stall phenomenon is rapid
and abrupt. On the other hand, trailing-edge stall is predominant on airfoils with thickness ratios
greater than 15%, typical of training and heavy low-speed aircraft. Here, the separation zone builds
up from the trailing edge of the airfoil and moves upstream toward the nose as the angle of attack
is increased. The loss of lift resulting from this type of stall is gradual with the increase of angle of
attack. In the present study, we focus solely on the mechanism of the onset of the leading-edge stall
on a stationary airfoil in a uniform and incompressible steady flow with no background turbulence.

The leading-edge stall of airfoils is preceded by the appearance of a recirculation bubble located
in the boundary layer. This bubble is formed at an angle of attack which is lower than the stall
angle of the airfoil. The Pavelka and Tatum [7] experiments demonstrate the existence of this
prestall separation bubble. For Re < 20 000, the flow all around the airfoil is laminar and the
short bubble grows in size as the angle of attack is increased. At a certain angle of attack, the
bubble bursts, resulting in a long laminar separation zone which defines the stall of the airfoil
(with transition to turbulence far downstream). When 30 000 < Re < 300 000, the appearance of the
laminar separation bubble is accompanied by a transition to turbulence above the airfoil at prestall
states. The stall of the airfoil still results from the bursting of the separation bubble. For higher
Reynolds numbers, Re > 500 000, the short bubble induces immediate transition to a turbulent
boundary layer. The turbulent boundary layer is able to delay the effect of the adverse pressure
gradient by keeping the bubble size small (less than 1% of the airfoil’s chord). As the angle of
attack is increased, the bubble size decreases, the adverse pressure gradient becomes more severe,
and the turbulent boundary layer eventually separates from the surface of the airfoil, which results
in stall.

To the best of our knowledge, there are no experimental studies of the stall of airfoils with blunter
noses than that of the classical airfoils with a parabolic nose.

In addition to the experimental work on the subject of stall, a number of theoretical studies have
been performed with the goal of predicting the stall angle of attack of airfoils. Werle and Davis [8]
solved the laminar boundary-layer parabolic differential equations for an incompressible flow past a
canonic parabola. Their approach, however, resulted in a Goldstein-type singularity as the separation
point is approached due to a lack of complete interaction between the separation zone and the
outer flow region. In an effort to rectify this singularity, Stewartson [9] and, independently, Ruban
[10] used a marginal separation theory (MST), triple-deck method, to allow for a more complete
interaction between the various flow regions. This theory uses three regions (decks) corresponding
to different regions of the flow. The upper deck corresponds to the outer inviscid flow region. The
lower deck is within the boundary layer and surrounds the separation point. The lower and upper
decks are permitted to interact with each other through an intermediate region known as the middle
deck. Their results demonstrate a trend of angle of attack of stall inception which decreases with
the increase of Re. This is opposite the trend found by the experimental studies described above.
This trend is a result of the various regions of the triple-deck approach being scaled with inverse
powers of Reynolds number. Such a scaling reduces the size of the lower deck to a point in the
limit as Re approaches infinity. As the lower deck shrinks in size, the short recirculation bubble,
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which is present at prestall states, begins to dominate the lower deck. The MST is unable to observe
the stall-delaying behavior of the turbulent boundary layer resulting from this short recirculation
bubble. Therefore, the MST is limited to the prediction of the appearance of the short recirculation
bubble in a prestall state of marginal separation.

In a set of two recent papers, Rusak and Morris [11] and Morris and Rusak [12] studied
the leading-edge stall of thin airfoils with a parabolic nose at subsonic speeds and at low to
moderately high Reynolds numbers. They accounted for the complete interactions between the
near-wall viscous boundary-layer flow and the outer inviscid flow. The asymptotic analysis for
thin airfoils resulted in a simplified model problem of a uniform, steady stream at a rescaled
Reynolds number, ReM , past a semi-infinite, stationary, canonic parabola with a far-field circulation
governed by a parameter Ã. This parameter is related to the angle of attack, nose radius of curvature,
and camber of the airfoil and to the flow Mach number. It results from the asymptotic matching
between the outer flow around most of the airfoil chord (that is described by Prandtl’s thin airfoil
theory including the Kutta condition at the trailing edge) and the inner viscous flow around the
parabolic nose. The model parabola problem was solved using numerical simulations based on
the Navier-Stokes equations for low ReM , 100 < ReM < 2 000, and using the Reynolds-averaged
Navier-Stokes (RANS) formulation for high ReM , 1 000 < ReM < 100 000. The computed results
were used to determine the special value of Ãs where a large separation zone first appears in the
nose flow, concurrent with a sudden drop of the maximum suction. The variation of Ãs with ReM

was presented as a universal parameter for stall prediction. The predicted Ãs values showed two
significant results: (1) decrease with ReM and agreement with the predictions according to the MST
theory [13] for 100 < ReM < 300 and (2) increase with ReM in the range 300 < ReM < 2 000 and
matching with the RANS predictions in the range 1 000 < ReM < 2 000. In this range of ReM ,
convective waves are shed out of the local separation zone and help to delay the onset of global
separation and stall to values of Ãs above those predicted by MST. These waves appear for the first
time at values of Ã slightly above the MST prediction. Moreover, the RANS predictions for high-Re
flows show that the further increase of Ãs with ReM above the MST predictions is caused by the
turbulent flow behind the localized separation zone. These values of Ãs were used for the prediction
of the stall angle αs as a function of Re of various airfoil geometries and were compared with stall
results from much of the available experimental data at chord Reynolds numbers Re > 40 000 (see
details in Ref. [11]). The theoretical predictions of the stall angle of attack are within 1.5 deg above
the experimental values (less than 10% error).

To the best of our knowledge, the stall of airfoils with noses blunter than the classical parabolic
nose shapes was never studied either theoretically or numerically (as well as not experimentally).
It should be mentioned, however, that the designs proposed by Liebeck [14] suggest a class of
airfoils for generating high lift in incompressible flows. These designs indicate that making the
parabolic nose more blunt results in the increase of the angle of attack of stall. This trend is also
supported by the theory in Refs. [11,12], which showed that the stall angle is proportional to

√
Rn

and for classical parabolic nose airfoils increases with the increase of the nose radius of curvature
or airfoil’s thickness ratio. However, for parabolic nose airfoils, once thickness ratio is increased
above 14% they are dominated and limited by the trailing-edge stall phenomenon, which reduces
the angle of stall. Our idea is that the nose curvature is increased without any increase of thickness
ratio above 12%, such that leading-edge stall is delayed and trailing-edge stall does not dominate
and limit the aerodynamics of novel airfoils. This also allows the increase of airfoil volume without
increase in thickness ratio to contain more fuel inside the wings.

The present study focuses on the prediction of the onset of leading-edge stall of thin airfoils with
noses that are blunter than parabolic shapes. The nose shape is described by y = ±k(ax)

1
a (where

a � 2). Thereby, the radius of curvature at the leading edge turns from finite when a = 2 to infinite
when a > 2 and this allows more flow symmetry around the nose with increase of a above 2 and
may help delay stall. Such a theoretical study has never been conducted. The extension of the results
of Morris and Rusak [12] to such airfoils is not trivial since the nose shape parameter, a, complicates
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the mathematical analysis of the problem and results in a more detailed physics, specifically as a

is increased above 2. For example, the blunter nose shapes have an infinite curvature at the leading
edge and as a result there is no natural length scale of the nose as there was for the parabolic nose
with a = 2 where the nose radius of curvature dominates the problem. We first determined through
the analysis the length scale, Rn, that characterizes nose shapes with a > 2 and matches the case
of a = 2 as well. Using that length scale, we developed asymptotic approximations of the flow in
inner and outer regions around the airfoil. In the inner region, ReM is based on this definition of Rn.
Moreover, the matching of flow behavior between these regions in an intermediate region is more
complicated than that for the case a = 2 since it requires a careful, more general, expansion of the
flow behavior when the distance from the outer region toward the leading edge is reduced and when
the distance from the leading edge is increased. Such a detailed analysis has never been performed.
The resulting flow problem in the inner region involves many terms that do not exist when a = 2.
Thereby, it also complicates the numerical solution of this problem and requires the development of
a new general finite-difference code that can handle any value of a, not only a = 2, as was done by
Morris and Rusak [12]. The computed results of the stall parameter, Ãs (ReM ; a), provide insight into
the possible delay of stall using nose shapes with a > 2. Moreover, the present analysis shows that
design of thin airfoils with blunter nose shapes than parabolic is definitely feasible and can impact
the angle-of-attack envelope of operation of wings of low-speed as well as high-speed aircraft and
rotor blades of helicopters and turbines.

The present results are limited to the appearance of only leading-edge stall on thin airfoils with
thickness ratios less than or equal to 12%, camber ratio up to 4%, and angles of attack up to 14
deg. At higher thickness ratios or camber ratios, trailing-edge stall may dominate the flow and is not
modeled by the present study. Also, present computations are limited to flow Reynolds numbers Re
based on airfoil’s chord up to 300 000 where the boundary layer flow is mostly laminar and there
is no imposed transition to turbulence by tripping the boundary layer. There is no perturbation or
turbulence in the upstream flow. When upstream turbulence exists or when transition is imposed by
tripping, they may also effect the appearance of stall to higher angles of attack; see, for example,
the recent simulations of Balakumar [15]. This observation agrees with Morris and Rusak’s [12]
theory; they showed that the appearance of unsteady shedding of vortices from the leading-edge
separation zone when ReM > 300 (or Re > 20 000) is the mechanism of increase of stall angle of
attack in classical airfoils. With the increase of Re above 300 000, these shedding waves become
more turbulent and help to further delay the stall angle of attack. Tripping of the boundary layer,
specifically between the maximum suction point and the nose of the separation bubble, helps to
ignite this mechanism.

We note that within these limitations, the results in Refs. [11,12] show that the prediction of
the stall angle of attack is accurate within less than 1.5 deg with respect to experimental data for
many practical thin airfoil shapes and correctly predicts the change of their stall angle of attack
with Reynolds number, airfoil thickness, or nose radius of curvature. This wide range of agreement
supports the approach of the present paper.

The outline of the paper is as follows. The mathematical model and the reduced order model for
leading-edge stall analysis are formulated in Sec. II. Section III describes the numerical approach to
solving the inner flow problem. Mesh convergence studies are presented in Sec. IV. The results of
the numerical simulation for the inner nose problem are presented in Sec. V. The results of the inner
flow problem are extended to higher Reynolds numbers using a Reynolds-averaged-Navier-Stokes
method, presented in Sec. VI. A summary of results and conclusions is given in Sec. VII.

II. MATHEMATICAL MODEL

We consider a smooth, thin airfoil with a shape given by y = δcFu,l (x/c) for 0 � x � c and
0 < δ � 1, where c is the chord, δ is the thickness ratio, and Fu,l (x/c) are the shape functions
of the upper and lower surfaces of the airfoil, respectively. The x axis goes along the free stream
direction, with a unit vector i, and measures distance from the leading edge, where x = 0. The
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y axis, with a unit vector j, measures distance normal to the x axis. The airfoil is assumed
to be at a low angle of attack, α (in radians), with respect to the free stream direction, such
that the scaled angle of attack in terms of the thickness ratio, A = α/δ, is O(1). The airfoil
shape function is given by Fu,l (x/c) = Ca (x/c) ± t (x/c) − Ax/c. Here, the camber function
is Ca (x/c) and the thickness function is t (x/c), where at the trailing edge Ca (1) = t (1) = 0.
These functions are defined by Ca (x/c) = m1(x/c) + m2(x/c)2 + · · · and t (x/c) = h0(x/c)

1
a +

h1(x/c) + h2(x/c)2 + · · · , where m1, m2, . . . , h0, h1, h2, . . . are given coefficients and a � 2.
The airfoil’s nose is characterized by a length scale, Rn = a

−1
a−1 (δh0)

a
a−1 c, that is much smaller

than the chord. Then, near the leading edge, the airfoil exhibits a canonic shape in terms of Rn,
y/Rn = (ax/Rn)1/a .

We note that the equation for Fu,l (x/c) includes a term Ax/c. This term represents the leading
order of rotating the base airfoil shape about the leading edge at the origin by the angle of attack α

with respect to the uniform flow direction. A similar approach of formulating the airfoil geometry
in aerodynamic mathematical analysis was used in the classical book by Cole and Cook [16], p. 47,
Eq. (3.1.2). In the case of thin airfoils (with 0 < δ � 12%) with small camber ratio (less than 4%) at
low angles of attack (up to 14 deg) that we study in this paper, this formulation is consistent with all
the asymptotic steps of the analysis below and provides sufficiently accurate predictions of airfoils’
aerodynamics behavior with a relative error on the order O(δ2, α2).

The fluid is Newtonian and the flow around the airfoil is two dimensional, incompressible
(constant density), and viscous with constant free upstream velocity U∞, pressure P∞, and density
ρ∞ and with no upstream perturbation or turbulence. The Reynolds number based on chord
(Re = ρ∞U∞c/μ∞) is moderately high with viscosity, μ∞, given by the free stream temperature,
T∞. We focus on the case where the flow is attached to the airfoil.

The attached flow over the airfoil is described by the nondimensionalized, two-dimensional,
unsteady, incompressible, and viscous Navier-Stokes equations,

∇ · V = 0, (1)

∂V
∂τ

+ V · ∇V = −∇P + 1

Re
∇2V. (2)

Here, τ is the nondimensional time scaled by c
U∞

, x and y are nondimensionalized by c, such that

x̄ = x
c

and ȳ = y

c
, ∇ = ∂

∂x̄
i + ∂

∂ȳ
j, V is the velocity vector non-dimensionalized by U∞, and P is

the pressure, scaled by the upstream dynamic pressure, ρ∞U 2
∞.

The governing equations are subjected to certain boundary and far-field conditions. The flow
obeys the no-slip and no-penetration conditions on the airfoil surfaces. In addition, far away from
the airfoil, perturbations to the uniform upstream properties decay to zero.

Because 0 < δ � 1 and Re � 1, the analysis of the steady and attached flow around the airfoil,
according to Eqs. (1) and (2), is amenable to an asymptotic approach. In order to proceed in such a
fashion and establish a simplified physical model of the flow around the airfoil, the flow is studied
in two regions of different length scales: an inner region around the nose of the airfoil that is
characterized by the length scale Rn and an outer region around most of the airfoil away from
the nose that is characterized by the length scale c; see Fig. 1. The inner region exhibits large
velocity and pressure gradients resulting from the stagnation region near the leading edge, on the
lower surface of the nose, and the subsequent acceleration of the flow around the curved nose to
a point on the upper surface at which the maximum velocity and minimum pressure are reached.
The viscous boundary layer splits at the stagnation point and develops as a thin layer along the
nose surfaces. In the inner region, the flow is described by a rescaled version of (1) and (2) with
the no-slip and no-penetration conditions on the nose surfaces. On the other hand, the outer region
exhibits relatively small velocity and pressure changes from the uniform stream properties. The
boundary layers of the outer region continue to develop from the inner region and stay attached and
thin all along the upper and lower surfaces. Therefore, the effect of the boundary layer on the outer
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FIG. 1. The physical model and various regions studied.

flow is negligible and the classical, inviscid-flow, thin-airfoil theory of Prandtl may apply in the outer
region with acceptable accuracy. The flow behavior in the overlap region between the inner and outer
regions must asymptotically match as distance from the leading-edge increases from below Rn to c.
Therefore, the far-field behavior of the inner region must match with the near-nose behavior of the
outer region. Since the boundary layer in the outer region is thin, the development of the boundary
layer does not affect the inner region flow behavior ahead of it (the flow in the boundary layer is
parabolic in nature). The inner region boundary layer, on the other hand, is significantly affected
by the development of the flow in the outer region near the nose, which dictates the far field of the
inner region. By establishing the matching between the flow behavior in the overlap region between
the inner and outer regions, the problem is reduced to that of a flow around the canonic nose of the
airfoil with a far field given by the inviscid thin airfoil theory. Stall of the airfoil is then determined
when the boundary layer suddenly expands and separates from the nose.

A. Outer region

In the outer region, we define coordinates x̄ = x
c

and ȳ = y

c
. Neglecting the thin boundary layer,

the steady and attached flow in the outer region is considered inviscid, irrotational, and potential.
Therefore, a velocity potential, φ(x̄, ȳ; δ,A), can be defined such that the velocity vector is given
by V = ∇φ. In the inviscid limit of (1) and (2), φ obeys

∇2φ = 0, (3)

the no-penetration condition, ∂φ

∂n̄
= 0, at every point of the airfoil surfaces (here, n̄ is the nondimen-

sional distance along the local, normal unit vector to the airfoil surface), and the decay of φ to x̄ at
distances far from the airfoil.

Following Prandtl’s thin-airfoil theory [17], the velocity potential, φ(x̄, ȳ ), may be given in the
limit as δ → 0 with a fixed A by the asymptotic approximation,

φ(x̄, ȳ; δ,A) = x̄ + δφ1(x̄, ȳ; A) + O(δ2, α2). (4)

Here, φ1 is the velocity perturbation potential which obeys the Laplace equation,

∇2φ1 = 0. (5)

The no-penetration condition on the airfoil surfaces becomes

∂φ1

∂ȳ
(x̄, ȳ → 0±; A) = dFu,l (x̄)

dx̄
for 0 < x̄ � 1. (6)

Also, the potential φ1 must decay to zero with distances far from the airfoil surface. As ȳ approaches
the upper surface, ȳ → 0+, and as ȳ approaches the lower surface, ȳ → 0−.

The solution of φ1 is given by [18]

φ1(x̄, ȳ; A) = φ1t (x̄, ȳ ) + Aφ1α (x̄, ȳ ), (7)
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where

φ1t (x̄, ȳ ) = 1

πc

∫ c

0
t ′
(

ξ

c

)
log

√
(x̄ − ξ )2 + ȳ2dξ, (8)

φ1α (x̄, ȳ ) = − 1

πc

∫ c

0
ω

(
ξ

c

)
arctan

(
ȳ

x̄ − ξ

)
dξ + �̃. (9)

Here, t ′ denotes the derivative of the thickness function with respect to ξ

c
. Using the coordinate

transformation, ξ

c
= 1

2 [cos(ϑ ) + 1], where 0 � ϑ � π , the function ω is given by

ω

(
ξ

c

)
= ω0

√
1 − ξ/c

ξ/c
−

∞∑
i=1

ωi sin(iϑ ), (10)

ω0 = 1 − 1

πA

∫ π

0
C ′

a

(
ξ

c

)
dϑ, ωi = 2

πA

∫ π

0
C ′

a

(
ξ

c

)
cos(iϑ )dϑ. (11)

Here, C ′
a denotes the derivative of the camber function with respect to the variable ξ

c
. Also, �̃ =

1
c

∫ c

0 ω( ξ

c
)dξ .

Let r̄ =
√

x̄2 + ȳ2 and θ = arctan ȳ

x̄
, such that x̄ = r̄ cos θ and ȳ = r̄ sin θ , where 0 � θ � 2π .

As ȳ → 0+, θ → 0, and as ȳ → 0−, θ → 2π . As the leading edge of the airfoil is approached,
r̄ → 0, the asymptotic exspansion of φ1, from Eqs. (7)–(9), is given by

φ1(x̄, ȳ; A) = h0

cos ψ
r̄

1
a sin

(
θ

a
+ ψ

)
+ 2Aω0

√
r̄ cos

(
θ

2

)
+ O(r̄ ). (12)

Here, ψ = π
2 − π

a
. This maintains the symmetry of the first term about the negative ȳ direction, for

which θ = π . Note that the asymptotic expansion in Eq. (12) matches the leading-order term of the
no-penetration condition in Eq. (6) as x̄ → 0+, i.e.,

∂φ1

∂ȳ
(x̄, ȳ → 0±; A) = ±h0

a
x̄

1
a
−1 + O(1). (13)

The first derivative of the first term of Eq. (12) with respect to ȳ matches with the right-hand side of
Eq. (13), while the first derivative of the second term in Eq. (12) is zero as θ → 0 or θ → 2π .

From Eqs. (4) and (12), the velocity potential, φ, in the limit δ → 0 with a fixed A, is described
by the following asymptotic expansion as r̄ → 0:

φ = x̄ + δ

[
h0

cos ψ
r̄

1
a sin

(
θ

a
+ ψ

)
+ 2Aω0

√
r̄ cos

(
θ

2

)
+ O(r̄ )

]
+ O(δ2, α2). (14)

Equation (14) shows that the structure of the flow in the outer region near the nose of the airfoil
maybe described, in the leading order, by a linear combination of a uniform flow, a symmetric flow
expansion due to the nose shape, and an asymmetric flow which runs around the nose due to the
airfoil’s angle of attack and the integrated effect of the camber. Since δh0 = a

1
a ( Rn

c
)

a−1
a and A = α

δ
,

Eq. (14) can be rewritten as

φ = x̄ +
[

1

cos ψ

(
Rn

c

) a−1
a

(ar̄ )
1
a sin

(
θ

a
+ ψ

)
+

√
2αω0

√
2r̄ cos

(
θ

2

)
+ O(r̄ )

]
+ O(δ2, α2).

(15)

Equation (15) shows that the velocity V as well as the pressure P change like r̄
1
a
−1 and become

singular as r̄ → 0, independent of θ . This is an expected leading-edge singularity since the thin-
airfoil theory assumes small disturbances form a uniform flow while, at the nose region, there are
significant velocity changes from a uniform flow. The singular behavior becomes dominant when
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0 < r̄ < Rn

c
. This singularity suggests that the flow near the nose must be analyzed in an inner region

around the nose with scaled coordinates based on Rn.

B. Inner region

In the inner region, around the nose of the airfoil, the characteristic length is Rn. We define
rescaled coordinates x∗ = x

Rn
, y∗ = y

Rn
. Time is rescaled as τ ∗ = tRn

U∞
. The use of rescaled coordi-

nates magnifies the view of the flow around the nose to be able to accurately capture the significant
changes of the velocity from stagnation on the lower surface to high suction on the upper surface
that occur in a small region of size Rn around the leading edge. It also avoids the need to apply
adaptive mesh techniques to accurately resolve the flow structure around the airfoil’s nose (Webster
et al. [19]).

Then, Eqs. (1) and (2) become

∇∗ · V∗ = 0, (16)

∂V∗

∂τ ∗ + V∗ · ∇∗V∗ = −∇∗P ∗ + 1

ReM

∇∗2V∗. (17)

Here, V ∗ and P ∗ are the nondimensional velocity vector and pressure in the inner region, scaled by
U∞ and ρU 2

∞, respectively. The modified Reynolds number of the inner region is based on Rn,

ReM = Re
Rn

c
, (18)

and ∇∗ = ∂
∂x∗ i + ∂

∂y∗ j. Also, as δ → 0 with a fixed A, the airfoil nose becomes, at leading order,

y∗ = ±k(ax∗)
1
a for x∗ � 0. For all time, t∗, the flow obeys the no-penetration and no-slip conditions

along the inner nose surface.
Let r∗ =

√
x∗2 + y∗2 and θ∗ = arctan y∗

x∗ , such that, x∗ = r∗ cos θ∗ and y∗ = r∗ sin θ∗.
As the far field of the inner region is approached, r∗ � 1, the flow is steady and nearly

inviscid, except for the thin boundary layer attached to the nose surface. Then, a nondimensional
velocity potential, φ∗(x∗, y∗; A) scaled by U∞Rn, exists in the far field of the inner region, where
V∗ = ∇∗φ∗. The velocity potential obeys the Laplace equation, ∇∗2φ∗ = 0. In the limit δ → 0,
the potential φ∗ is approximated, when r∗ � 1, by the following asymptotic expansion of certain
fundamental solutions of the Laplace equation that are chosen to later match with the outer solution:

φ∗(x∗, y∗; Ã) = x∗ + Ã
√

2r∗ cos

(
θ∗

2

)
+ k1(ar∗)

1
a sin

(
θ∗

a
+ ψ

)
+ O(r∗γ ). (19)

Here, 0 < γ < 1
a

. The constant coefficient k1 and the circulation parameter, Ã, are determined by
the matching between the inner and outer approximations of the velocity potential. The solution
given by Eq. (19) may contain additional fundamental solutions of the Laplace equation of the
shape r∗m cos(mθ∗) or r∗m sin(mθ∗), where 0 < m < 1/a, the coefficients of which are zero when
matched with the near nose solution of the outer region.

C. Matching between inner and outer expansions

Let r =
√

x2 + y2. Then, in the outer region, r = cr̄ , and in the inner region, r = Rnr
∗. Also

note that θ = θ∗. The matching of the near-nose outer and far-field inner asymptotic expansions
according to Eqs. (14) and (19) is carried out with the help of an intermediate region η(δ), where
rη = r

η
is held fixed in the limit δ → 0 with a fixed A and

0 < δ
a

a−1 � η(δ) � 1 (20)

such that, as δ → 0, η(δ) → 0 and the ratio η(δ)

δ
a

a−1
→ ∞. The scale η(δ) represents a whole order

class of limit between the inner and outer regions and is called the overlap region. Then, as δ → 0, in
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the near-nose outer region r̄ = η(δ) rη

c
→ 0 and in the far field of the inner region, r∗ = η

rη

Rn
→ ∞

(since Rn ∼ δ
a

a−1 ).
For matching, the expansions of the velocity potential in the physical scale must read the same,

to a certain order, when expressed in the rη coordinate:
Near-nose outer expansion

� = U∞c

{
x

c
+ δ

[
h0

cos ψ

(
η
rη

c

) 1
a

sin

(
θ

a
+ ψ

)
+ 2Aω0

√
η
rη

c
cos

(
θ

2

)
+ O

(
η
rη

c

)]

+ O(δ2, α2)

}

⇐⇒ (21)

Far-field of the inner expansion

� = U∞Rn

{
x

Rn

+ Ã

√
2η

rη

Rn

cos

(
θ

2

)
+ k1

(
aη

rη

Rn

) 1
a

sin

(
θ

a
+ ψ

)
+ O

[(
η

rη

Rn

)γ ]}
.

The leading-order terms shown in Eq. (21) with the same powers of rη match if

k1 = 1

cos ψ
, Ã = αω0√

Rn

2c

. (22)

Higher order terms on the order of O(δ2, α2), O(δη rη

c
), and O(Rn(η rη

Rn
)γ ) are not matched.

The matching of a continuous-flow behavior in the intermediate region between the inner and
outer regions results in a special relationship between the circulation parameter, Ã, and the rescaled
angle of attack, A = α/δ, the camber effect through ω0, and the nose characteristic length, Rn/c.
The circulation parameter Ã represents the lumped effect of angle of attack, airfoil camber, and
geometry on the far-field flow behavior of the nose region as distance from the leading edge is
increased toward the outer region.

The above matching formulates a well-defined, canonic, boundary value problem for the solution
of the inner flow around the nose. The inner flow is described by Eqs. (16) and (17) with the no-slip
and no-penetration conditions, V∗ = 0, along the canonic nose surface y∗ = ±k(ax∗)

1
a and with the

far-field condition given by Eq. (19) and coefficients in Eqs. (22).

D. Stall prediction

In the present study, we look to numerically solve the flow in the inner region around the canonic
nose surface and determine the value of Ã as a function of ReM at which a sudden global eruption
of the boundary layer occurs. This value is denoted as Ãs (ReM ; a) and is termed the stall circulation
parameter,

Ãs = αsωo√
Rn

2c

. (23)

This special value indicates a sufficient condition for the onset of leading-edge stall on the airfoil,
Ã > Ãs . Then, using Eq. (11) for ω0, the predicted stall angle of the airfoil is given by

αs = Ãs (ReM ; a)

√
Rn

2c
+ δ

π

∫ π

0
C ′

a

(
ξ

c

)
dϑ + O

(
1

2
A2

Sδ
2

)
. (24)
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The prediction of the stall angle, αs , is composed of two effects. The first is related to the nose
characteristic length, Rn/c, and the stall circulation parameter, Ãs , as a function of the modified
Reynolds number, ReM , and the nose shape parameter, a. The second effect is related only to the
derivative of the camber function. For typical airfoil shapes with thickness ratio 4% < δ < 12%
and small camber (of less than 4%), the first effect is dominant in determining the stall angle as
a function of ReM and a. On the other hand, for very thin airfoils with 0% < δ < 4%, the second
effect is dominant and the stall angle for such airfoils is nearly independent of the ReM and a.

At low Reynolds numbers, 100 � ReM � 1 250, we convert the flow problem of Eqs. (16), (17),
(19), and (22) into the stream function vorticity formulation and develop in the next section a
numerical code for flow simulations around the canonic nose at various values of a, ReM, and
Ã. From these simulations, we determine the value, Ãs (ReM ; a), at which global flow separation
occurs and the peak velocity on the upper surface of the nose suddenly drops with the increase of Ã.
From this stall onset value, the angle of attack of stall, αs , can be predicted according to Eq. (24).
Since we find that in all computed cases Ãs (ReM ; a) > 1, the present analysis shows that the relative
error in predicting αs according to Eq. (24) is O( 1

2 Ã2
s δ

2), an error that is typically within 1.5 deg.

III. NUMERICAL SIMULATION OF THE INNER PROBLEM

The formulation of the inner flow problem over a canonic nose shape requires the development
of a new computational solver for shapes with nose shape parameters a > 2.

A. Transformation to a computational domain

The inner region flow around a canonic nose section is described by the two-dimensional,
viscous, incompressible, and unsteady Navier-Stokes equations (16) and (17) written in terms of
the inner coordinates, x∗, y∗, τ ∗. Let � be defined as the stream function and ω as the vorticity,
such that the axial and normal velocity components, u∗ and v∗, and the vorticity are given by

u∗ = ∂�

∂y∗ , v∗ = ∂�

∂x∗ , and ω = ∂v∗

∂x∗ − ∂u∗

∂y∗ . (25)

The continuity equation (1) is automatically satisfied by Eq. (25). Also, this allows the momentum
equation (2) to be reduced to two equations for the solution of two dependent variables, the stream
function and vorticity,

∂ω

∂τ ∗ + ∂�

∂y∗
∂ω

∂x∗ − ∂�

∂x∗
∂ω

∂y∗ = 1

ReM

(
∂2ω

∂x∗2
+ ∂2ω

∂y∗2

)
, (26)

∂2�

∂x∗2
+ ∂2�

∂y∗2
= −ω. (27)

Equation (26) describes the transport of vorticity in the domain. Vorticity is convected by the flow
and diffused by the viscosity, specifically near the solid surface. Equation (27) is the kinematic
relationship between vorticity and the stream function. Solving the above equations for � and ω

allows for the direct computation of the velocity components, u∗ and v∗. Equations (26) and (27)
are subjected to both the no-penetration and no-slip conditions, u∗ = v∗ = 0, on the surface of the
canonic nose section as well as the far-field condition given by Eq. (19) and coefficients in Eq. (22).

The flow field in the (x∗, y∗) domain is transformed to a Cartesian computational space with the
aid of the specially designed transformed coordinates

x∗ = μa − ηa

a
, y∗ = μη. (28)

In the computational space, η is the coordinate which is normal to the canonic nose surface and
μ is the coordinate parallel to the surface. The surface of the canonic nose, y∗ = ±(ax∗ + 1)

1
a , is

described by the surface η = 1 and the flow evolves in the domain given by −∞ < μ < ∞, η > 1.
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FIG. 2. (a) Computational domain with � contours and (b) physical domain for the case of a = 2 at ReM =
100 and Ã = 1.5. The bottom of panel (a), the μ axis, represents the upper (positive) and lower (negative)
surfaces of the canonic nose. The top of panel (a) represents the far field away from the nose toward infinity.
The left and right sides of panel (a), the η axis, represent the far field away from the nose. The boundaries of
panel (b) are the nose wall and the inflow and outflow surfaces.

For the computational implementation, we used a truncated large domain where −μmax � μ �
μmax, 1 � η � ηmax. See Fig. 2 for an example of the computational domain and corresponding
physical domain and their nose wall at η = 1, upstream far field at ηmax = 11, and far-field upper
and lower outlet boundaries at μ = ±20. The case shown is for a = 2 at ReM = 100 and Ã = 1.5.
In Fig. 2(a), there are 50 equispaced ψ contours and there is a local separation zone on the positive
μ axis at μ ∼ 3, which corresponds to a location in the physical domain of x∗ ∼ 4, y∗ ∼ 3. This
local separation zone is barley seen in the global, physical scale.

Using the transformed coordinates in Eq. (28), the velocity components are given by

Vμ = 1√
μ2(a−1) + η2

∂�

∂η
, Vη = − 1√

μ2 + η2(a−1)

∂�

∂μ
. (29)
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Rewriting Eqs. (26) and (27) in terms of the transformed coordinates gives

∂ω

∂τ ∗ + 1

μa + ηa

(
∂ω

∂μ

∂�

∂η
− ∂ω

∂η

∂�

∂μ

)

= 1

ReM

[
∂2ω

∂μ2
K + ∂2ω

∂η2
L + 2

∂2ω

∂μ∂η
M + ∂ω

∂μ
N + ∂ω

∂η
P

]
, (30)

∂2�

∂μ2
K + ∂2�

∂η2
L + 2

∂2�

∂μ∂η
M + ∂�

∂μ
N + ∂�

∂η
P = −ω, (31)

where

K = μ2 + η2a−2

(μa + ηa )2
, (32)

L = η2 + μ2a−2

(μa + ηa )2
, (33)

M = μa−1ηa−1 − μη

(μa + ηa )2
, (34)

N = ηaμ(1 + a) + (1 − a)μa+1 − (1 + a)μa−1η2a−2 − (1 − a)ηa−2μ2a−1, (35)

P = (a + 1)μaη + (1 − a)ηa+1 − (a + 1)μ2a−2ηa−1 − (1 − a)μa−2η2a−1. (36)

Note that for the case of a = 2, K = L = 1
μ2+η2 and M = N = P = 0. However, when a > 2, these

terms are more complicated and effect the solution of Eqs. (30) and (31).
Since from the definitions of velocity components given in Eq. (29),

∂

∂μ
[
√

μ2(a−1) + η2Vμ] + ∂

∂η
[
√

μ2 + η2(a−1)Vη] = 0, (37)

in a conservative form, Eq. (30) is given by

∂ω

∂τ ∗ + 1

μa + ηa

[
∂

∂μ
(
√

μ2(a−1) + η2Vμω) + ∂

∂η
(
√

μ2 + η2(a−1)Vηω)

]

= 1

ReM

[
∂2ω

∂μ2
K + ∂2ω

∂η2
L + 2

∂2ω

∂μ∂η
M + ∂ω

∂μ
N + ∂ω

∂η
P

]
. (38)

Equations (38) and (31) are subject to the no-penetration and no-slip boundary conditions on
the surface of the canonic nose given respectively for all time, τ ∗ > 0, by Vη(μ, η = 1, τ ∗) =
Vμ(μ, η = 1, τ ∗) = 0. The no-penetration condition is also equivalent to �(μ, η = 1, τ ∗) = 0 for
all τ ∗ > 0. In the far-field of the inner region, when η � 1, the approximation given in Eq. (19) is
equivalent for all τ ∗ > 0 to

�(x∗, y∗, τ ∗; Ã) = y∗ + Ã
√

2r∗ sin

(
θ∗

2

)
+ k1(ar∗)

1
a cos

(
θ∗

a
+ ψ

)
. (39)

In Eq. (39), we use x∗ = (μa − ηa )/a and y∗ = μη to compute r∗ =
√

x∗2 + y∗2 and θ∗ =
arctan y∗

x∗ in terms of μ and η. Along the inlet and outlet far-field sections of the inner region, when
|μ| � 1, a passive condition ∂�∗

∂μ
= 0 is applied.

See the Appendix for the numerical scheme for the solution of the inner problem, numerical
boundary conditions, and numerical stability criteria.
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IV. MESH CONVERGENCE STUDIES

We first conducted mesh convergence studies for the case of a = 2.5 [a (2.5x∗)
2
5 nose] at two

representative Reynolds numbers, ReM = 100 and 900, each at two values of Ã. The first case
focuses on flows at ReM = 100 with Ã = 1.75 and Ã = 1.8; see Fig. 3 (here, μmax = 20 and ηmax =
11). In both cases, the long-term dynamics describe a laminar-flow global-separation state. This
state represents a leading-edge stall of the nose. Results of the Vμ velocity as a function of μ along
a grid line, η = 1.1, adjacent to the nose surface (η = 1) from computations with three meshes of
2M = 100 by N = 100, 2M = 200 by N = 200, and 2M = 200 by N = 400 were constructed.
Both Figs. 3(a) (for Ã = 1.75) and 3(b) (for Ã = 1.8) demonstrate agreement of computed results
from the finer two meshes, within a numerical accuracy of ∼0.02, all along the μ axis. Specifically,
the details of the flow including the stagnation point, both the negative and positive peaks of velocity,
and the velocity within the separation zone are nearly the same for both fine meshes.

In addition, Fig. 4 shows the stream function, �, contour lines according to the mesh 2M = 200
by N = 200 (the red contour lines) and according to the mesh 2M = 200 by N = 400 (the black
contour lines). The contour lines computed from the two meshes are essentially the same except for
minor changes within the separation zone on the upper surface of the nose, near the leading edge.
The computations demonstrate that the mesh with 2M = 200 by N = 200 provides sufficiently
accurate results of the flow behavior at the assigned operational conditions. This also matches with
the results from Morris and Rusak [12] for the case of a = 2 (a parabolic nose), who found that the
mesh of 2M = 200 by N = 200 provides, for 0 � Ã � 2, sufficiently accurate results at ReM =
100. This mesh is used in all further computations with 100 � ReM � 400. For higher values of
ReM , the mesh has to be refined to more accurately capture the details inside the boundary layer.

The second case studies mesh convergence of flows around a nose with a = 2.5 at ReM = 900
with Ã = 1 and Ã = 1.5. For the case of Ã = 1, the laminar flow around the nose is fully attached.
Figure 5 describes the computed results of the velocity Vμ along grid lines μ = 0.8, 1.6, 2.4 from
computations with the grids 2M = 100 by N = 100, 2M = 200 by N = 200, and 2M = 200 by
N = 400. For all values of μ, agreement of computed results from the two finer meshes (red
and black lines) are nearly the same within a numerical accuracy of ∼0.01, found by taking the
maximum difference between two mesh lines. In addition, Fig. 6 shows the stream function, �,
contour lines according to the mesh 2M = 200 by N = 200 (the red contour lines) and according to
the mesh 2M = 200 by N = 400 (the black contour lines). The contour lines from the two meshes
are essentially the same. The computations demonstrate that the mesh with 2M = 200 by N = 400
provides sufficiently accurate results of the flow behavior at the assigned operational conditions.
This mesh is used in all further computations with 400 < ReM < 1, 250.

With the increase of Ã at ReM = 900, the flow separates and becomes unsteady. For mesh
convergence, we focus on the case with Ã = 1.5, where the long-term flow describes a global
separation zone on the upper surface of the nose that sheds, from its tail, vortical waves that are
convected downstream along the upper surface; see Fig. 7 for the stream function contour lines
at t = 500. This unsteady flow behavior was studied using three meshes, 2M = 100 by N = 100,
2M = 200 by N = 200, and 2M = 200 by N = 400.

Figure 8 describes the results, computed from the three meshes, of a fast Fourier transform (FFT)
analysis of the unsteady Vμ velocity signal at two points, μ = 2.6, η = 1.05 and μ = 6.6, η = 1.15,
located within the separation zone and behind it, respectively. For both points, the results from the
meshes 2M = 200 by N = 200 and 2M = 200 by N = 400 are similar, showing the maximum of
the power spectral density (PSD) at a nondimensional frequency (scaled by Rn/U ) of about 0.02
at the point μ = 2.6, η = 1.05 and of about 0.007 at the point μ = 2.6, η = 1.05. These results
demonstrate that the unsteady structures that are shed from the separation bubble are not erratic but
are large-scale, coherent structures that are much greater in size than the mesh elements and exhibit a
consistent frequency of shedding. The computations also demonstrate that the mesh with 2M = 200
by N = 400 provides sufficiently accurate results of the separated, unsteady flow behavior at the
assigned operational conditions.

014101-13



MATTHEW G. KRALJIC AND ZVI RUSAK

-20 -15 -10 -5 0 5 10 15

(a)

(b)

20
-0.5

0

0.5

1

1.5

V
(

, 
=1

.1
)

200*400

200*200

Mesh Dimensions

-20 -15 -10 -5 0 5 10 15 20
-0.5

0

0.5

1

1.5

V
 (

,
=1

.1
)

200*400

200*200

100*100

Mesh Dimensions

FIG. 3. Results of mesh convergence studies for the cases with a = 2.5 (a (2.5x∗)
2
5 nose), ReM = 100,

and (a) Ã = 1.75, (b) Ã = 1.8.
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FIG. 4. Comparison of � contour lines for the case with a = 2.5 (a (2.5x∗)
2
5 nose), ReM = 100, and

Ã = 1.8. The red lines are results from the mesh with 2M = 200 by N = 200. The black lines are results from
the mesh with 2M = 200 by N = 400.

Results of time-asymptotic states of flows around a parabolic (a = 2) nose at various Ã with
ReM = 100 are shown in Fig. 9. At Ã = 0, the flow expands symmetrically around the nose. The
boundary layers develop with distance from the leading edge [Fig. 9(a)]. At Ã = 1.3 and Ã = 1.4,
the flow stays attached to the nose surfaces [Figs. 9(b) and 9(c)]. As Ã is further increased, the flow
exhibits a local separation zone when Ã is between 1.68 and 1.73. When Ã increases above 1.75,
a large and long global separation zone appears on the upper surface of the nose [Fig. 9(d)]. This
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FIG. 5. Results of mesh convergence studies for the cases with a = 2.5 (a (2.5x∗)
2
5 nose), ReM = 900,

and Ã = 1.

014101-15



MATTHEW G. KRALJIC AND ZVI RUSAK

FIG. 6. Comparison of � contour lines for the case with a = 2.5 (a (2.5x∗)
2
5 nose), ReM = 900, and

Ã = 1. The red lines are results from the mesh with 2M = 200 by N = 200. The black lines are results from
the mesh with 2M = 200 by N = 400.

indicates the leading-edge stall of an airfoil with a parabolic nose. For a = 2 and ReM = 100, we
find that Ãs = 1.75. This result matches the computations of Morris and Rusak [12] and, therefore,
provides a validation of computations with respect to previous studies.

V. COMPUTED RESULTS

We conducted extensive computations of flow behavior in the inner region for various values of
the nose shape parameter, a, the modified Reynolds number, ReM , and the circulation parameter, Ã.
The results are presented in the following paragraphs and demonstrate the change of flow structure
with the increase of Ã and a at a fixed value of ReM . The values of the stall parameter, Ãs , as a
function of ReM and a at which global separation and stall occur are identified, within numerical
accuracy, from these computations.

Computations of time-asymptotic states of flows around a nose with power a = 2.5 at ReM =
100 and various Ã are shown in Fig. 10. At Ã = 1.5, the flow expands around the nose surfaces and
the laminar boundary layers develop with distance from the leading edge and stay attached to the
surfaces [Fig. 10(a)]. At Ã = 1.6, the laminar boundary layer on the upper surface exhibits a local

FIG. 7. The � contour lines for the case with a = 2.5 (a (2.5x∗)
2
5 nose), ReM = 900, and Ã = 1.5

computed with the mesh 2M = 200 by N = 400 at t = 500.
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FIG. 8. Mesh refinement study of FFT results at long time flow behavior at ReM = 900 and Ã = 1.5 during
the time interval 500 � t � 600 from three meshes, 2M = 200 by N = 200, 2M = 400 by N = 200, and
2M = 400 by N = 400 at points (a) μ = 2.6, η = 1.05 and (b) μ = 6.6, η = 1.15.

swelling around x∗ = 15 and is on the verge of local separation [Fig. 10(b)]. At Ã = 1.65, a state
of marginal separation, identified by a local laminar separation zone, appears in the boundary layer,
centered around x∗ = 17 [Fig. 10(c)]. As Ã is further increased, the flow exhibits a global laminar
separation zone when Ã is greater than 1.7; see Figs. 10(d) for Ã = 1.7, 10(e) for Ã = 1.75, and
10(f) for Ã = 1.8. This indicates the leading-edge stall of an airfoil with a x

2
5 nose. For a = 2.5 and

ReM = 100, we find that Ãs ∼ 1.7.
With the increase of ReM from 100 to 600, the flow continues to exhibit a laminar boundary layer

that swells with the increase of Ã and eventually turns into a global laminar separation zone, similar
to the results with ReM = 100. However, the onset of stall appears at a value of Ãs that decreases
with ReM . For example, at ReM = 300, we find that Ãs ∼ 1.35.

Computations of time-asymptotic states of flows at ReM = 500 around a nose with power a =
2.5 at various Ã are shown in Fig. 11. At Ã = 1.1, the flow expands around the nose surfaces
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FIG. 9. Long-term states with a = 2 (a (2x∗)
1
2 nose), ReM = 100, and (a) Ã = 0, (b) Ã = 1.3, (c) Ã = 1.4,

(d) Ã = 1.77.

FIG. 10. Long-term states with a = 2.5 (a (2.5x∗)
2
5 nose), ReM = 100, and (a) Ã = 1.5, (b) Ã = 1.6,

(c) Ã = 1.65, (d) Ã = 1.7, (e) Ã = 1.75, (f) Ã = 1.8.
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FIG. 11. Long-term states with a = 2.5 (a (2.5x∗)
2
5 nose), ReM = 500, and (a) Ã = 1.1, (b) Ã = 1.2,

(c) Ã = 1.3, (d) Ã = 1.4.

and the laminar boundary layers develop with distance from the leading edge and stay attached
[Fig. 11(a)]. At Ã = 1.2, the laminar boundary layer on the upper surface exhibits a local swelling
around x∗ = 15 and is on the verge of local separation [Fig. 11(b)]. At Ã = 1.3, flow separation
occurs and the flow exhibits a global laminar separation zone [Fig. 11(c)], which continues to appear
at values of Ã above 1.3 [Fig. 11(d)]. For a = 2.5 and ReM = 500, we find that Ãs ∼ 1.25.

With the further increase of ReM above 600, for a nose with a = 2.5, the flow exhibits a
separation zone near the leading edge and the shedding of vortical waves from its tail. The waves
are convected downstream along the upper surface. This situation is similar to the results found
in Morris and Rusak [12] for the parabolic nose with a = 2 where unsteady flow behavior was
found at ReM > ReM,lim = 300. The flow unsteadiness in both cases (a = 2, a = 2.5) delays the
onset of global separation and stall to higher values of Ãs . For the nose with a = 2.5, we find that
ReM,lim = 600 for which a minimum Ãs is found, Ãs = 1.12. Also, Ãs increases with the increase of
ReM > 600. For example, when ReM = 1 000, Fig. 12 describes the separated, unsteady flow state
at Ã = 1.7 which is on the verge of stall as the maximum velocity on the upper surface continues to
increase when Ã is increased from lower values to 1.7. We find for a = 2.5 and ReM = 1 000 that
Ãs ∼ 1.7. Similarly, when ReM = 1 250, we find that Ãs = 2.1.

We conducted similar computations of the time-asymptotic states of flows around a nose with
the power a = 3 at various ReM and Ã. These computations show a behavior similar to that of

FIG. 12. Separated, unsteady flow state that is on the verge of global stall for a nose with a = 2.5 at
ReM = 1 000 and Ã = 1.7.
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FIG. 13. Long-term states with a = 3 (a (3x∗)
1
3 nose), ReM = 500, and (a) Ã = 0.9, (b) Ã = 1, (c) Ã =

1.1, (d) Ã = 1.2.

flows around noses with powers a = 2 and a = 2.5. We find that for the a = 3 nose Ãs = 1.42
at ReM = 100, it decreases with the increase of ReM up to ReM,lim = 650, where Ãs = 0.92, and
then increases with further increase of ReM . For example, time-asymptotic flow contours at ReM =
500 are shown in Fig. 13. At Ã = 0.9, the flow expands around the nose surfaces and the laminar
boundary layers develop with distance from the leading edge along the surfaces [Fig. 13(a)]. For
Ã � 1, flow separation occurs and the flow exhibits a global laminar separation zone; see Figs. 13(b)
for Ã = 1, 13(c) for Ã = 1.1, and 13(d) for Ã = 1.2. For a = 3 and ReM = 500, we find that Ãs ∼
0.95.

The results for the values of Ãs at various values of ReM , in the range between 100 and 1 250, and
a = 2, 2.5, 3 are presented in Fig. 14. The figure shows that for the three values of a, the value of Ãs

reaches a minimum value at a certain ReM,lim and then grows with the increase of ReM > ReM,lim.
This minimum of Ãs shifts to a higher value of ReM,lim as the value of a is increased. Also, the value
of Ãs at the minimum point decreases with the increase of a.

Note, however, that both ReM and Ãs , given by Eqs. (18) and (23), are the rescaled Reynolds
number and angle of attack, respectively, in terms of the nose characteristic length Rn/c, given
by Rn/c = a

−1
a−1 (δh0)

a
a−1 . As the nose parameter a gets higher, the nose becomes more blunt and

Rn/c increases. Therefore, when the canonic results for Ãs (ReM ; a) according to Fig. 14 are
converted to compute the stall angle of an airfoil in the physical domain, the chord Reynolds number,
Re = ReM/(Rn/c), is stretched less with the increase of a, while the stall angle, αs (Re) according
to Eq. (23), is stretched more with the increase of a. This may form results where the stall angle, αs ,
of airfoils with various nose shapes is greater with the increase of a at a fixed Re. This behavior is
demonstrated in the computed results of the following section.

0 200 400 600 800 1000 1200
Re

M
 

0

1

2

a=2
a=2.5
a=3

FIG. 14. Plot of Ãs for various values of ReM and a.
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FIG. 15. (a) Example of symmetric airfoils with various noses, a common tail, and the same thickness ratio
(0.12) with xt/c = 0.133. (b) Magnified view of various nose geometries in the range 0 < x/c < xt/c.

Because of constraints on computational resources, the inner flow simulations are limited to
ReM � 1 250 to achieve numerically accurate results.

VI. EXTENSION OF STALL RESULTS TO HIGHER REYNOLDS NUMBERS

To extend the results of Sec. V to a stall prediction of Ãs at higher ReM > 1 250, we used a
Reynolds-averaged Navier-Stokes (RANS) solver to estimate the flow around canonic, symmetric
airfoils with various nose shapes, a, and at various Re and angles of attack, α.

The studied airfoils were constructed in such a way that they all have the same thickness
ratio of δ = 0.12 but with various nose shapes y = ±k(a x

c
)

1
a in the range 0 � x

c
� xt

c
, where

k = δ
2/(a xt

c
)

1
a . The nose is followed by a straight segment parallel to the x axis from xt

c
to x

c
= 0.51

and a common tail composed of straight lines connecting the end of the straight segment and
the trailing edge at x

c
= 1. The characteristic length of the nose is given by Rn/c =

(δ/2)[t/(2axt )]1/(a−1), where t = δc. See Fig. 15 for examples of symmetric airfoils with various
noses, a common tail, and the same thickness ratio with a fixed xt

c
= 0.133. It can be seen that the

noses of the airfoils become more blunt as a is increased above 2. Also, Rn/c increases with a.
The tested airfoils were designed to accommodate canonic noses with various values of a and

xt

c
. The corner at x

c
= 0.51 helps to anchor any trailing-edge separation that originates on the aft

portion of the airfoil and prevent it from moving forward toward the leading edge. Thereby, the flow
around the leading edge evolves in a natural way as the angle of attack is increased until a global
leading-edge separation and stall occurs on the respective nose surface.

The commercially available software package ANSYS WORKBENCH was utilized with its geometry
and mesh generation capabilities as well as its RANS flow solver, FLUENT. A nonuniform mesh of
a C-shape domain surrounding each of the airfoils and extending to a control volume of 7.5 chord
lengths ahead, behind, and normal to the surface of the airfoils was constructed using the integrated
mesh construction software of the ANSYS suite. The mesh was weighted in both the normal and axial
directions toward the surface of the airfoil and its nose in order to accurately capture the stagnation
and maximum suction regions near the leading edge and the behavior of the flow in the viscous
boundary layers over the surfaces of the airfoils. For a mesh with 276 000 elements in the domain
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FIG. 16. The distribution of pressure coefficient, cp , as a function of x/c for various angles of attack,
α = 8◦, 9◦, 10◦, 11◦ for an airfoil with a = 2 nose with maximum thickness at xt/c = 0.190 and Re = 150 000.
The stall of the airfoil is depicted as α increases form 10◦ to 11◦.

around the airfoil, the typical element length near the leading edge is 1/700 of the chord and in the
boundary layer it is 1/150 of the chord in the axial direction and 1/1 400 of the chord in the normal
direction to the airfoil surface.

The airfoils were set in a uniform flow with a an upstream Mach number of Ma = 0.2. The
airfoil’s geometry was scaled based on changing the chord length to provide operational conditions
at various values of Re in the range 50 000 � Re � 300 000. The value of angle of attack, α, of the
upstream flow was increased form zero in small increments for each Re value studied until a global
stall occurred over the entire airfoil. On the downstream side of the control volume, the gauge
pressure was set to zero. The no penetration and no slip conditions of the flow were set all along the
surfaces of the airfoils. The k − ω turbulence model was used as part of the flow solver to describe
the flow around the airfoils, particularly in the viscous boundary layer near the airfoil surfaces.
Computed results exhibited, in the range of Re studied (50 000 � Re � 300 000), little sensitivity
of flow solutions to changes of the turbulence model parameters (see a similar demonstration by
Morris [21]). The results of RANS computations also exhibit convergence with mesh refinement
(see the study by Kraljic [22]).

At a fixed value of Re, the converged solution from a previous case of angle of attack was used as
an initial solution for the next case of angle of attack until global separation and stall were observed.
The determination of stall angle was based on the separation of flow from the upper surface of the
airfoil as well as the sudden drop in value of the lift coefficient, cl , and the sudden decrease in the
magnitude of the minimum pressure coefficient on the airfoil, cp.

Results for the airfoil representing the case of a = 2, xt/c = 0.190, and Re = 150 000 are shown
in Fig. 16. For this airfoil, Rn/c = 0.0095. As the angle of attack is increased from α = 8◦ to α =
10◦, the absolute magnitude of the minimum value of cp increases. The plotting of the distribution
of the pressure coefficient, cp, for various α indicates a significant change in the absolute magnitude
of the minimum cp from 4.4 at α = 10◦ to nearly zero at α = 11◦. The computed results indicate
the onset of a global leading-edge stall at αs ∼ 10.3◦. The corresponding lift coefficient also drops
significantly at this angle of attack.

The corresponding contours of velocity magnitude at various angles of attack are shown in
Fig. 17 [Fig. 17(e) provides the velocity scale in meters per second] and also serve to indicate
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FIG. 17. The fields of velocity magnitude around the airfoil with a = 2, xt/c = 0.190, Re = 150 000 at
various angles of attack: (a) α = 8◦; at this angle of attack, the flow is attached to both the lower and upper
surfaces of the airfoil. (b) α = 9◦; flow around most of the airfoil is attached but there is local flow separation
near the trailing edge. (c) α = 10◦; flow around most of the airfoil is attached but there is local flow separation
near the trailing edge. (d) α = 11◦; leading-edge stall state. (e) Velocity scale for parts (a) through (d) in meters
per second.

the angle of stall of the airfoil. Figure 17(a) presents the contours of velocity magnitude for α = 8◦
for which the flow is almost entirely attached to the surface of the airfoil. It exhibits the stagnation
of the flow on the lower surface of the nose (the dark blue area), the region of high suction (the red
area) with a maximum velocity up to 117 m/s on the upper surface of the nose, and the thin attached
boundary layers (the blue lines along the surfaces of the airfoil). As α is increased through 9◦ and
10◦, Figs. 17(b) and 17(c), the flow over the upper surface of the airfoil begins to gradually separate
from the trailing edge of the airfoil forward. Further, the value of the maximum velocity over the
surface of the airfoil increases (the red area) up to 141 and 146 m/s, respectively. The stagnation
point also moves along the lower surface of the airfoil toward the trailing edge. Finally, as α is
increased from 10◦ to 11◦, Fig. 17(d), the flow suddenly and completely separates from the upper
surface of the airfoil. The velocity of the flow above the airfoil becomes nearly stagnant and the
stagnation point along the lower surface moves near to the leading edge of the airfoil. The airfoil
is globally stalled in this state. This visual presentation is corroborated by the numerical results of
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FIG. 18. The distribution of pressure coefficient, cp , as a function of x/c for various angles of attack, α =
9◦, 10◦, 11◦, 12◦ for an airfoil with a = 2.5 nose with maximum thickness at xt/c = 0.190 and Re = 150 000.
The stall of the airfoil is depicted as α increases form 11◦ to 12◦.

cp presented above in Fig. 16. It should be noted that the stall of the airfoil in Fig. 17 describes a
classical leading-edge stall phenomenon.

Results for an airfoil with a blunter nose of a = 2.5 and xt/c = 0.190 at Re = 150 000 are
shown in Fig. 18. For this airfoil, Rn/c = 0.0151. Figure 18 presents the relationship between the
distribution of cp along the airfoil and α. As the angle of attack is increased up to 11◦, the absolute
magnitude of the minimum value of cp increases to 4.2. When α is increased above 11◦, the absolute
magnitude of cp suddenly drops to near-zero values and the airfoil is stalled. The results of Fig. 18
indicate the onset of a global leading-edge stall at αs ∼ 11.2◦. The comparison of results in Figs. 16
and 18 shows that the stall angle increases with the increase of the nose bluntness (increase of the
nose parameter a and the related Rn/c).

Contours of velocity magnitude at various angles of attack are shown in Fig. 19 [Fig. 19(d)
provides the velocity scale in meters per second] and support the stall prediction from Fig. 18.
Figure 19(a) presents the contours of velocity magnitude for α = 9◦ for which the flow is almost
entirely attached to the surface of the airfoil and the peak velocity is 134 m/s. As α is increased
through 10◦ and 11◦, as shown in Figs. 19(b) and 19(c), the flow over the upper surface of the
airfoil begins to gradually separate from the trailing edge of the airfoil forward. Yet, the value of
the maximum velocity over the surface of the airfoil increases (the red areas) to 142 m/s as the nose
region continues to build suction and lift. The stagnation point also moves along the lower surface
of the airfoil toward the trailing edge. As α is increased to 12◦, the flow suddenly and completely
separates from the upper surface of the airfoil and the airfoil stalls. The velocity of the flow above
the airfoil becomes nearly stagnant and the stagnation point moves near to the leading edge of
the airfoil. The comparison of Figs. 17 (for a nose with a = 2) and 19 (for a nose with a = 2.5)
demonstrates again the increase of leading-edge stall angle as a is increased from 2 to 2.5.

The RANS computations were repeated for various values of the nose-shape parameter, a, in
the range 2 � a � 3, and Re in the range 50 000 � Re � 300 000. The results of the computations
were used to continue the prediction of Ãs to values of ReM above those which were studied by the
direct numerical simulations of Sec. V. By using Eq. (23), the results of the RANS computations
for αs (Re) were converted to values of Ãs (ReM ; a). For the airfoils with a nose shape parameter
of a = 2 and with xt/c = 0.133 and xt/c = 0.190, the results of the RANS computations, in the
form of Ãs as a function of ReM , are plotted (dotted lines) in Fig. 20 along with the results of
the direct numerical simulation (solid line) for a = 2. It is noteworthy that the RANS results for the
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FIG. 19. The fields of velocity magnitude around the airfoil with a = 2.5, xt/c = 0.190, Re = 150 000 at
various angles of attack: (a) α = 9◦; at this angle of attack, the flow is slightly separated near the trailing
edge. (b) α = 10◦; flow around most of the airfoil is attached but there is local flow separation near the
trailing edge. (c) α = 11◦; flow around most of the airfoil is attached but there is local flow separation near the
trailing edge. (d) Velocity scale for parts (a) through (c) in meters per second.

cases of xt/c = 0.133 and xt/c = 0.190 are nearly identical (within computational error limits) in
terms of Ãs (ReM ) for ReM > 800. This suggests that changes in xt/c have no measurable impact
on the value of the universal stall prediction, Ãs (ReM ; a). Moreover, Fig. 20 shows that in the lower
range of ReM up to ReM = 1 250 the results from the direct numerical simulation are valid and
represent the angle of stall of the airfoil. In the range of ReM � 800, the results of the RANS
computations are relevant and also represent the stall angle of the airfoil. There exists a range of
ReM (800 � ReM � 1 250) where there is an overlap between the results of the direct numerical
simulation and the RANS computations.

In a similar fashion, Fig. 21 depicts the results for the airfoils with a nose shape parameter
a = 2.5 in the form of Ãs as a function of ReM . In this case, there again exists a region for
which the results of the direct numerical simulation (the solid line) are valid (ReM � 1 250) and
a region for which the RANS computations (the dotted line) are valid (ReM > 1 400). Further, there
exists a region of ReM for which results of the direct numerical simulation have been extrapolated
from the existing data into the range 1 250 � ReM � 1 750 (the dashed line). The region of ReM
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FIG. 20. Ãs as a function of ReM for an airfoil with a nose shape parameter of a = 2. The solid line
represents the results of the direct numerical simulations. The dashed line represents the results extrapolated
from the existing direct numerical simulation results. The dotted lines represent the results of the RANS
computations for various values of xt/c. Note that the RANS computations represent a continuation of the
results of the direct numerical simulation to higher values of ReM . Also note that the value of xt/c does not
have an impact on Ãs (ReM ).

values between 1 400 � ReM � 1 750 represents expected overlap between the results of the direct
numerical simulation and the RANS computations.

A plot of Ãs as a function of ReM for airfoils with a nose shape parameter of a = 3 is shown in
Fig. 22. Here again there exist regions of validity for the direct numerical simulation (100 � ReM �
1 250), for the RANS computation (ReM � 2 000) and an overlap region between the extrapolated
numerical simulation results (dashed line) and the RANS results (2 000 � ReM � 2 500).

The results of Ãs (ReM ; a) from Figs. 20 and 21 were used to compute values of αs (Re) for the
various airfoils in Fig. 15. These results are plotted in Fig. 23 (a = 2.5) for various values of xt/c.
Also shown in this figure are the computed angles of attack of stall of the airfoils from the RANS
computations. It can be seen that the RANS computations slightly overpredict the predictions using
Ãs (ReM ; a) (by about half a degree for Re > 100 000) but have the same trend of increasing αs with
the increase of Re. Moreover, the figure shows that as the position of the maximum thickness, xt/c,
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FIG. 21. Ãs as a function of ReM for an airfoil with a nose shape parameter of a = 2.5. The solid line
represents the results of the direct numerical simulations. The dashed line represents the results extrapolated
from the existing direct numerical simulation results. The dotted line represents the results of the RANS
computations. Note that the RANS computations represent a continuation of the results of the direct numerical
simulation to higher values of ReM .
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FIG. 22. Ãs as a function of ReM for an airfoil with a nose shape parameter of a = 3. The solid line
represents the results of the direct numerical simulations. The dashed line represents the results extrapolated
from the existing direct numerical simulation results. The dotted line represents the results of the RANS
computations. Note that the RANS computations represent a continuation of the results of the direct numerical
simulation to higher values of ReM .

is moved closer to the leading edge αs increases. In a similar way, Fig. 24 describes the change
in stall angle of attack, αs , for airfoils with various values of the nose-shape parameter, a, and a
fixed value of xt

c
= 0.190. The figure indicates a general decrease of αs for all Re below a certain

Relim, which increases with the nose-shape parameter, a. Above this value of Relim, the angle of
attack of stall increases with Re. Furthermore, the results indicate that for Re > Relim the value of
αs increases with the increase of the nose-shape parameter a.

A comparison of the present theoretical predictions of the leading-edge stall angle of attack
with RANS computations for the classical NACA 0012 airfoil are shown in Fig. 25(a). It can be
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FIG. 23. Leading-edge stall angle vs Reynolds number for an airfoil with a nose shape parameter of a =
2.5 and various values of xt/c. Note that as xt/c is increased, the angle of stall decreases. The solid lines
represent the results of direct numerical simulations. The dashed lines are from extrapolated results of the
direct numerical simulations. The dotted lines represent predictions from RANS computations. The circles
represent the RANS results.
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FIG. 24. Leading-edge stall angle vs Reynolds number for an airfoil with a fixed value of xt/c = 0.190 and
various a. Note that as a is increased, the angle of stall increases. The solid lines represent the results of direct
numerical simulations. The dashed lines are from extrapolated results of the direct numerical simulations. The
dotted lines represent predictions from RANS computations. The circles represent the RANS results.
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FIG. 25. Comparison of theoretical predictions with RANS computations of the leading-edge stall angle of
attack for (a) the NACA 0012 airfoil and (b) a special transonic airfoil design.
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seen that the predictions and the RANS computations agree within half a degree for Re > 100 000
and both increase with the increase of Re. In addition, we also studied the leading-edge stall
properties of a specially designed transonic airfoil for a high critical Mach number by Rusak and
Lee [23] which has an x (2/5) nose. The shape function of this symmetric airfoil is given by y/c =
δ[0.8469(x/c)2/5 − 0.2645(x/c) + 1.3018(x/c)2 − 3.6896(x/c)3 + 1.8054(x/c)4]. A comparison
of the present theoretical predictions with RANS computations for the leading-edge stall of this
airfoil (with δ = 0.12) is presented in Fig. 25(b). It can be seen that the predictions and the RANS
computations agree within 1 deg for Re > 100 000. In comparison to the NACA 0012 airfoil, this
airfoil results in both a higher stall angle of attack by half a degree as well as an increased critical
Mach number by 0.03 at both 0- and 1-deg angles of attack [21]. This example demonstrates the
ability to design airfoils with blunter than classical noses that exhibit both higher stall angles of
attack and higher critical Mach numbers. Such airfoils may be used in the design of rotor blades
operating at high rotational speeds as well as high forward-flight speeds.

VII. SUMMARY AND CONCLUSIONS

A. Summary of results

We studied the dynamics of viscous and incompressible flows around thin airfoils with blunter
than classical noses at low to moderately high chord Reynolds numbers (Re) via an asymptotic
analysis and numerical simulations. The objective is to theoretically show that blunter noses delay
the onset of leading-edge stall to higher angles of attack by determining the angle of attack of
leading-edge stall inception of the airfoil as a function of upstream-flow Reynolds number and
airfoil nose geometry.

A reduced-order, multiscale model problem is developed and complemented by numerical
computations. The asymptotic theory demonstrates that the flow about a thin airfoil can be described
in terms of an outer region, around most of the airfoil’s chord, and an inner region, around the
nose, that asymptotically match each other in an intermediate overlap region. The flow in the outer
region is dominated by the classical thin airfoil theory and shows a singular behavior near the
leading edge. To fix this behavior, there is a need for an analysis of the flow around the nose by
way of an inner region. Scaled (magnified) coordinates and a modified (smaller) Reynolds number
[ReM = Re(Rn/c)] are used to correctly account for the nonlinear behavior and acute velocity
changes in the inner region. The far field of the inner region is described by a symmetric effect
due to nose shape and an asymmetric effect with a lumped circulation parameter, Ã, due to angle of
attack and camber. The asymptotic theory shows that the symmetric effects around the nose become
more dominant than the circulation effects as the nose shape parameter, a, is increased from the
classical value of 2 (parabolic noses). Therefore, it is expected that flow separation and global stall
are delayed to higher angles of attack.

The inner flow problem is solved numerically using a transformation from the physical domain to
a computational domain and a second-order finite-difference scheme for integrating the vorticity and
stream function. The computed results demonstrate numerical convergence with mesh refinement.
The inner-region solutions reveal the nature of the flow dynamics around the nose and the first
inception of global stall as Ã is increased above a certain value, Ãs , at a fixed ReM . The inner flow
simulations result in Fig. 14 which provides the details of computed Ãs as a function of ReM for
noses with powers a = 2, 2.5, and 3. For each a, there exists a limit modified Reynolds number,
ReM,lim, where Ãs reaches a minimum value. The value of ReM,lim increases with the increase of
a. For ReM < ReM,lim the value of Ãs decreases with the increase of ReM from small values to
ReM,lim. At values of ReM > ReM,lim, the value of Ãs increases with the increase of ReM .

Because of constraints on computational resources, the inner flow simulations are limited to
ReM � 1 250 to achieve numerically accurate results. In order to extend the results of Ãs to higher
values of ReM , a Reynolds-averaged Navier-Stokes (RANS) solver was utilized to simulate the flow
around symmetric airfoils with various canonic noses. The results of the inner flow simulations
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overlap with the RANS results in a certain range of ReM , thereby providing a continuous universal
stall prediction line from low to high ReM . Figures 20–22 provide the prediction of the universal
stall circulation parameter, Ãs , for a = 2, 2.5, and 3, respectivley, in a range of ReM between 100
and 4 000.

Note, however, that both ReM and Ãs , given by Eqs. (18) and (23), are re-scaled Reynolds
number and angle of attack, respectively, in terms of the nose characteristic length Rn/c. As the nose
parameter a becomes higher, the nose becomes more blunt and Rn/c increases. Therefore, when the
canonic results for Ãs (ReM ; a) are converted to compute the stall angle of an airfoil in the physical
domain, the Reynolds number, Re = ReM/(Rn/c), is stretched less with the increase of a, while the
stall angle, αs (Re) according to Eq. (23), is stretched more with the increase of a. This forms results
where the stall angle, αs , of airfoils with various nose shapes is greater with the increase of a at a
fixed Re. The results of Ãs as a function of ReM and a are used to determine the stall angle of attack
of the various airfoils, αs as a function of Re. Figures 23–25 demonstrate the agreement between the
theoretically predicted results for leading-edge stall and the RANS simulations for various airfoils
including the NACA 0012 (with a parabolic nose) and a specially designed transonic airfoil (with
an x2/5 nose).

B. Conclusions

The research summarized above results in the following conclusions:
(1) The onset of leading-edge stall of thin airfoils with various blunt noses can be analyzed by a

matched asymptotic analysis and numerical simulations using a finite-difference formulation of the
inner region problem, at low to moderately high Re and RANS computations at higher Re.

(2) A universal prediction of the stall onset parameter, Ãs , as a function of the modified Reynolds
number, ReM , and nose-shape parameter, a, is developed in Figs. 20–22.

(3) The predictions show agreement with computations of stall onset of airfoils using the RANS
solver.

(4) The stall angle of airfoils increases with the increase of the nose parameter, a, or the decrease
of the maximum thickness position, xt/c. Both effects increase the value of Rn/c and, therefore, the
nose bluntness.

The results are limited to thin, two-dimensional airfoils with thickness ratios of no more than
12% and camber ratios up to 4%. For thicker and more cambered airfoils, trailing-edge stall may
dominate the airfoil’s stall behavior. Note that high subsonic speed systems, including general
aviation and commercial aircraft as well as turbine and compressor blades of engines and power
generators, commonly use airfoils with thickness ratios equal to or less than 12%, where the present
results may be applicable for these airfoils during operation at low subsonic speeds and high angle
of attack.

In addition, the increase of nose bluntness to delay the onset of stall to higher angles of attack
may result in some increase of the airfoil drag at lower angles of attack. However, in the typical
design of aerodynamic systems, this increase of viscous drag may be less crucial than the resulting
higher stall angle and wider range of angle-of-attack operation.

The results are also limited to moderately high upstream-flow Reynolds numbers up to Re =
300 000. The extension of results to higher Reynolds numbers requires the use of more capable
computational resources.

We note that transonic airfoils with the highest critical Mach number also exhibit blunt noses with
a = 2.5; see the studies of Schwendeman et al. [24] and Rusak [25,26], who established analytically
the increase of critical Mach number for airfoils with blunt noses (a = 2/5) or even with a short
straight vertical segment at the leading edge (Kropinski et al. [27]). This increase of critical Mach
number may be of the order of 0.03 with respect to classical parabolic nose airfoils. This suggests
that airfoils with blunt noses, with a > 2, may perform better than classical parabolic nose airfoils at
both low-speed, high-lift flight conditions and at low-lift, transonic flight conditions. For example,
such airfoils may be used in the design of helicopter rotors that may have the same airfoil section
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and experience low-speed, high-lift conditions on the retreating side and transonic speed, low-lift
conditions on the advancing side of rotor rotation in forward flight. Future work in connection
with this issue may focus on the study of the transonic characteristics of blunter nose airfoils as
well as optimization studies to determine airfoil shapes which balance transonic performance with
low-speed, high-angle-of-attack performance.

An extension of the present study to determine the onset of leading-edge stall on finite wings
or blades of high aspect ratio is also needed. Such an approach may use an asymptotic study that
builds on the interaction between the finite, high-aspect-ratio wing theory of Prandtl and the local,
wing section stall behavior as described in the present study. Specifically, the idea is to include the
downwash effect of the vortex wake behind the wing in the lumped circulation parameter Ã and
thereby form a study that will provide the stall onset values, Ãs in terms of Reynolds number, ReM ,
nose shape parameter, a, and wing shape (leading-edge sweep angle, aspect ratio, and taper ratio).
Such a challenging study may provide a theoretical foundation for the empirical techniques used
to determine stall angle described in Raymer [28]. It may also explain the experimental findings of
wing shape and sweep angle effects on the stall behavior in Yen and Huang [6].

APPENDIX: NUMERICAL METHODOLOGY FOR THE SOLUTION OF THE INNER PROBLEM

1. Numerical scheme of the solution

For the numerical implementation of the solution of Eqs. (38) and (31), the semi-infinite
domain, −∞ < μ < ∞ and η � 1, is reduced to the computational domain, −μmax � μ � μmax

and 1 � η � ηmax, where μmax and ηmax are sufficiently large. The domain is discretized by a
uniform mesh with equal spacing in both directions given by �μ = μmax

M
and �η = ηmax

N
, where the

indices of each grid point in the domain are given by (i, j ) and 1 � i � 2M + 1, 1 � j � N + 1.
Then, the coordinates of each grid point are μij = [i − (M + 1)]�μ and ηij = 1 + (j − 1)�η.
Time is discretized by constant time steps denoted as �τ ∗ with index n for each time step. The time
derivative in the vorticity transport equation, (38), is approximated by an explicit first-order forward
difference. The spatial derivatives are approximated by second-order central differences.

Let

sij =
√

μa
ij + ηa

ij , (A1)

qij =
√

μ
2(a−1)
ij + η2

ij , (A2)

pij =
√

μ2
ij + η

2(a−1)
ij . (A3)

The discretized formulation of the vorticity transport equation is then given by [with Eqs. (32)–(36)]

ωn+1
i,j − ωn

i,j

�τ ∗ + 1

s2
ij

[
qi+1,jV

n
μi+1,jω

n
i+1,j − qi−1,jV

n
μi−1,jω

n
i−1,j

2�μ

]

+ 1

s2
ij

[
pi,j+1V

n
μi,j+1ω

n
i,j+1 − pi,j−1V

n
μi,j−1ω

n
i,j−1

2�η

]

= 1

ReM

[
ωn

i+1,j − 2ωn
ij + ωn

i−1,j

(�μ)2
Kij + ωn

i,j+1 − 2ωn
ij + ωn

i,j−1

(�η)2
Lij

+ 2
ωn

i+1,j+1 − ωn
i+1,j−1 − ωn

i−1,j+1 + ωn
i−1,j−1

4�μ�η
Mij

+ ωn
i+1,j − ωn

i−1,j

2�μ
Nij + ωn

i,j+1 − ωn
i,j−1

2�η
Pij

]
. (A4)
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This equation is then rearranged to solve for ωn+1
i,j in terms of the vorticity and the velocity fields

at time step n. Once the vorticity is progressed in time, the stream function can be solved at time
step n + 1 using spatial central differences [with Eqs. (32)–(36)]:

�n+1
i+1,j − 2�n+1

ij + �n+1
i−1,j

(�μ)2
Kij + �n+1

i,j+1 − 2�n+1
ij + �n+1

i,j−1

(�η2)
Lij

+ 2
�n+1

i+1,j+1 − �n+1
i+1,j−1 − �n+1

i−1,j+1 + �n+1
i−1,j−1

4�μ�η
Mij

+ �n+1
i+1,j − �n+1

i−1,j

2�μ
Nij + �n+1

i,j+1 − �n+1
i,j−1

2�η
Pij = −ωn+1

i,j . (A5)

Equation (A5) is solved using a successive over-relaxation iterative technique with an over-
relaxation parameter of 1.9 for fastest convergence. A convergence to a given tolerance of 10−6

between the maximum difference of ψ , in the whole computational domain, in two successive
iterations is used to determine the field of �n+1

i,j at time step n + 1. Then, the velocity field at time
step n + 1 can be determined from

V n+1
μ = 1√

μ2(a−1) + η2

�n+1
i,j+1 − �n+1

i,j−1

2�η
,

V n+1
η = −1√

μ2 + η2(a−1)

�n+1
i+1,j − �n+1

i−1,j

2�μ
. (A6)

The values of Vμ and Vη are computed at the boundaries by a first-order forward or backward
difference as needed.

2. Boundary and initial conditions of the inner problem

The equations above are solved under the following boundary conditions: (i) a boundary
condition at the wall (η = 1) given by �n

1,j=1 = 0 for all −M � i � M; (ii) an inflow far-field
condition, at η = ηmax, �n

i,j=N , described by the potential flow behavior at the far field; (iii) an
outflow condition at μ = ±μmax given by �n

i=±M,j = �n
i=±(M−1),j for 1 < j < N ; and (iv) the

vorticity, ωi,j=1, is computed for −M < i < M by a second-order forward difference approximation
in the j direction that accounts for the wall no-slip condition along a stationary boundary given by
ωn

i,j=1 = (7ψn
i,j=1 − 8ψn

i,j=2 + ψn
i,j=3)/2(�η)2.

The computations are initiated for a fixed value of a by establishing the symmetric, viscous flow
solution at a given ReM and Ã = 0. Then, this solution is used as an initial state for the computation
of the flow at the same ReM with an Ã incrementally increased by small steps of no more than
Ã = 0.05. Each time asymptotic state is used as an initial state for computation of the next nearby
value of Ã.

3. Numerical stability criteria

The computations must satisfy certain numerical stability criteria. Here, the Courant-Fredrichs-
Levy (CFL) number Ck , diffusion number dk , and the cell Reynolds number ReC are required to
obey certain limitations. These numbers are given by Ck = Umax

�τ ∗
�xk

, dk = 1
ReM

�τ ∗
(�xk )2 , and ReC =

�xkReM. In the present numerical computations, Umax = 1 and xk indicates μ or η. Extending
von Neumann numerical linear stability analysis to the current forward-in-time, central-in-space
differencing scheme leads to certain stability requirements in a two-dimensional problem given
by C = Cμ + Cη � 1, d = dμ + dη � 1/2, and ReC � 4/C. For sufficiently fine meshes used in
the present study (M = 200, N = 200), the cell Reynolds number criterion is the most restrictive.
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Therefore, it is used as the criterion for setting the maximum for �τ ∗, thereby dictating small time
steps.

Furthermore, Thompson et al. [20] state that the cell Reynolds number restriction is too restrictive
in determining the size of the time step and therefore larger �τ ∗ may be used to achieve stable
calculations. Yet, we used it as a buffer against numerical instabilities that may result from nonlinear
effects in the flow evolution. Therefore, the CFL number in the present computations is typically
less than 0.01, providing high accuracy of resolution of velocity signals in time, particularly for the
low-frequency waves shed behind the separation bubble which convect along the nose surface and
are involved in the delay of stall.
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