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Mode selection on breakup of a droplet falling into a miscible solution
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When a droplet with a relatively high density falls into a miscible solution with a
relatively low density, the droplet breaks up spontaneously. We investigated the number
m of breakup in experiments with several density differences �ρ between two solutions,
viscosities μ, and droplet radii r. The mode number m has a distribution even under the
same experimental conditions. We propose a simple model of mode selection based on
the linear Rayleigh-Taylor instability and the growing radius of a vortex ring deformed
from the droplet. The model provides the probability distribution P(m) and a relationship
between the nondimensional parameter G ∝ �ρgr3/μ2 and the average value of m, which
are consistent with experimental results.
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I. INTRODUCTION

Falling droplets have been a topic of interest within a variety of scientific fields such as physics,
mathematics, geoscience, and engineering [1–17]. For example, the breakup of rain droplets was
studied by experiments and numerical simulation [1], wherein the surface tension was found to play
an important role. On the other hand, when a droplet falls into a miscible viscous fluid without the
surface tension (termed the base solution), the droplet deforms into a vortex ring and breaks up due
to the instability of that ring [2–7]. The instability of the horizontally moving vortex ring has been
studied by many authors [18–25]; however, we consider the instability of the falling vortex ring
under the gravity. In the falling process, the shape and velocity of the droplet and the vortex ring
change with time; that is, the dynamics are nonstationary, making theoretical analysis difficult.

Arecchi et al. focused on (i) the critical condition for the breakup and (ii) the number of breakup.
They proposed two kinds of nondimensional parameters S = μ/ρD and F = �ρgV/μD, where ρ,
μ, �ρ, g, V , and D are the density of the base solution, the viscosity of the base solution, the density
difference between the two solutions, the gravitational acceleration, the volume of the droplet, and
the diffusion coefficient, respectively [4,5]. The nondimensional parameter S is the Schmidt number,
which indicates the ratio of a viscous effect to a diffusion factor. The nondimensional parameter F
is a ratio τ1/τ2, where τ1 = r2/D and τ2 = μ/�ρgr are characteristic timescales of diffusion and
a kinetic force due to gravity, respectively. The authors showed the existence of a critical value Fc

of F , i.e, there is no breakup for F < Fc, but the breakup is observed for F > Fc [4]. They also
showed a phase diagram for the number m of breakup in the parameter space of F and S [5]. In
our previous paper, we showed that the breakup occurs as a result of the Rayleigh-Taylor instability
of the vortex ring formed due to the deformation of the droplet and pointed out the importance
of another nondimensional parameter G = �ρgr3ρ/μ2 [8], where r is the droplet radius when the
droplet starts to fall down and G can be expressed by G = S/F .

The breakup occurs during the unsteady falling process in which the radius of the vortex ring
increases with time. Furthermore, the breakup occurs within a finite time until the droplet falls
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down to the bottom of the container. If infinitesimal perturbations are assumed as in the standard
linear stability analysis, an infinite period of time would become necessary for the perturbations to
grow and the droplet would reach the bottom before ever breaking up; that is, a finite magnitude
of perturbations should be considered for the breakup within a finite time of several seconds.
In previous papers, the mode selection was considered through dimensional analysis and the
comparison between two timescales with respect to the diffusion and the falling droplet [4,5]. In
this paper, we focus on the instability of the expanding vortex ring directly, and we show various
experimental results and discuss a mechanism of the mode selection under a nonstationary condition
during a finite time. Our results would provide a deep understanding of the mode selection of the
breakup in the falling process of a droplet.

II. EXPERIMENTAL RESULTS

A. Experimental method

Ferric sulfide aqua solution and glycerine solution were used to produce a relatively heavy droplet
solution and a relatively light base solution, respectively. The two solutions are miscible. Ferric
sulfide aqua solution was made using ferric sulfide (WAKO 094-01065), water, and polyethylene
glycol (PEG; Alfa Aesar B21955). The density difference �ρ is controlled by the ferric sulfide.
We had ρ1 = 1.18 g/cm3 and ρ2 = 1.12 g/cm3 in our experiments, where ρ1 and ρ2 are densities
of the droplet solution and the base solution, respectively. The density difference �ρ = ρ1 − ρ2 =
0.06 g/cm3 in our experiments is larger than that used in the previous experiment [4,5]. Red food
coloring (Kyoritsu Syokuhin) was mixed into the ferric sulfide aqua solution for visualization of
droplet deformation. The base solution with the lower density ρ2 includes glycerine (WAKO 072-
00621), water, and PEG. The viscosity μ of the base solution is set to be close to that of the droplet
solution by PEG in order to restrict the number of parameters. Figure 1(a) shows μ and ρ2 for several
concentrations x of PEG. As shown in Fig. 1(a), μ increases with x, whereas ρ2 is independent of x.

Our experimental setup is shown in Fig. 1(b). The radius at the moment when a droplet starts to
fall down was controlled using several tubes with different diameters. In our experiments, the radius
r was 0.9, 1.1, 1.3, 1.5, and 2.0 mm. A tube is connected to a syringe (TERUMO SS-20ESZ). The
syringe is filled with the droplet solution, which is then pushed out using a micro syringe pump
(KD Scientific IC3100) at 0.2 μ l/s, as shown in Fig. 1(b). Two types of cylinders were used in our
experiments to prevent any influence from the boundary of the cylinder: one was 75 mm in diameter
and 145 mm in height, the other was 50 mm in diameter and 260 mm in height. A base solution
was poured into one of the cylinders. The cylinder was placed on a horizontal glass table, and the
setting made it possible to capture a horizontal deformation of a droplet under the table. A droplet
of relatively high density was caused to fall from h = 8.0 mm, where h = 0 indicates the position
of the surface, and sinks into a base solution. The behavior was captured from the side and the
bottom of the cylinder using video cameras, whose positions are shown as Camera 1 and Camera 2
in Fig. 1(b). The obtained movies illustrated the vertical and the horizontal deformation processes
of the droplet and were analyzed using an image processing system (ImageJ, Nature Institutes of
Health, USA).

B. Probability distribution of breakup number m

When a droplet falls into a miscible viscous fluid, it spontaneously breaks up according to the
following process [4,5,8]: (1) the spherical droplet deforms into a flat pancake shape, (2) a hole is
created at its center and a vortex ring is formed, (3) the vortex ring expands in a radial direction,
and (4) the vortex ring deforms and is broken into several droplets. Breakups of 2 � m � 8 were
observed in our experiments, where m is the breakup number.

Figure 2 shows snapshots of the droplet deformation, captured from the position of Camera 2
shown in Fig. 1(b). The deformation of a droplet was observed after the vortex ring formation.
The droplet deforms to polygons such as (b) a triangle for m = 3, (c) a square for m = 4, and
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FIG. 1. (a) Viscosity μ and density ρ2 of the base solution for several concentrations x of PEG.
(b) Experimental setup.

(d) a pentagon for m = 5. Heavier solution concentrates at the vertices of the polygons and daughter
droplets are generated.

We experimentally investigated the probability distribution P(m) = n(m)/N . Here n(m) is the
number of experiments in which mode number m was obtained and N = 50 is the total number of

(b) (c) (d)(a)

FIG. 2. Droplet deformation with (a) a digon shape, (b) a triangular shape, (c) a square shape, and (d) a
pentagonal shape, as captured from the bottom of a beaker. Solid lines in the photos show 5.0 mm scale bars.
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experiments. We confirmed that the shape of distribution converged with the data with N > 30 in
our experiments. Thus, we regarded that N = 50 was a satisfied value in the measurements of P(m).

We investigated the dependence of P(m) in experiments with several initial radii r of the droplet.
The viscosities of the two solutions were kept constant at μ = 10.2 mPa · s, and the density
difference was also kept constant at �ρ = 0.06 g/cm3. Figure 3 shows the results in experiments
with (a) r = 0.9 mm, (b) 1.1 mm, (c) 1.3 mm, (d) 1.5 mm, and (e) 2.0 mm. The selected modes m
were distributed as shown in Fig. 3 with the same experimental conditions. The peak positions of
P(m) are m = 2 for r = 0.9 mm [Fig. 3(a)], m = 3 for r = 1.1 mm [Fig. 3(b)], m = 4 for r = 1.3
mm and 1.5 mm [Figs. 3(c) and 3(d), respectively], and m = 5 for r = 2.0 mm [Fig. 3(e)]. This result
indicates that the selected mode m increases with the radius r of the droplet. It is also supported by
a comparison of Fig. 3(c) with Fig. 3(d), showing that the distribution shifts toward the larger mode,
although the peak position m = 4 in Fig. 3(c) is similar to that in Fig. 3(d).

We also investigated the viscous dependence of P(m) obtained from experiments with
r = 1.5 mm, and �ρ = 0.06 g/cm3. Figure 4 shows the results for experiments with (a) μ =
7.2 mPa · s, (b) 10.2 mPa · s, (c) 15.2 mPa · s, and (d) 18.2 mPa · s. As shown in Fig. 4, the peak
positions of P(m) were m = 4 for 7.2 mPa · s and 10.2 mPa · s [Figs. 4(a) and 4(b), respectively],
m = 3 for 15.2 mPa · s [Fig. 4 (c)], and m = 2 for 18.2 mPa · s [Fig. 4(d)]. This result indicates that
the selected mode m decreases with the viscosity μ of the solution. In addition, our experimental
results showed a tendency that m increased with �ρ. This result is able to be confirmed in Fig. 5(b).

C. Relationship between m and G

In the previous paper, we proposed the following equations and performed numerical simulations
of a falling vortex ring [8]:

∂u
∂t

+ u · ∇u = − 1

ρ2
∇P + ν∇2u − ρ − ρ2

ρ2
gez, (1)

∂ρ

∂t
+ u · ∇ρ = D∇2ρ, (2)

where u, ρ, ρ2, ν, P, and D are the flow velocity, density of solution, density of the base solution,
kinematic viscosity μ/ρ2, pressure, and a diffusion coefficient, respectively. Equation (1) is the
Navier-Stokes equation for the fluid with inhomogeneous density. Equation (2) is the advection-
diffusion equation for the density. Dimensionless equations are obtained by the scale transformation;
x′ = x/r, u′ = ur/ν, t ′ = tν/r2, P′ = Pr2/ρ2ν

2, ρ ′ = (ρ − ρ2)/ρ2:

∂u′

∂t ′ + u′ · ∇′u′ = −∇′P′ + u∇′2u′ − Gρ ′ez, (3)

∂ρ ′

∂t ′ + u′ · ∇′ρ ′ = 1

S
∇′2ρ ′, (4)

where S = ν/D and G = (ρ1 − ρ2)/ρ2(gr3/ν2), and ρ1 is the initial density of the droplet. The term
G can be expressed as S/F , where the parameters F and S were proposed by Arecchi et al. [4,5].

We investigated the dependence of mode m on several values of G and S. We could not measure
the diffusion coefficient D directly, although D is included in the calculation of S. Instead, we
considered that the diffusion of Fe2(SO4)3 in a droplet plays an important role and evaluated this
using the Einstein-Stokes law and data relating to ionic diffusion coefficients [9]. Reference [9]
shows the diffusion coefficient DH2O ∼ 8.16 × 10−10 m2/s for Fe2(SO4)3 in H2O at 25. As D is
proportional to μ−1 by the Einstein-Stokes law, D(μ) = (μH2O/μ)DH2O. Substitution of μH2O =
0.89 mPa · s provides D(μ) = 7.26 × 10−13/μ (m2/s). S can be estimated from D(μ).

Figure 5(a) shows a phase diagram of breakup number m. The horizontal and vertical axes
represent S and G, respectively. The average value 〈m〉 is calculated using P(m). In this phase
diagram, m is set to 2 for 2 � 〈m〉 < 3, 3 for 3 � 〈m〉 < 4, and 4 for 4 � 〈m〉 < 5. The parameter
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FIG. 3. Probability distributions P(m) for mode m obtained from experiments with several droplet radii (a)
r = 0.9 mm, (b) 1.1 mm, (c) 1.3 mm, (d) 1.5 mm, and (e) 2.0 mm when a droplet starts to fall. The density
difference between two solutions is 0.06 g/cm3, and viscosities of two solutions are 10.2 mPa · s.
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FIG. 4. Probability distributions P(m) for mode m obtained from experiments with several viscosities (a)
μ = 7.2 mPa · s, (b) 10.2 mPa · s, (c) 15.2 mPa · s, and (d) 18.2 mPa · s. Density difference 0.06 g/cm3 between
two solutions and droplet radius 1.5 mm at the time when a droplet started to fall down were kept constant in
the measurements.

values for m = 2, 3, and 4 are plotted with closed circles, open triangles, and closed squares,
respectively. As shown in Fig. 5(a), 〈m〉 depends on G, but hardly depends on S for 4.0 × 104 �
S < 1.0 × 106. This result implies that (i) the diffusion does not have an influence over the mode
selection of the breakup and (ii) G is an important parameter for the mode selection. Result (i) is
different from previous studies [5,7]. As for the reason, it is considered that the density difference
of 10−2 g/cm3 in our experiments is larger than the 10−6–10−5 g/cm3 in previous studies.
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FIG. 5. (a) Phase diagram of breakup mode m obtained from probability distribution in experiments with
several density differences, viscosities, and droplet radii. (b) Relationship between G and 〈m〉 in a logarithmic
scale. The parameters for each marker are as follows: �ρ = ρ1 − ρ2 = 0.25 g/cm3 and r = 0.9 mm for closed
triangles; �ρ = 0.06 g/cm3 and r = 1.5 mm for asterisks; �ρ = 0.06 g/cm3 and viscosity μ = 10.2 mPa · s
for closed squares; and �ρ = 0.06 g/cm3 and viscosity μ = 14.4 mPa · s for inclined closed triangles. Data
obtained from experiments with several density differences are shown as closed diamonds.

Next, we investigated a relationship between G and 〈m〉. Figure 5(b) shows 〈m〉 for various values
of G, which are obtained for various viscosities μ, density differences �ρ, and droplet radii r. The
average value 〈m〉 increases with G at G � 4, and 〈m〉 has close to 2 at G � 4. The data suggest the
existence of a scaling law of 〈m〉 as a function of G at G � 4.

III. THEORETICAL ARGUMENTS

In the previous paper, we showed that the thickness d of the vortex ring decreases at the early
stage because the vortex ring expands, however, the vortex ring deforms vertically owing to the
Rayleigh-Taylor instability. As a result, there is a critical time tc when the effective thickness d
takes the minimum dc. We found that the relationship between the thickness and the wavelength of
the deformation at t = tc is in good agreement with that between the thickness and the most unstable
wavelength for the Rayleigh-Taylor instability of two-layer fluids [8].

We extend the argument for the mode selection of the breakup of a vortex ring. The linear growth
rate s(k) for the sinusoidal perturbation of wave number k on two-layer fluids can be calculated using
the method of Chandrasekhar [17]. The thickness of the upper layer is assumed to be d and that of
the lower layer is infinite. Figure 6(a) shows the relationship between k and s(k) for d = 0.1, ρ1 =
1.2, ρ2 = 1.1, g = 980, and ν = 0.1. Here the cgs system of units is used. Note that the maximum
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FIG. 6. (a) Linear growth rate s(k) of the Rayleigh-Taylor instability for dc = 0.1, ρ1 = 1.2, ρ2 = 1.1,
g = 980, and ν = 0.1. (b) Time evolution of s(k) = s(m/R(t )) for m = 2 (dashed line), m = 3 (solid line), and
m = 4 (dotted line). (c) Time evolutions of perturbation Am(t ) for m = 2 (dashed line), m = 3 (solid line), and
m = 4 (dotted line) in a semilogarithmic scale.
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growth rate is about 7, which implies that an initial perturbation of e−7 ∼ 0.00091 grows to 1 for
�t = 1s. On the other hand, Turner showed that the radius of a vortex ring increases under the
gravity [26] as

R(t ) =
√

R(0)2 + αt, (5)

where α = gV �ρ/(πρ	), V is the volume of the vortex ring, and 	 is the circulation of the vortex
ring.

We consider the Rayleigh-Taylor instability on such an expanding vortex ring. For the mode
number m, the wave number k is expressed as k(t ) = 2π/λ = 2π/(2πR(t )/m) = m/R(t ). Since
R(t ) increases as R(t ) =

√
R(0)2 + αt , the growth rate s(k) = s(m/R(t )) obtained from Rayleigh-

Taylor instability changes with time as shown in Fig. 6(b). Then the perturbation Am(t ) of mode m
is expected to grow as

Am(t ) = Am(0) exp

{∫ t

0
s(k) dt

}
= Am(0) exp

{∫ t

0
s(m/

√
R(0)2 + αt ) dt

}
,

where Am(0) is the initial value of Am(t ). The initial values are assumed to be the same Am(0) =
10−6, R(0) = 0.1, and α is set to 0.012. The other parameters are the ones used in Fig. 6(a).

Figure 6(c) shows the time evolutions of Am(t ) for m = 2, 3, and 4 in a semilogarithmic scale.
The behavior of Am(t ) is not simple, because s(m/R(t )) changes with time as shown in Fig. 6(b).
In Fig. 6(a) the linear growth rate s(m/R(t )) for m = 2, 3, and 4 at t = t1, and t2 are plotted as
examples, where t1 < t2. Initially, A2(t ) increases most rapidly, because the effective wave number
k = m/R(t ) is the smallest for m = 2 and all wave numbers are located in the right region of the
peak position of s(k) in Fig. 6(a). However, the effective wave number k(t ) = m/R(t ) decreases
with time and the wave number becomes smaller than the wave number corresponding to the peak
position of s(k), then s(m/R(t )) for m = 2 becomes smaller than that for m = 3 or 4 as shown in
Fig. 6(b). As a result, the order of Am(t ) can be changed. We assume that the mode m whose Am(t )
reaches first the goal value 1 wins the mode-selection race and is selected. That is, we speculate
from the experimental results that nonlinear dynamics become dominant and a come-from-behind
victory does not occur after that. The perturbation Am of the selected mode develops further in the
falling process, which leads to the breakup of the droplet. The number of the secondary droplets
is equal to the selected mode number m. In this case, mode 3 reaches first 1, mode 2 second, and
mode 4 the last as shown in Fig. 6(c), and then mode 3 is selected. The goal value is set to 1 in
our model, since the nonlinear effect is expected to become dominant for Am(t ) > 1; however, the
magnitude of the goal value is not important because only the total amplification factor Am(t )/Am(0)
is meaningful in the linear growth process.

Which mode is selected depends on the initial value Am(0) and the parameter α of the expansion.
As Am(0) is smaller, the time necessary to reach the goal value 1 is longer, and then the vortex ring
becomes larger, as a result, a larger m is selected. As α is larger, the vortex ring expands quickly,
and then a larger m tends to be selected. Figure 7(a) shows that the selected mode number m as α is
changed for Am(0) = 10−6 and R(0) = 0.1. The selected mode increases stepwise with α.

Next, we expect that the initial values Am(0) are randomly distributed, although the origin of
the randomness is not well understood. They might be fluctuating owing to thermal noises or some
fluctuations might be excited when the droplet falls into the base solution. In any cases, we can
calculate the probability distribution P(m) of selected mode m from the random initial conditions of
Am(0). Figure 7(b) shows P(m) when Am(0) obeys the Gaussian distribution of standard deviation
of 10−6 for R(0) = 0.1 and α = 0.04. The selected mode is distributed. The peak mode number is 4;
however, the other modes such as m = 3, 5, and 6 also appear. The wide probability distribution of
experimentally obtained mode number shown in Figs. 3 and 4 can be interpreted by this mechanism.
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FIG. 7. (a) Selected mode m as a function of α for Am(0) = 10−6 and R(0) = 0.1. (b) Probability
distribution P(m) of selected mode when Am(0) obeys the Gaussian distribution of standard deviation of 10−6

for R(0) = 0.1 and α = 0.04.

IV. COMPARISON BETWEEN EXPERIMENTAL RESULTS AND THEORETICAL ARGUMENTS

In this section, we compare the experimental results with theoretical arguments. First, we
measured the time dependences of the vortex ring radius R(t ) to estimate the α values from
experiments. The shape of the droplet keeps the sphere shape at t � t0, and the droplet begins
to deform to a vortex ring at a time t0 after a droplet starts falling. The times t0 are 0.23 s for
μ = 10.2 mPa · s, 0.36 s for 15.2 mPa · s, and 0.9 s for 20.2 mPa · s, respectively. We investigated
R2(t ′) − R2(0) using the measurements of R(t ′), where t ′ = t − t0. Figure 8 shows the data for
μ = 10.2 mPa · s as open circles, for 15.2 mPa · s as open squares, and 20.2 mPa · s as open
triangles with a constant value of a droplet radius r = 1.5 mm. The data increase close to linear
at 0 < t ′ < tc − t0.

From the slope of the linear fitting, α is evaluated, which is a parameter characterizing the
expanding speed of the vortex ring. This data show that α decreases with the viscosity as shown
in Fig. 8; that is, the α decreases with m, since the values m of these data for μ = 10.2 mPa · s,
15.2 mPa · s, and 20.2 mPa · s are 4, 3, and 2. The results show a similar tendency to the
consideration shown in Sec. III.
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FIG. 8. Plots of R2(t ′) − R2(0) for the evaluation of the α value, where t ′ = 0 is a time when the
deformation of the vortex ring becomes visible. Data of circles, squares, and triangles are obtained from
experiments of μ = 10.2 mPa · s (m = 4), 15.2 mPa · s (m = 3), and 20.2 mPa · s (m = 2), respectively. The
radius of a droplet 1.5 mm was kept constant in those experiments.

From α, another nondimensional parameter α/ν is obtained. If the dynamics of a falling droplet
can be expressed with Eqs. (3) and (4) and the effect of diffusion in Eq. (4) is negligible (S = ∞),
the only important nondimensional parameter is G. The droplet changes into a vortex ring in the
falling process owing to the Kelvin-Helmholtz instability, and the nondimensional parameter α/ν is
expected to be closely related to the nondimensional parameter G. Figure 9 shows a relationship
between G and α/ν for various values of r for μ = 10.2 mPa · s (circles) and those of μ for
r = 1.5 mm (squares). A linear relation of α/ν = a1G + a2 is approximately satisfied, where
a1 = 4.30 × 10−2 ± 0.44 × 10−2 and a2 = −15.99 × 10−2 ± 6.04 × 10−2.

FIG. 9. Relationship between α/ν and G for various values of r for μ = 10.2 mPa · s (circles) and those of
μ for r = 1.5 mm (squares). The linear line denotes α/ν = a1G + a2, where a1 = 4.30 × 10−2 ± 0.44 × 10−2

and a2 = −15.99 × 10−2 ± 6.04 × 10−2.
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FIG. 10. Probability distributions P(m) of selected mode number. The upper row shows numerical results
for (a) ν = 0.0911 and (b) 0.145. The lower row shows experimental results for (a′) ν = 0.0911 and (b′) 0.145
with a droplet radius r = 1.5 mm.

From this relation, α is predicted from G. The linear growth rate as shown in Fig. 6 is determined
by G. In the evaluation of the linear growth rate, the height H (t ) of the vortex ring is calculated using
the conservation law of the volume π2R(t )H (t )2/2 of the vortex ring (torus), and the thickness d
of the heavier fluid layer is assumed to be equal to H (t ). The mode number can be calculated using
the method of the previous section if the initial conditions Am(0) are known; however, they are too
small to evaluate in experiments. Instead, we can estimate the critical time t ′

c = tc − t0 obtained
in experiments, when the deformation of the vortex ring becomes visible, from the observation
of the thickness of the vortex ring [8]. We interpret that the time t ′

c is the goal time when Am(t )
reaches 1. The goal time t ′

c depends on the initial value Am(0). Using the critical time t ′
c, Am(0)

is evaluated as the order of 10−3–10−4. We have estimated that the probability distributions of
initial values of Am(0) obey Gaussian distributions of standard deviation of 10−3.5e−0.015m2

from the
comparison between experimentally observed probability distributions of selected mode number
and numerically obtained ones. Figure 10 shows theoretically estimated probability distributions
P(m) [(a) and (b)] and experimentally obtained P(m) [(a′) and (b′)] for two parameter values of
ν = 0.0911 and 0.145 with �ρ = 0.06 and ρ2 = 1.12. The critical times t ′

c s are 1.7 s and 2.0 s in
Figs. 10(a) and 10(b) obtained from numerical results, whose values are close to experimental values
of 1.70 s and 2.67 s in Figs. 10(a′) and 10(b′). Fairly good agreement is seen between experimental
and numerical results.

Furthermore, we have calculated the average value 〈m〉 for various values of G by using the
linear relation α/ν and the Gaussian distribution of standard deviation 10−3.5e−0.015m2

for the initial
values of Am(0), where the parameter values −3.5 and −0.015 are obtained from the fitting with
the experimental data of Fig. 10(a′). Figure 11 compares the experimental results (circles) shown in
Fig. 5 with the numerical results (line). Fairly good agreement is seen, although numerical results
are based on various assumptions and rough approximations.

Our experiments focus on an experimental condition of ρ1 > ρ2 in this paper, where ρ1 and ρ2

are densities of a droplet solution and a base solution. Even for negative density difference ρ1 < ρ2
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FIG. 11. Relationship between G and 〈m〉. Experimental results are denoted by marks and the numerical
results are denoted by a solid curve [27].

[21] and zero density difference ρ1 ∼ ρ2 [20], we expect that the figures corresponding to Figs. 10
and 11 could be plotted, if we could know the relationship between G and α/ν such as Fig. 9;
however, this is left for the future.

V. SUMMARY

When a droplet with a relatively high density falls into a miscible solution with a relatively
low density, the spontaneous breakup occurs. To understand a mechanism of the mode selection,
the breakup number was investigated in experiments with various viscosities, together with various
droplet radii and several density differences between the two solutions. We have found that the
selected mode number is not uniquely determined for the same experimental setup and measured
the probability distributions P(m) of selected mode number m. We also have found that the average
value 〈m〉 of the selected mode is determined almost only by the nondimensional parameter G.

We have proposed a mechanism of the mode selection based on the Rayleigh-Taylor instability
of the expanding vortex ring. A finite magnitude of initial perturbations is necessary for the
deformation of the vortex ring to grow in a finite time around several seconds until the falling
droplet reaches the bottom of beakers. Our problem is a problem of finite-time instability of a
nonstationary state. By assuming Gaussian distributions for initial perturbations whose magnitudes
are consistent with the critical time of deformation of vortex rings, we have obtained the probability
distributions P(m) and a relationship between G and 〈m〉. These results are in fairly good agreements
with experimental results.
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