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The aim of this work is to shed light by revisiting, from the kernel-wave (KW)
perspective, the breakdown of a quasigeostrophic (QG) mixing layer (or vortex strip or
filament) in atmosphere under the influence of a background shear. The QG mixing layer
is modeled with a family of quasi-Rayleigh velocity profiles in which the potential vorticity
(PV) is constant in patches. From the KW perspective, a counterpropagating Rossby wave
(CRW) is created at each PV edge, i.e., the edge where a PV jump is located. The important
parameters of our study are (i) the vorticity of the uniform shear m and (ii) the Rossby
deformation radius Ld , which indicates how far the pressure perturbations can vertically
propagate. While an adverse shear (m < 0) stabilizes the system, a favorable shear (m > 0)
strengthens the instability. This is due to how the background shear affects the two uncou-
pled CRWs by shifting the optimal phase difference towards large (small) wave number
when m < 0 (m > 0). As a finite Ld is introduced, a general weakening of the instability
is noticed, particularly for m > 0. This is mainly due to the reduced interaction between
the two CRWs when Ld is finite. Furthermore, nonlinear pseudospectral simulations in
the nominally infinite-Reynolds-number limit were conducted using as the initial base
flow the same quasi-Rayleigh profiles analyzed in the linear analysis. The growth of the
mixing layer is obstructed by introducing a background shear, especially if adverse, since
the vortex pairing, which is the main growth mechanism in mixing layers, is strongly
hindered. Interestingly, the most energetic configuration is for m = 0, which differs from
the linear analyses for which the largest growth rates were found for a positive m. In the
absence of a background shear additional modes are subharmonically triggered by the
initial disturbance enhancing the turbulent character of the flow. We also confirm energy
spectrum trends for broken-down mixing layers reported in the literature. We interpret the
character of mixing-layer breakdown as being a phenomenological hybrid of Kraichnan’s
[R. H. Kraichnan, Phys. Fluids 10, 1417 (1967)] direct enstrophy cascade picture and the
picture of self-similar vortex production.

DOI: 10.1103/PhysRevFluids.4.013803

I. INTRODUCTION

Idealized two-dimensional (2D) flow and turbulence continue to serve as an indispensable
platform to study the physical properties of various fluid dynamical processes and effects. Two
dimensionality arises naturally in systems exhibiting dynamically restricted dimensions like in
planetary atmospheric flows and soap bubbles. Despite often cited criticisms implicating their
lack of real-world relevance, the study of idealized flows like 2D Navier-Stokes equations offers a
challenging yet intellectually traversable setting to examine complex physical notions, for example,
the recently uncovered conformal invariance between the inverse cascade of 2D turbulence [1,2]
and critical phenomena of 2D statistical mechanics [3,4].
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FIG. 1. Juno image of Jupiter’s cloud tops near northern latitude 48.9◦. The horizontal scale of the image
is approximately 95 000 km (9.3 km/pixel). Being in the quasigeostrophic regime, these regions exhibit
filamentary structure as well as large-scale coherent vortices. The Rossby deformation radius at these latitudes
is approximately 20 000 km. (Image credit: NASA, JPL-Caltech, SwRI, MSSS, Gerald Eichstadt, and Sean
Doran.)

Of interest to this study is the dynamical nature of the transition of vorticity strips in 2D flows.
Sometimes called the mixing layer, such parallel strips are idealized as streamwise oriented patches
of two different constant vorticities, one value inside and another outside. The mixing layer is
considered a canonical test bed to study the breakdown of small-scale filaments due to its own
vorticity induced velocities with or without the influence of an externally imposed shear [5]. This has
applications in understanding the dynamics in the forward cascade inertial range of 2D turbulence
studies. The simplest mixing layer is the so-called Rayleigh layer [6–8] in which the outside vorticity
is zero, which leads to a configuration in which the streamwise velocities on the outside are two
different constants and the region within the strip has a streamwise velocity that linearly connects
to the outer regions. The Rayleigh layer is unstable, resulting in its roll-up into smaller coherent
vortices with attendant interwoven fine-scale filamentary structures. This basic mixing-layer setting,
as a fundamental qualitative physical model, is encountered frequently in terrestrial and planetary
atmospheric flows, e.g., as recent Juno mission images of cloud top formations in Jupiter’s upper
atmosphere clearly shows (see Fig. 1).

We are partial to the counterpropagating Rossby wave (CRW) perspective [9,10] in understand-
ing the breakdown of the mixing layer [11,12]. In this picture, whose generality was first recognized
and systematically developed by Baines and Mitsudera [13], each perturbed edge of the idealized
mixing layer supports a Rossby edge wave which azimuthally propagates against the local flow.
Each Rossby edge wave instantly induces a far-field velocity (action at a distance) so that the
two edge waves can constructively interact with one another if the conditions are right: If the
sum of the intrinsic Rossby edge-wave speed and the local flow velocity are nearly equal for both
edge waves, then the system can enter a resonance due to the action-at-a-distance effect resulting
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FIG. 2. From (a) the planetary scale in spherical coordinates to the synoptic scale in Cartesian coordinate.
(e) Velocity profile for Ld = ∞, i.e., (c) the Rayleigh profile plus (d) the uniform shear. Two CRWs are formed
at the two vorticity edges: NCRW at the northern edge and SCRW at the southern edge.

in mutual amplitude growth. As a general mechanism, sometimes referred to as the kernel-wave
(KW) perspective [14], this can apply to any two pairs of localized edge waves of a mixing layer
irrespective of the fundamental disturbance type, be it gravity waves, magnetohydrodynamic waves,
capillary waves, or others [14–19]. Indeed, this conceptual framework has been usefully applied
toward the interpretation of various geophysical flow phenomena, e.g., Holmboe instability [20],
baroclinic instability [9], the Eady problem [21], the Charney problem [22], and the polar polygons
recently observed on Saturn [23].

In the context of quasigeostrophic (QG) flows, typifying midlatitude to high-latitude synoptic-
scale dynamics in atmospheres and oceans [24] [also see the sketch in Fig. 2(a)], the fate of mixing
layers depends sensitively on the Rossby radius of deformation [25] Ld , which is approximately
1000 km in the Earth’s midlatitude atmosphere and defines the synoptic scale. On Jupiter and Saturn
this figure is 15–35 times larger [26]. A cursory glance at the operator relating the stream function
to the potential vorticity (PV) [25] readily indicates that Ld acts to diminish the ability of a local
patch of PV to induce far-field velocity fluctuations: Large values of Ld means that the stratification
is strong and consequently the dynamical reach of a deformed edge wave is far out (and limits the
classical 2D case as Ld → ∞), while when Ld is small the dynamical influence of the same edge
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wave is muted by an exponential factor ∼exp(−r/Ld ), where r is the distance from the edge wave
to the point of influence.

Another factor characterizing a mixing layer’s stability is the sense of any applied background
constant-shear flow profile. To give an example, a uniform shear strongly affects the stability of
filaments created in the vicinity of intense rotating coherent vortices. The filaments are rapidly
aligned with the circulating flow due to the differential rotation and then shear is the prime factor
affecting stability. If adverse, constant shear acts to suppress instability [5]. From the viewpoint of
the KW perspective, one might expect this to be so because the resonance criterion between the two
opposing edge waves is hindered as the mean flow at the respective edges is unable to compensate
for the intrinsic Rossby wave speed of the respective disturbed edges. On its own right, examining
the fate of a QG mixing layer subject to an external constant shear offers physical insight into the
workings of the forward enstrophy cascade in a fully turbulent 2D setting. In particular, it sheds
light upon the influence of (spectrally) nonlocal interactions, here being the forcing brought down
from the global shear upon small-scale filaments. In this way we see the KW perspective as offering
another helpful tool in understanding the characteristic development of 2D turbulence.

In this study we revisit the problem of the breakdown of mixing layers subject to an external
constant shear in the QG model setting (Sec. II). Our interest is to interpret the results found by
Dritschel and Waugh [5,25] within the KW framework. In particular, we consider the conditions
leading to the mixing-layer breakdown and rationalize these linear stability conditions in terms of
the ability (or lack thereof) of individual edge waves to achieve frequency resonance as a function of
the background imposed constant shear and Ld (Sec. III). We further test the robustness of the KW
perspective by conducting a series of fully nonlinear simulations of the breakdown of QG mixing
layers (Sec. IV). In particular, we recast the original setup of Dritschel and Waugh instead as a
composite flow made up of a so-called quasi-Rayleigh profile plus an externally imposed steady
shear and making sure, according to the KW perspective, that the velocities and jumps in PV are
equivalent to the setup examined by Waugh and Dritschel [25] (Sec. IV A). We devote the rest of
Sec. IV to assessing the nonlinear development of the breakdown of the mixing layer in which we
recover the k−11/3 spectral energy distribution previously shown to hold in the enstrophy cascade
regime of Ld = ∞ mixing layers [27,28]. Furthermore, we examine the spectral energy slope in
the enstrophy cascade regime as a function of Ld , finding that its slope (k−δ , δ is the slope) indeed
steepens (5/3 < δ < 11/3) as Ld approaches 1. We also characterize the shearwise spread of the
disrupted mixing layer as a function of amplitude and sense of the applied background constant
shear. Finally, through the lens of the KW perspective, we tentatively offer an interpretation to
explain the statistical quality of the broken-down shear layer as being phenomenologically indicative
of a process that lies between the Kraichnan or Gilbert [1,27] explanation of enstrophy cascade in
forced-dissipative 2D turbulence and the picture of the self-similar production of coherent vortices
down to the dissipative scales [29–32]. Section V summarizes our results.

II. MODEL AND GOVERNING EQUATIONS

In this section we first present the model analyzed in this paper (Sec. II A). Afterward, in Sec. II B
we use the KW perspective to arrive at a dynamical system able to describe the linear stability of
this model.

A. Model

We consider the planetary atmosphere to be a thin fluid layer lying atop a spherical surface
rotating with an angular velocity �0 [see Fig. 2(a)]. If we assume that the planetary atmosphere is
a fast rotator we can consider only a Cartesian section [Fig. 2(b)], where x is the zonal (eastward)
direction, y is the latitudinal (poleward) direction, and z is the vertical (altitude) direction. Let U
be the horizontal velocity scale which occurs on the horizontal length scale L and let H denote
the vertical scale, i.e., the pressure scale height of the atmosphere. If we assume infinitely fast
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hydrostatic adjustment and work in an f plane (i.e., no variations due to the Coriolis effect
are considered in all the motions), the potential vorticity and its evolution in a two-dimensional
incompressible quasigeostrophic flow is given by

q = ∇2ψ − 1

L2
d

ψ,
dq

dt
= 0, (1)

where ψ is the stream function given by u = − ∂ψ

∂y and v = ∂ψ

∂x , with u and v the zonal and latitudinal
components of the velocity, respectively, and Ld is the Rossby radius of deformation. The Rossby
radius of deformation is a measure of how far the pressure perturbations can travel at the flow
timescale and is given by L2

d = H2N2

4�2
0

, where N2 is the Brunt-Väisälä frequency, i.e., the frequency
of the buoyancy vertical oscillations. For further details on the physically motivated derivation of
Eq. (1), the reader is referred to Ref. [8].

Our model is represented by the family of the nondimensional velocity profiles already analyzed
by Waugh and Dritschel [25],

U (y) =

⎧⎪⎨
⎪⎩

Ld
[
e−y/Ld sinh

(
1

Ld

) + me−1/Ld sinh
( y

Ld

)]
for y > 1

Ld (m + 1)e−1/Ld sinh
( y

Ld

)
for |y| < 1

Ld
[ − ey/Ld sinh

(
1

Ld

) + me−1/Ld sinh
( y

Ld

)]
for y < −1

(2)

that has piecewise constant potential vorticity

Q(y) =
{−me(D−2)/2Ld for |y| > 1

−(me(D−2)/2Ld + 1) for |y| < 1,
(3)

where D is a distance much greater than both the strip width (equal to 2) and the radius of
deformation Ld . The limit for Ld → ∞ of the family velocity profile depicted by Eq. (2) [illustrated
in Fig. 2(e)] is the Rayleigh model [6,33] [Fig. 2(c)] sheared by a uniform shear m [Fig. 2(d)],

U (y) =

⎧⎪⎨
⎪⎩

my + 1 for y > 1

(m + 1)y for |y| < 1

my − 1 for y < −1.

(4)

B. Kernel-wave perspective

The velocity v and the potential vorticity q can be linearized with respect to the basic state,
v = (U + u′, v′) and q = Q + q′, where the capital letters and the primes indicate the basic state
[Eqs. (2) and (3)] and perturbation, respectively. The linearized potential vorticity equation Dq

Dt = 0
gives [

∂

∂t
+ U (y)

∂

∂x

]
q′ = −v′ dQ(y)

dy
= −v′[δ(y − 1) − δ(y + 1)], (5)

where δ symbolizes the Dirac delta function.
Applying the KW perspective [11], we look for a vorticity perturbation field that is concentrated

on the discontinuities of the base flow vorticity, i.e., on the two edges of the velocity profile. Then,
for a single Fourier component with wave number k of the form eikx, Eq. (5) can be rewritten as

q̂′ = qS (k, t )δ(y + 1) + qN (k, t )δ(y − 1), (6)

where qS (k, t ) and qN (k, t ) represent vorticity waves, i.e., the CRWs, at southern and northern edge,
respectively. From Eq. (1) it follows that q̂′ = −Lψ̂ ′, with L = d2/dy2 − k̄2, where k̄2 = k2 + 1

L2
d
.

The Green’s function of −L for an unbounded domain is

G(y, y′, k̄) = − i

2
exp(−k̄|y − y′|) (7)
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and the perturbation stream function is then obtained,

ψ̂ ′ = − 1

2k̄
[qS (k, t )e−k̄|y+1| + qN (k, t )e−k̄|y−1|], (8)

where ψ ′ satisfies u′ = ∂ψ ′
∂y and v′ = − ∂ψ ′

∂x , i.e., in Fourier space û′ = ∂yψ̂
′ and v̂′ = ikψ̂ ′. Substi-

tuting Eqs. (6) and (8) into Eq. (5), one is left with

q̇Sδ(y + 1) + q̇Nδ(y − 1) + ikU (y)[qSδ(y + 1) + qNδ(y − 1)]

= i
k

2k̄
[qS (k, t )e−k̄|y+1| + qN (k, t )e−k̄|y−1|][δ(y − 1) − δ(y + 1)], (9)

where the notation q̇S,N denotes dqS,N

dt .
Calculating Eq. (9) at the edges, i.e., y = ∓1, the evolution of the vorticity perturbation is

obtained,

q̇qq = MMMqqq, (10)

where

MMM = ik

[
− 1

2k̄
+ Ld (m + 1)e−1/Ld sinh 1

Ld
− e−2k̄

2k̄
e−2k̄

2k̄
1
2k̄

− Ld (m + 1)e−1/Ld sinh 1
Ld

]
.

The terms in the entry diagonal are the phase speed of the CRWs taken in isolation cN,S =
±[ 1

2k̄
− Ld (m + 1)e−1/Ld sinh 1

Ld
], while the off-diagonal terms represent the interaction coefficient

γ = ke−2k̄

2k̄
. The eigenvalues of the matrix M,

λ1,2 = ±1

2

k

k̄

√
e−4k̄ − [1 − k̄Ld (1 − e−2/Ld )(m + 1)]2, (11)

indicate the temporal response of each of the system’s normal modes. We note that the temporal
response indicated by the eigenvalues in (11) is equivalent to that obtained by more traditional
methods.

We note that in classical textbook treatments (e.g., Sec. 6.2.4 of Ref. [24]) the above system is
a 4 × 4 matrix system. This apparent contradiction is easy to explain since our approach is based
on the Heifetz et al. paper [11] in which they assume that the stream function is continuous at the
two PV jumps. For this reason, in our model the matrix system is 2 × 2. By assuming a continuous
stream function also in Vallis’s treatment we can obtain, after some calculations, exactly the same
stream function of Ref. [11].

III. LINEAR STABILITY ANALYSIS

In this section the linear stability of the dynamical system depicted by Eq. (11) is analyzed.
In particular, we study the effect of (i) the background shear, in Sec. III A, and (ii) the Rossby
deformation radius, in Sec. III B. Finally, in Sec. III C, a detailed analysis about the waves amplitude
and their phases is conducted.

A. Influence of the uniform background shear

We illustrate in Fig. 3(a) the growth rate λr , i.e., the real part of the eigenvalues in Eq. (11),
as a function of the wave number k for different values of the uniform shear background m while
setting Ld = ∞. Clearly, an adverse shear (m < 0) decreases the maximum growth rate and reduces
the range of unstable wave numbers. Moreover, this range is shifted towards small wavelengths. A
positive value of m conversely enhances the maximum growth rate while still decreasing the cutoff
number. These results are in agreement with previous works on the effect of a background shear on
the destabilization of a vorticity filament [5,25].
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FIG. 3. (a) Growth rate vs wave number k and (b) the phase speed of the two CRWs taken in isolation for
different values of the uniform shear m and Ld = ∞. In (b) dashed lines depict the NCRW, while solid lines
depict the SCRW. A NCRW (SCRW) is counterpropagating if its phase speed is below (above) the gray line,
which depicts the average base flow velocity (Uav = 0).

In Fig. 3(b) the phase speeds of the two CRWs taken in isolation are illustrated for the same cases
as in Fig. 3(a). Dashed lines depict the northern CRW (NCRW), while solid lines depict the southern
CRW (SCRW). The range of unstable wave numbers encloses the wave number kequal in which the
individual waves have the same phase speed (cN = cS). This is consistent with the Hayashi-Young
criterion [34], i.e., two waves must have a similar phase speed to be able to phase lock and so
generate the instability. Note that the effect that each CRW has on the other’s phase speed is not
considered while calculating the phase speeds (see Sec. III C for more details). However, this effect
cannot significantly modify the phase speed; for this reason, the range of unstable wave numbers
surrounds kequal. Furthermore, kequal is shifted towards smaller (large) wave numbers for positive
(negative) values of m. The background shear modifies the phase speeds of the CRWs, allowing
the interaction in a different range of wave numbers. This explains why the range of unstable wave
numbers is strongly modified by the uniform shear.

B. Influence of the Rossby deformation radius

In this section a finite value of the Rossby deformation radius is introduced. The growth rates
are illustrated in Fig. 4(a), where the background shear is set equal to m = 0 and Ld varies. The
maximum growth rate is significantly damped with the introduction of a finite Ld , as has been
previously noted. Furthermore, promotion of stabilization upon reduction of Ld is not surprising
since the dynamical influence of each edge wave becomes increasingly muted as stratification
weakens in a later rotation. In particular, the ratio between kinetic energy and available potential
energy is proportional to L2

d [24]. This means that if Ld is infinite, the ability of a PV disturbance to
induce a far-field horizontal velocity response is maximized, while less kinetic energy is available
in the horizontal motions as Ld decreases, clearly inducing a stabilization.

In Fig. 4(b) we show the phase speed of the two individual CRWs for the cases analyzed in
Fig. 4(a). Dashed lines represent the NCRW, while solid lines represent the SCRW as in Fig. 3(b).
Interestingly, a decrease in the Rossby radius of deformation damps the counterpropagating nature
of the waves. Less or even no counterpropagation is a stabilizing symptom since counterpropagation
helps the phase locking of the two waves [34,35], allowing their resonance and then generating the
instability. As the deformation radius is finite, some of the wave energy associated with the Rossby
wave of a given edge is redirected into vertical storage. This stored energy would otherwise have

013803-7



LUCA BIANCOFIORE AND ORKAN M. UMURHAN

FIG. 4. (a) Growth rate vs wave number k and (b) the phase speed of the two CRWs taken in isolation for
m = 0 and different values of Ld . In (b) dashed lines depict the NCRW, while solid lines depict the SCRW.
A NCRW (SCRW) is counterpropagating if its phase speed is below (above) the gray line, which depicts the
average base flow velocity (Uav = 0).

been harnessed into inducing a velocity field at the opposite edge, which would have played a role
in countering the base velocity of the opposite edge. For this reason, counterpropagation is thus
restrained or, if the conditions are right, completely eliminated.

In Fig. 5 the contours of the growth rate are illustrated in the k-m plane for Ld = ∞ [Fig. 5(a)],
Ld = 10 [Fig. 5(b)], Ld = 2 [Fig. 5(c)], and Ld = 1 [Fig. 5(d)]. This figure confirms the trend
previously depicted: A negative m and a decrease in the Rossby deformation radius stabilize the
system. In particular, a finite value of Ld is more efficient for positive values of m.

C. Amplitudes and phases of the waves

It is possible to write the two vorticity waves qS and qN in this manner

qS = QS (k, t )eiεS (k,t ), (12a)

qN = QN (k, t )eiεN (k,t ), (12b)

where QS and QN are the amplitudes of the southern and northern CRWs and εS and εN are their
phases, respectively. In this manner we can arrive at the system

Q̇S = γ QS sin(	ε), (13a)

Q̇N = γ QN sin(	ε), (13b)

ε̇S = −kcS − γ
QN

QS
cos(	ε), (13c)

ε̇N = −kcN + γ
QS

QN
cos(	ε), (13d)

where 	ε = εN − εS is the phase difference between the two CRWs. From Eqs. (13) we can
understand that (i) the waves can grow just interacting with each other and (ii) the interaction
strength depends on both γ and 	ε. When the phase difference is 0 < 	ε < π we are in the
growing phase-locking configuration, while if −π < 	ε < 0 it is a decaying configuration [33].

We can obtain amplitudes and phases by computing the eigenvectors Vi = [vi,S, vi,N ] of the
matrix M [Eq. (11)], where the index i depicts a different mode. In particular, the amplitude of
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FIG. 5. Growth rate in the plane k-m for (a) Ld = ∞, (b) Ld = 10, (c) Ld = 2, and (d) Ld = 1.

SCRW is obtained with QS = |vi,S|, where vi,S is the S component of the eigenvector Vi, while its
phase is εS = arg(vi,S ). Similarly, QN and εN can be obtained. Note that the choice of the index i
(i = 1 or 2) is not important to determine the amplitude and the phase of the waves.

In Fig. 6 we illustrate the phase difference 	ε
π

and the interaction coefficient γ for Ld = ∞
and different values of m. The phase difference corresponding to the maximum growth rate 	εopt =
0.65π for m = 0 is highlighted by a dashed line. Then, for m = 0 the gravest normal mode is not for
	ε = π

2 , where we have the maximal instantaneous growth rate as seen in Eqs. (13a) and (13b). To
explain this we have to consider the two conditions to have phase locking [34]: The waves must have
the same (i) amplitude QS = QN and (ii) phase speed ε̇1 = ε̇2. The latter conditions is not respected
for 	ε = π

2 since the waves cannot affect each other’s phase speed [see Eqs. (13c) and (13d)] and
then the interaction could occur just if cS = cN , which is not true. In particular, if −π

2 < 	ε < π
2 the

two waves hinder their self-propagation against the mean flow; conversely, if π
2 < 	ε < 3

2π they
help the counterpropagation [19,33]. Phase locking is favored when interaction hinders the CRW
counterpropagation. The maximum modal growth rate occurs where there is a trade-off between
the exponential increase of the interaction coefficient [see Fig. 6(b)] at small wave numbers and the
need of a hindering configuration to enable phase locking. The reader is referred to Ref. [33] for
more details on the CRW phase locking.
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FIG. 6. (a) Phase difference 	ε

π
and (b) interaction coefficient for Ld = ∞ and different values of m. In

(a) the dashed line represents the phase difference corresponding to the maximum growth rate 	ε = 0.65 for
m = 0.

The interaction coefficient does not depend on the presence of the background shear, while the
phase difference is modified by m [see Fig. 6(a)]. The optimal phase difference 0.65π is shifted
towards long (short) wavelengths for positive (negative) m. This can explain why the instability is
moved by a favorable (adverse) shear towards long (short) wavelengths as observed in Fig. 3(b).
Since the interaction coefficient does not change with the introduction of the background shear, the
optimal phase difference corresponds now to a stronger or weaker interaction, depending on the sign
of m, as it is possible to see in Fig. 6(b). It should be noticed that the introduction of the background
shear will modify the value of the optimal phase difference since the phase speed of the isolated
CRWs depends on m [see Fig. 3(b)]. However, we can assume that the dependence is not significant
at least from a qualitative point of view. This point will be discussed later in more detail.

FIG. 7. (a) Phase difference 	ε

π
and (b) the interaction coefficient γ vs wave number for different values of

Ld and m = 0. The dashed line shows the value of the optimal phase difference 0.65π for the Rayleigh model
(so m = 0 and Ld = ∞) [33].
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In Fig. 7 we show the phase difference 	ε
π

[Fig. 7(a)] and the interaction coefficient γ [Fig. 7(b)]
for m = 0 and different values of the Rossby deformation radius. The phase difference is not
strongly modified by Ld , however the CRW interaction becomes weaker. This is in agreement with
the behavior of the growth rate observed in Fig. 4(a): Ld significantly damps the instability, but the
range of unstable wave number is almost untouched.

In Fig. 8 we show again the contours of the growth rate in the k-m plane as in Fig. 5 but this time
comparing kmax(m), i.e., the wave number corresponding to the maximum growth rate (depicted by
solid bold lines) with (i) k0.65π (m), i.e., the wave number for which the phase difference is equal
to the optimal phase difference for m = 0 and Ld = ∞, 0.65π (dashed lines), and (ii) kequal(m)
(dotted lines). For all the values of the Rossby deformation radius, the unstable regions enclose
the dotted lines, i.e., where the two isolated CRWs have the same phase speed. This confirms that
the two isolated CRWs must have a similar phase speed to have phase locking since the change in
phase speeds due to the presence of the other CRW is small. For Ld = ∞ [Fig. 8(a)] we observe
that the position of the maximum of the growth rate almost fully corresponds to where the phase
difference is equal to 	ε = 0.65π . This shows that the introduction of the background shear does
not qualitatively modify the phase locking. However, the discrepancy between the dashed and the
solid lines increases as much as Ld is reduced. Therefore, the deformation radius significantly
modify the value of the optimal phase difference.

To make this point more evident, we illustrate in Fig. 9 the value of the phase difference
corresponding to the maximum growth rate 	εopt. The black line discriminates between helping
(−π

2 < 	ε < π
2 ) and hindering (π

2 < 	ε < 3
2π ) configurations. When the Rossby deformation

radius is infinite, the influence of the background shear is weak. However, the optimal phase
difference is slightly diminished by adding both a favorable or an adverse shear. This means that
either the influence of one CRW on the other’s phase speed is stronger or the two isolated CRWs
have a closer value of the phase speed, so they need less hindering effect to phase lock. The former
case occurs for m > 0 since also the influence on the each other’s phase speed is proportional to γ ,
which is larger at small wave numbers [see Fig. 6(b)]. For m < 0 instead the latter case occurs since
the difference between the two phase speeds of the isolated CRWs is smaller.

However, the dependence of 	εopt on Ld is more significant, in particular for positive m. We
observe a general decrease in the optimal phase difference. This is due to the fact that the interaction
is weaker when Ld is finite, as seen in Fig. 7(b). For a favorable background shear the two CRWs
need a helping configuration to phase lock if Ld is very small. This occurs since the two CRWs
lose their counterpropagative character for small Ld , as observed in Fig. 4(b). Thus, to have phase
locking, each CRW needs help from the other wave to withstand the mean flow.

IV. NONLINEAR SIMULATIONS

In this section we conduct nonlinear simulations of the quasi-Rayleigh profile which have been
presented in Sec. II A. The simulations will be set up to investigate the breakdown of a shear layer,
treated as a filament with unit PV in its interior and zero PV on its exterior, subjected to an externally
forced global background shear. The linear phase evolution of this setup should follow that of the
system analyzed in Sec. II provided that the PV jump across the filament edges and the streamwise
velocities along each filament edge are equivalent in both model systems.

A. Governing equations and numerical setup

1. Governing equations

The nonlinear equations of motion we solve are

[
∂

∂t
+ (m̃y + u)

∂

∂x
+ v

∂

∂y

]
q = −ν8∇8q, (14)
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FIG. 8. Growth rate ωi in the plane k-m for (a) Ld = ∞, (b) Ld = 10, (c) Ld = 2, and (d) Ld = 1. The solid
line represents kmax(m), the dashed line represents k0.65π (m), and the dotted line represents kequal(m).

where

q ≡ ∇2ψ − L−2
d ψ, u ≡ ∂ψ

∂y
, v ≡ −∂ψ

∂x
. (15)

We have set the planetary rotation parameter β to zero. The background shear (m̃y) is given as
immutable and is the only source of continual external forcing. This is in addition to the original
filament profile with which we initiate the simulation. Deviations of this flow are given by the
initial form adopted for q. We will consider rounded models of the basic forms described in Eq. (3)
(discussed further below). Because regular viscosity is set to zero, in order to dissipate enstrophy
or energy at the smallest scales of the simulation we have found an eighth-order superviscosity
operator −ν8∇8 to the PV evolution equation as the most suitable option (also see Appendix A).
However, it should be noted that other lower orders have been tested with no significant changes in
the results, but the energy cascades were less visible in the spectra. The connection between m̃ and
the value of m used in our analysis in Sec. II will be clarified further in Sec. IV A 2.

2. Simulation setup

We must set up the initial filament profile as a streamwise uniform solution of the fundamental
equations. The velocity field of the classical setup found in Sec. II has exponential divergences as
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FIG. 9. Phase difference corresponding to the maximum growth rate 	εmax
π

vs wave number for m = 0 and
different values of Ld . The black line represents the limit between the helping and the hindering configuration.

|y| → ∞. We must then be careful in choosing the initial velocity profile since if the horizontal
velocities get very large, we invariably run into numerical stability issues, especially for runs in
which the breakdown is violent, exhibiting a high degree of spreading in the shearwise direction. As
per our considerations at the beginning of this section, in order to connect to the filaments examined
in the linear analysis, we have to make sure that (i) the jump in PV across the filament boundaries
is the same (in this case this jump in PV is 	q = 1) and (ii) the streamwise velocities on the two
boundaries must be the same as well. Constructing this consistently will determine a connection
formula between m̃ and m. We approach in the following way. We divide the PV as one being
composed of a piecewise constant quasi-Rayleigh profile plus the aforementioned globally forced
background uniform shear m̃y. This quasi-Rayleigh PV is denoted by QqR and is the solution of(

∇2 − 1

L2
d

)
�qR ≡ QqR =

{
0 for |y| > 1

−1 for |y| � 1,
(16)

where �qR is the corresponding stream function of this steady state. A comparison of the right-hand
side of Eq. (16) to the PV adopted in Sec. II, i.e., as summarized in Eq. (3), shows that the two show
the same jump in PV across their filament boundaries at y = ±1. The mean streamwise velocity of
this quasi-Rayleigh profile is given as

UqR(y) =

⎧⎪⎨
⎪⎩

u0e(1−y)/Ld for y > 1

u0 sinh
( y

Ld

)
/ sinh

(
1

Ld

)
for |y| � 1

−u0e(y+1)/Ld for y < −1,

(17)

with u0 = Ld

1+coth( 1
Ld

)
. To complete the correspondence between the flow setup here and that

considered in Sec. II, we must make sure that the velocities at y = ±1 are equal to one another.
This means setting ±m̃ + UqR(±1) = U (±1), where U is the streamwise velocity found in Eq. (2).
Owing to the symmetry of the profile with respect to y = 0, this amounts to

m̃ + Ld

1 + coth
(

1
Ld

) = Ld (m + 1)e−1/Ld sinh

(
1

Ld

)
. (18)
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Simplifying this relationship for m̃ = m̃(m, Ld ), we find

m̃(m, Ld ) = mLd

1 + coth
(

1
Ld

) , (19)

which completes the correspondence we have sought to establish.
All simulations are then initially seeded with these piecewise constant quasi-Rayleigh filament

solutions, i.e., q(t = 0) = QqR. We do this by utilizing a rounded approximation of QqR given by
Q̃qR, where

Q̃qR(ε) = −1

2

[
tanh

(
y + 1

ε

)
− tanh

(
y − 1

ε

)]
, (20)

in which ε controls the tightness of the transition across the filament boundaries. A cursory
inspection shows that

lim
ε→0

Q̃qR(ε) → QqR.

In order to resolve the PV transition at y = ±1 we use at least five to seven grid points, which
generally means having values of ε = 0.05 (keeping in mind a typical grid spacing of about 	y ≈
0.05). In addition to this initial filament we introduce an additional amount of white noise in the PV
field. This noise is constrained to be nonzero in a region |y| < 2. At maximum, the noisy PV field
has an amplitude which is about 25% of the value inside the filament.

Appendix A contains a description of the pseudospectral numerical method we employ to solve
this system. We find that the linear phase evolution of this setup is indeed practically identical to the
one predicted for the model described in Sec. II, which largely contributes to validating the use of
this numerical method. Further details may be found in Appendix B.

B. Results

In this section the results of the nonlinear simulations are reported. We analyze (i) the potential
vorticity fields (Sec. IV B 1), (ii) the momentum thickness growth (Sec. IV B 2), and (iii) the
perturbation kinetic energy (Sec. IV B 3). In our simulations the domain size is settled to Lx = 49.3
and Ly = 60.0 (Ly = 30.0 for Ld � 2 for ensuring numerical stability). A random disturbance is
added to the initial field as explained in Sec. IV A 2.

1. Potential vorticity fields

In Fig. 10 the potential vorticity fields showing the nonlinear evolution of the classical Rayleigh
profile (i.e., m = 0 and Ld = ∞) are illustrated at different times from t = 8 [Fig. 10(a)] to t =
150 [Fig. 10(f)]. Four vortices are created by the initial disturbance [Figs. 10(b) and 10(c)]. These
vortices pair with each other, causing the growth of the shear layer [Figs. 10(d) and 10(e)]. Finally,
they combine to form one single rotating vortex with filamentary arms [Fig. 10(f)]. The vortex
pairing is the main cause of the spreading of the mixing layer [36]. This behavior is typical of
two-dimensional mixing layers and the reader is referred to the review of Ho and Huerre [37].

In Fig. 11 we add a uniform adverse shear to the Rayleigh profile. In particular, the slope of the
background shear is set equal to m = −0.2, while the Rossby radius of deformation is still Ld = ∞.
The initial disturbance generates again four vortices [Fig. 11(b)]. The adverse shear background
increases significantly both the number and the resistance of the filamentary structures around the
vortices [Fig. 11(c)]. The vortex pairing is weakened by these filaments. The reduction of the vortex-
merging process indeed hinders the growth of mixing layer. For this reason, the vortices size does
not grow as much as without adverse shear (i.e., m = 0) [see Fig. 11(d)].

In Fig. 12 no uniform shear is added to the Rayleigh profile (i.e., m = 0), but a finite value of the
Rossby radius of deformation is introduced (Ld = 2). There are four vortices created by the initial
random disturbance [Figs. 12(b) and 12(c)]. In contrast to m = 0, the vortices do not merge with
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FIG. 10. Potential vorticity fields for m = 0 and Ld = ∞ at different times (a) t = 10, (b) t = 24,
(c) t = 34, (d) t = 60, (e) t = 120, and (f) t = 200.

each other but are slowly rotating [Fig. 12(d)]. Since the vortex merging is absent, the mixing layer
does not grow as much as for Ld = ∞.

2. Momentum thickness

In this section the spread of the mixing layer is analyzed. Therefore, a proper definition for the
momentum thickness θ is needed. We define it as

θ (t ) =
∫ L∗

y /2

−L∗
y /2

ū(y, t ) − U1(y)

U2(y) − U1(y)

(
1 − ū(y, t ) − U (1)

U2(y) − U1(y)

)
dy, (21)

where L∗
y = 0.8Ly is a vertical length around the shear layer to avoid contamination from the

boundaries, ū is the horizontal velocity averaged along the x direction, and U1(y) and U2(y) are

U1(y) =
{

U (y) for y > 1

U (1) for y � 1,
(22a)

U2(y) =
{

U (−1) for y > −1

U (y) for y � −1,
(22b)

respectively. If m = 0 and Ld = ∞ (i.e., the classical Rayleigh profile), U1 and U2 are constant and
then Eq. (21) becomes the widely known equation for the momentum thickness [36,38].
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FIG. 11. Potential vorticity fields for m = −0.2 and Ld = ∞ at different times (a) t = 10, (b) t = 30,
(c) t = 50, and (d) t = 140. Note that at late times (t = 140) small-scale filaments appear to undergo a
secondary transition into coherent vortices.

In Fig. 13(a) the temporal evolution of the momentum thickness is shown for Ld = ∞ and
different uniform shear m. Interestingly, the maximum spread occurs without the background shear
(i.e., m = 0). For negative m we have seen in Fig. 11 that the vortex merging is significantly
weakened. This is expected to result in a corresponding weakening of the mixing-layer growth.
However, this dampening is present for positive m also in which the vortex pairing indeed occurs.
For this case the momentum thickness cannot significantly diffuse outside the initial shear layer

FIG. 12. Potential vorticity fields for m = 0 and Ld = 2 at different times (a) t = 10, (b) t = 50, (c) t =
100, and (d) t = 200. Similar to Fig. 11, torn shreds of vorticity appear to roll into smaller satellite coherent
vortices at late times.
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FIG. 13. Temporal evolution of the momentum thickness θ for (a) Ld = ∞ and several values of m and (b)
m = 0 and several values of Ld .

due to the uniform background shear which acts to confine filaments in the shearwise direction by
rapidly stretching them out and orienting them into the shearwise direction [39]. Particularly the
spreading is hindered by the increased momentum of the sandwiching layers.

Furthermore, the temporal growth of the mixing layer is illustrated in Fig. 13(b), which
introduces a finite value of Ld in the absence of the background shear. As the Rossby radius of
deformation decreases, the mixing-layer spread is damped. This is not surprising since we observed
in Fig. 12 that a finite value of Ld eliminates the vortex pairing which is the main cause of the growth
of mixing layers [36].

3. Perturbation kinetic energy: Temporal evolution and spectra

The temporal evolution of the perturbation kinetic energy averaged along both the x and y
directions, K , is shown in Fig. 14 for Ld = ∞ and different values of m [Fig. 14(a)] and for
m = 0 and different values of Ld [Fig. 14(b)]. At the beginning the effect of background shear

FIG. 14. Spatially averaged perturbation kinetic energy for (a) Ld = ∞ and several values of m and
(b) m = 0 and several values of Ld . The strength of the turbulence is growing with increasing m and diminishing
Ld . Note that the domain sizes are Lx = 49.2928 and Ly = 60 or Ly = 30 (when Ld � 2).
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FIG. 15. Fourier transform of the potential vorticity q̂(k̄) with k equal to k = 0.1275 (yellow), k = 0.2549
(red), k = 0.3824 (dark red), and k = 0.5099 (black) for Ld = ∞ and (a) m = 0.5 and (b) m = 0.

is in agreement with the linear theory, as can be seen in Fig. 14(a): If the value of m is decreased,
the strength of the perturbation increases. However, once nonlinear effects start to be significant, a
discrepancy with the linear theory is noticed. While the dampening effect due to an adverse shear
is still present, a cooperative shear hinders the growth of K as well once saturation is reached. The
additional boost in energy to the case without background shear is given by secondary growing
modes triggered by the initial unstable mode. This is consistent with the fact that the cutoff number
for m = 0 is larger than for m = 0.5 [see Fig. 3(a)] with a wider range of unstable wave numbers.

The nonlinear effect of Ld on the temporal evolution of K is in agreement with the linear theory
[Fig. 14(b)]. As the Rossby radius of deformation gets smaller the perturbation kinetic energy
decreases. The kinetic energy is partially “wasted” along the transversal direction, thus there is
less available energy to feed the growth of the mixing layer along the vertical direction.

In Fig. 15 the y-integrated Fourier transform along x of the potential vorticity q̂(k, t ) is illustrated
for Ld = ∞ and m = 0.5 [Fig. 15(a)] and m = 0 [Fig. 15(b)]. In this manner we can observe in detail
which wavelengths are triggered. In our simulations we initially trigger a mode with wavelength 2π

k ,
where k = 0.1275. For m = 0.5 this mode dominates both the linear response and the turbulent state.
For m = 0 the initial instability triggers modes with different wave numbers, such as k = 0.2549
and k = 0.5099. Then the energy of the final saturated state is not just due to the energy of the initial
unstable mode, but several modes play a role to reach this value. This overall picture involving only
a few mode interactions is consistent with previous studies examining the growth and saturation
of mixing layers in porous media using both weakly nonlinear and numerical methods [40]. This
confirms our previous hypothesis that the appearance of secondary modes, favored for m = 0 by
the broader range of unstable wave numbers [see Fig. 3(a)], enhances the level of turbulent kinetic
energy for m = 0 with respect to m = 0.5 [see Fig. 14(a)].

The time-averaged spectra of the perturbation kinetic energy K are reported in Fig. 16 for
Ld = ∞ and several values of m [Fig. 16(a)] and m = 0 and several values of Ld [Fig. 16(b)].
Dashed lines depict the slope of the spectra in the inertial range where the enstrophy cascade occurs.
In both figures the slope is steeper than the theoretical value of −3 predicted by Kraichnan [1]
for steady forced-dissipative 2D turbulence. In particular, for Ld = ∞ the slope is between −3.65
and −3.67 for all the values of m. These values are very close to the − 11

3 previously reported in
other two-dimensional turbulent mixing-layer calculations [28,38] and as such we view the spectral
correspondence, across the whole slew of Ld = ∞ models examined here, as further validation
of our numerical solution methods. From a kinematic point of view, Gilbert [27] has explained
that such value is due to the spiral filamentary structures that grow around coherent vortices [see
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FIG. 16. Time-averaged kinetic energy spectra for (a) Ld = ∞ and several values of m and (b) m = 0 and
several values of Ld .

Fig. 10(f), for instance] which are themselves characterized by vorticity gradients perpetuating to
ever-smaller scales in the spaces between the surviving large-scale coherent structures (see further
discussion below). Also, as indicated in Fig. 16(a), we find it significant that the − 11

3 spectrum
persists irrespective of the globally imposed constant shear.

Finally, for a finite value of Ld the slope of the spectra significantly increases. For Ld = 1 the
slope value increases up to −5.29. Previous authors [31,41–43] found such steep spectra for the
enstrophy cascade range (normally between −4 to −6) due to intermittency of the enstrophy transfer
towards small scales. The enstrophy cascade is fueled by vorticity gradients [4,8,44]. The significant
reduction of filaments around the vortices when Ld is finite [see Fig. 11(d)] shows how the vorticity
gradients are weakened around the vortices. Therefore, the direct enstrophy cascade is strongly
hindered by a small Ld and this is revealed by the steepest spectra shown in Fig. 16(b). We discuss
this further below in the next section.

4. Interpretation

The features examined in the previous sections lead us to adopt the following interpretation
inspired in part by the picture of self-similar coherent vortex production [31,32], while bearing in
mind that the behavior of a turbulent mixing layer cannot be fully explained by filaments breakdown
only. In stationary driven-decaying 2D turbulence calculations at Ld = ∞, e.g., as recently reviewed
by Boffetta and Ecke [4], vortices are produced at some rate at some given length scale. A direct
enstrophy cascade ensues as these coherent vortices undergo structural breakdown that generate
filaments that become elongated, bent, and sheared and eventually fully populate the spaces between
the (quasi)coherent structures of the injection scales. Ultimately, this process cascades down to
the dissipation scales giving rise to the nearly k−3 energy spectra predicted by Kraichnan [1] to
characterize these flows.

Of course, current best resolved numerical simulations [45] show that the spectrum takes
on the form k−3−δ with δ ≈ 0.65. Boffetta and Musacchio’s study [45] involved conducting a
series of numerical experiments with increasing resolution and showed that δ progressively gets
smaller as the resolution and Reynolds number increase. They conclude that this system ought to
asymptotically yield δ → 0 as Re → ∞.

The ability to shred apart vortices is directly a function of the relative distance between, say, two
vortices and their mutual ability to influence or advect their edges which is in turn a function of
Ld : Larger values of Ld implies that vortex structures can induce flow at longer range. Obviously,
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for a given separation of two given coherent vortices of given size, filament production should be
preferentially promoted in models where Ld is largest. With this physical view, it therefore seems
reasonable to suppose that spatially dense filaments with strong spatial gradients become rarer in
models where Ld decreases.

We view the features of the mixing layer within this same framework, but we read its implications
in the following way: The mixing layer has no steady production rate of vortices but has instead a
short duration production of vortices owing to the roll-up or breakdown of the original layer itself.
This generates filaments which wind up in response to the velocity field of the aggregate vorticity
distribution and, when applicable, the background imposed uniform vorticity. In cases when several
coherent vortices are born from the primary breakdown, copious filamentary structure is produced
as in all of the Ld = ∞ cases we examined (see, e.g., Figs. 10 and 11). Within these subset systems,
coherent vortices tend to merge when the background shear is zero which in turn further produces
more filamentary structures both inside and outside the resulting merged structure; this is especially
evident in the latter stages of development as shown in Fig. 10(d). In both cases, filaments are
seen to also roll up and generate smaller-scale coherent structures as well, suggesting that a self-
similar process is at play. In this sense, it appears that the filaments are not nearly as space filling
as they are in the classical stationary forced-dissipated 2D turbulence systems, with its usual k−3

direct enstrophy cascade spectra, since coherent vortices appear to be produced alongside spiraling
filaments at ever decreasing spatial scales [29]. While these coherent structures remain stable to
destruction, vorticity stays locked within them, choking off the production of more filaments at
smaller scales [46]. It is important to note that a flow that only yields a self-similar distribution of
vortices at all scales down to the dissipation scales will exhibit an energy spectrum of the form k−5

(see Refs. [30,31]). We can think of this idealized self-similar vortex system as one end-member
state, with the other end-member being steady forced-dissipated 2D turbulence with its space-filling
spiraling vortex filaments. In this sense, and very much in line with Gilbert’s thinking [27], we
rationalize the k−11/3 spectral slope of these mixing-layer experiments to be a reflection of the fact
that they, as a setting, lie in between these two end-member states since both self-similar coherent
structures are present alongside ever tightly spiraling vortex filaments.

The simulations with Ld small like those shown in Fig. 12 may be interpreted in a similar vein.
These mixing layers also undergo breakdown, but their coherent child PV structures are relatively
stable. This stability is due entirely to the fact that individual coherent structures have more limited
dynamical reach compared to their larger Ld counterparts. That is to say, the flow induced by a
coherent PV structure is weaker and greatly restricted in range compared to a similar structure with
a larger value of Ld . In these smaller Ld settings, unless individual coherent PV structures get very
close one another, vortex-vortex mergers cannot occur as readily as they do in Ld → ∞ conditions.
With merging events becoming infrequent, fewer filaments get produced and most of the PV remains
locked within these larger-scale structures. This gives rise to the steepness of the energy spectra
observed in these cases, which increasingly resembles the idealized self-similar vortex end-member
case with its characteristic k−5 energy spectrum.

V. CONCLUSION

In this work we have revisited by means of the KW perspective the linear and nonlinear stability
of quasigeostrophic vortex filaments under the influence of a background shear. These filaments
were modeled by a family of quasi-Rayleigh profiles subject to a uniform shear my.

Through the KW perspective, the instability of the quasi-Rayleigh profiles is viewed as the
interaction of two counterpropagating Rossby waves created at the two PV edges (i.e., where the
PV is discontinuous).

We confirmed that an adverse (favorable) shear stabilizes (destabilizes) the flow, as seen
by Dritschel [5]. Owing to the KW framework, we observed that the optimal phase-locking
configuration is shifted towards smaller (larger) wave numbers if m is positive (negative), while the
interaction between the two CRWs is totally independent of the background shear. Phase locking
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occurs in a range of wave numbers in which the interaction is more (less) favored for positive
(negative) m than when the background shear is absent. The introduction of a finite value of Ld has
a stabilizing influence on the Rayleigh profile independent of the presence of a background shear.
As the Rossby deformation radius Ld decreases, the interaction between the two CRWs is weakened.
This agrees with the common understanding that QG effects diminish the reach of the edge waves.

We have examined the nonlinear breakdown of a vortex filament in the nominally infinite-
Reynolds-number limit by using a superviscosity operator to drain power that builds up on
individual grid scales due to turbulent cascade through the inertial regime. In the simulations, the
quasi-Rayleigh profile is again used to model the vortex filaments, while the background shear is
viewed as immutable and a continuous source of external forcing. We have validated our numerical
code and model setup by comparing our linear predictions to our numerical simulations during
the linear growth phase. We have demonstrated the usefulness of the KW perspective through this
equivalence (Sec. IV). The KW viewpoint says that at the two edges of the mixing layer, only the PV
jump and the mean flow evaluated at these edges determine the stability of the mixing layer. Indeed,
the mean streamwise velocity fields in the background shear enhanced quasi-Rayleigh profile we
have adopted and the profile analyzed in the linear analysis are very different. However, the two
flow fields share the same two core characteristics, i.e., the PV jumps across strip edges and the
total mean flow at these edges are equivalent in both profiles. Both profiles are shown to yield the
same growth rates.

With regard to the quality of the mixing layer’s development and breakdown, we found several
properties: A negative background shear hinders the vortex pairing and then the growth of the
mixing layer while with a positive background shear the growth mechanism is still obstructed, but
this is due to the increased momentum of the external layers. A finite value of the Rossby radius
of deformation also hinders the vortex pairing; then the mixing-layer growth is maximized with a
configuration with an infinite Ld . While the deformation radius has a similar influence on linear and
nonlinear analyses, we observed discrepancies between these analyses concerning the impact of
the background shear on the turbulence strength. In particular, they differ for a positive m since
in the nonlinear simulations the most energetic configuration is without a background shear, while
for the linear analysis the gravest growth rate was for m = 0.5. For zero background shear additional
modes are subharmonically activated by the disturbance, while this does not occur for m = 0.5 since
the range of unstable wavelengths is narrower.

When Ld is infinite, the slope of the enstrophy cascade in the kinetic energy spectra is very
close to the value of − 11

3 , typical of 2D turbulent mixing layers [28,38]. This value for the slope is
intermediate between −3 (predicted by Kraichnan [1] for forced-dissipated 2D turbulence systems)
and −5 (found for a self-similar distribution of vortices at all scales [29–31]), showing how 2D
turbulent mixing layers lie between these two end-member states. When a finite Ld is introduced,
the spectra become steeper. Mixing-layer coherent structures have a more limited dynamical reach
as Ld decreases, which hinders the merging process. Rarer vortex-vortex mergers strongly decrease
the filaments production around the vortices. The consequent absence of filaments obstructs the
enstrophy cascade steepening and thus the spectra.

Our work promotes a mechanistic resonance-based perspective toward understanding how the
behavior of vorticity waves changes with the Rossby radius of deformation. This study examines QG
shear instability through the KW perspective lens. Expanding to other geophysical or astrophysical
flow systems, a similar study can be conducted to evaluate the influence of Ld on interacting gravity
waves [16] or Alfvèn waves [17]. It would be interesting to observe if and to what degree these wave
interactions become weakened by decreasing Ld , similarly to what occurs for CRWs.

Moreover, the introduction of a finite Rossby radius of deformation can be seen as a reasonable
and intuitively useful model framework toward a better understanding of three-dimensional effects
from the KW perspective. From our study of the QG model, the third dimension may be simply seen
as a direction into which the kinetic energy of CRWs may be stored as potential energy in the form
of fluid thickness variations. The richness of the possible modes of action are thus already apparent
from our analysis of the QG model and their interpretations. Many new types of instabilities are
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known to become manifest with the introduction of the (spanwise) direction, i.e., normal to the
flow. It would be intriguing to adapt the KW perspective to capture three-dimensional instabilities
in more realistic and accurate models. This kind of study could have impact toward rationalizing not
only geophysical flows but also more applied flow systems connected to industrial and technological
applications [18,35].

APPENDIX A: NUMERICAL METHOD

The set of equations (14) and (15) is solved using standard pseudospectral methods on a doubly
periodic domain. An example of the output of the code used here can be found in the chapter on
turbulence describing 2D decaying processes in Ref. [8]. This means that at a given time step tn the
PV is represented as

q(x, y, tn) =
Ny∑

�=0

Nx∑
k=−Nx

qn
�,k exp

[
2π ikx

Lx
+ 2π i�y

Ly

]
+ c.c., (A1)

in which �, k, Nx, and Ny are integers. The physical size of the domain in the x and y directions,
respectively, are Lx and Ly. In addition, q(n)

�,k is the amplitude of the Fourier component at time step
n, as indicated by a superscript. All derivative operations are assessed in Fourier space, while the
nonlinear advection terms are assessed in physical space using a standard 2/3 dealiasing rule. The
stream function is the solution of the corresponding Poisson equation found in Eq. (15). In spectral
space this becomes a simple algebraic relationship. Thus, the Fourier component of the stream
function is given by

ψn
�,k = − q(n)

�,k

K2
k,�

+ L−2
d

, (A2)

where the total wave number Kk,� is defined as

K2
k,� ≡ 4π2k2

L2
x

+ 4π2�2

L2
y

. (A3)

The velocity fields, and all other derivatives, are assessed in spectral space via simple multiplication,
e.g.,

un
�,k = −2π i�

Ly
ψ

(n)
�,k , vn

�,k = 2π ik

Lx
ψ

(n)
�,k . (A4)

The PV is evolved in Fourier space. The hyperviscosity is applied during the time step scheme based
on the modified Crank-Nicolson method described in Refs. [39,40]. According to this procedure,
the time stepping routine then predicts the updated PV amplitude at time step n + 1 via

qn+1
�,k = e−2δtν8|Kk,�|8 qn−1

�,k + 2δte−δtν8|Kk,�|8N n
�,k, (A5)

where N n
�,k is the aforementioned nonlinear advection term in Fourier space. Most simulations were

run for Nx = 1120 and Ny = 1280. With 2/3 dealiasing rule this means there were 2 × 800 × 800 ≈
1.3 × 106 active Fourier modes being evolved. In typical runs we adopted values of Lx = 49.2928
and Ly = 60, which amounts to a typical grid spacing of about 	x ≈ 0.04 and 	y ≈ 0.05. For
values of Ld that were less than 10, we considered Ly = 30 instead. This adjustment was chosen
since small values of Ld means that individual vortex structures have much more limited physical
reach. Also this choice was motivated by the practical observation wherein we find that runs
involving small values of Ld rarely spread in the y direction. In these smaller Ld runs we continued
to keep the same number of Fourier modes in the y direction. The choice of δt typically was either
0.005 or 0.0025. In some rare instances, when |m| = 0.5, we found that we had to reduce the step
size to as little as δt = 0.001 in order to avoid violating Courant-Friedrichs-Lewy constraints.
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We usually choose values of ν8 in the vicinity of 1/(256 × 1011). This means that for the
highest resolved Fourier mode (with, say, δt = 0.0025 with k = 800 and � = 800) the hypervis-
cosity reduces the amplitude by shaving off about 0.65% of the amplitude of the mode since
exp(−δtν8|Kk,�|8 ) = 0.9935. As a consequence, via the process of hyperviscosity alone, the highest
resolved wave mode has an e-folding timescale roughly of about 	t = 0.5. Raising the value of ν8

has visibly noticeable effects: Higher values enhance an effective stickiness between well formed
vortices and tends to cause mergers to happen more readily than otherwise. Too small a value of ν8

usually results in the pileup of enstrophy and energy at the cutoff wave numbers (corresponding
to that selected by 2/3 dealiasing rule); in those cases the numerical experiments blow up via
the generation of 2	x waves. We therefore settled upon the value of ν8 where we found that the
observed inertial spectrum showed little to no change and the numerical experiments were free of
2	x instabilities.

APPENDIX B: NUMERICAL VALIDATION

We validate the behavior of the simulations by assessing the growing phase in the experiments
against the linear theory predictions of Sec. III. For given values of m we initiate simulations with
the PV fields described above by correctly setting up the PV field with the numerically equivalent
value of the background forcing m̃. To this PV field we add an additional small amplitude (∼0.001)
perturbation corresponding to the fastest growing mode determined from linear theory. This entails
sinusoidally perturbing the two boundaries of the filament while making sure that the wavelength of
the maximally growing mode kmax and the difference in the phase of the two waves correspond to
those predicted for the maximally growing mode, i.e., 	ε = 	εmax, where 	εmax = 	εmax(m, Ld )
is determined from the analysis in Sec. III. The streamwise domain size of the numerical experiment
is chosen to fit exactly one maximally growing mode, i.e., Lx = 2π/kmax. The linear theory predicts
a growth rate for this mode given by ωi(lin). We turn off hyperviscosity in its entirety and run the
simulation until the profile transitions into the nonlinear regime, whereupon we end the numerical
experiment. In the temporal window in which the disturbances are clearly in the linear range, we
extract the perturbation kinetic energy field from the solutions and calculate an average perturbation
kinetic energy K (see Fig. 17). During the linear growth phase, this kinetic energy grows by four to

FIG. 17. Temporal behavior of the spatially averaged perturbation kinetic energy K for (a) Ld = ∞ and
different values of m and (b) m = 0 and different values of Ld . Note that the domain sizes are Lx = 2π

kmax
(see

Table I for the values of kmax) and the domain height is Ly = 60 for all the configurations but for Ld � 2 in
which Ly = 30.
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TABLE I. Summary of the test cases run for validating the nonlinear simulations and demonstrating the
robustness of the equivalence conjecture.

m Ld m̃ kmax 	εmax/π ωi(lin) ωi(DNS) Error (%)

0.5 ∞ 0.500 0.252 0.6321 0.2763 0.2748 0.53
0 ∞ 0 0.398 0.6492 0.2012 0.2029 0.8
−0.2 ∞ − 0.200 0.532 0.6419 0.1557 0.1551 0.38
−0.5 ∞ − 0.500 0.956 0.5961 0.0705 0.0699 0.85
0.5 10 0.453 0.285 0.6060 0.2437 0.2448 0.45
0 10 0 0.448 0.6382 0.1768 0.1785 0.95
−0.5 10 − 0.453 1.065 0.5834 0.0566 0.0571 0.88
0.5 2 0.316 0.302 0.3874 0.0754 0.0763 1.19
0 2 0 0.573 0.5565 0.0810 0.0813 0.37
−0.5 2 − 0.316 1.491 0.5439 0.0202 0.0202 0
0 1 0 0.592 0.4843 0.0249 0.0252 1.20

five orders of magnitude before saturating. From this time series we do a linear regression fit and
extract a growth rate which we call ωi(DNS).

In Table I we summarize the results of these validations. We find that the predicted and measured
values of ωi differ from one another by less than 1% for all values except two simulation runs (i)
m = 0.5 and Ld = 2 and (ii) m = 0 and Ld = 1, which showed errors around 1.2%. Given the good
correspondence between the predicted growth rates and that observed in the numerical experiments,
we are confident that the numerical simulations are good and further that the equivalence conjecture
we have posed is a robust concept.
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