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In flows where the relaxation rate of molecular vibrational energy to equilibrium is
comparable to the flow through timescales, the presence of turbulence can alter the mixing
and equilibration processes. To understand the coupling between mixing and vibrational
relaxation, a novel state-specific species model is solved in a background turbulent flow.
The method is applied to mixing of two nitrogen streams at different static tempera-
tures. The relaxation rates for each state are computed using quasiclassical trajectory
analysis. The rates obtained from this study were used to first study relaxation to
equilibrium in a constant volume bath. Results indicate that the thermal relaxation process
is not linear over the range of conditions tested and exhibits quasisteady behavior with
the higher energy levels relaxing first, followed by a slower relaxation of the lower energy
levels. The state-specific model is then used to study the interaction of turbulent mixing
and relaxation process in a turbulent mixing layer of two nitrogen streams at different
static temperatures. The direct numerical simulation shows that gas compressibility effects
impact the translational energy through flow acceleration and deceleration while the
vibrational energy remains constant, triggering vibrational nonequilibrium. Also, the
vibrational state populations are significantly affected by turbulence. In certain locations in
the jet, the population from the direct calculation is several orders of magnitude different
than that based on a Boltzmann distribution at the local vibrational temperature. These
results show that considering details of the molecular populations in different vibrational
states is important in a range of high enthalpy flows.

DOLI: 10.1103/PhysRevFluids.4.013401

I. INTRODUCTION

In high-speed flows, the presence of shocks and expansion waves can alter the partition of internal
energies of molecules [1,2], leading to nonequilibrium flow phenomena. While different types of
nonequilibrium can be induced due to changes in the different components of thermodynamic
internal energy (translational, rotational, vibrational motions), the focus here is on vibrational
nonequilibrium. In both internal and external flows of relevance to hypersonic vehicles, the
translational and rotational motions are equilibrated quickly as compared to flow timescales.
Notably, the presence of slowly equilibrating nitrogen molecules can lead to persistent vibrational
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nonequilibrium [3-5]. While nitrogen itself may be chemically inert at these conditions, the
repartition of internal energy can alter turbulence [6,7], shock structures [3,8], or other chemical
reactions by altering the energy partition for the reacting molecules [9].

The impact of vibrational nonequilibrium on mixing and chemical reaction rates has been
extensively studied and modeled [5,9-12]. While many different models are available [1], the
multitemperature approach is often preferred due to its computational ease. This approach assumes
that the different molecular motions exhibit a motion-specific equilibrium, leading to a Boltzmann
distribution of energies that is characterized by a particular temperature. For instance, when
vibrational nonequilibrium is considered, a single translational or rotational temperature and a
vibrational temperature per polyatomic species are used to describe the nonequilibrium evolution.
These models have been used to study configurations of interest exhibiting strong levels of
nonequilibrium, typically high-speed shock-containing flows, such as the supersonic combustion
ramjet (scramjet) [4,7,13,14]. Fiévet et al. [4] showed that vibrational nonequilibrium can drastically
affect ignition time in a scramjet engine. In particular, its effect is counterintuitive. Chemical
reaction rates that account for nonequilibrium in external flow often show a decrease in the rate
with a reduction in the vibrational component of internal energy. However, for a constant total
energy, this reduction is balanced by increased translational energy. Fiévet et al. [4] used reaction
rates derived from first-principles to demonstrate that the increase in translational energy more than
offsets the reduction of vibrational energy, leading to faster ignition times in nonequilibrium flows.
While the importance of nonequilibrium is well-known in the context of external hypersonic flows
[8], these recent results indicate that nonequilibrium physics could also have a first-order effect in
high-speed internal flows, particularly in the context of hypersonic propulsion.

Given the importance of vibrational nonequilibrium effects on these flows, especially in external
flows, other higher-order models have been developed to better quantify the energy relaxation
process [15—19]. These approaches permit one to describe non-Boltzmann distributions by directly
solving for the population in each energy state using detailed rate expressions for the transfer of
molecules between the states through collisions. Previous studies of post-shock nonequilibrium
using state-specific rates [15,17,18] showed that a Landau-Teller-based multitemperature model
was able to approximate the bulk energy exchange process at lower translational temperatures
but showed considerable differences at higher temperatures. Further, the relaxation process is not
uniformly linear (as assumed by the Landau-Teller models) but can involve quasisteady states
[17,18]. Additionally, since chemical reactions have been shown to depend on the vibrational
quantum numbers of the reactants, a state-specific approach proved to offer a better estimation
of reaction rates [16,17,19]. Multitemperature models were shown to underestimate the dissociation
rates as the assumption of a Boltzmann distribution resulted in an underestimation of the high-lying
vibrational states populations. However, the main challenge in using such state-specific models is
the development of the appropriate state-specific transition rates. Recently, quasiclassical trajectory
(QCT) approaches have been used to obtain these rates for select transitions [17,18,20-22]. The
focus of all these studies have been on nonturbulent flows.

The current study aims at investigating a nonequilibrium turbulent flow by means of a direct
numerical simulation (DNS), where all turbulent scales are resolved, coupled with a vibrational
state distribution solver. The solver carries a set of scalars corresponding to the number fractions
of vibrational states relevant to the temperature range throughout the computational domain. The
simulations will focus on a nonreacting single-species free shear flow where translational and rota-
tional modes are assumed to be in thermodynamic equilibrium, i.e., their state distributions follow
a Boltzmann distribution computed from the same temperature. This is a reasonable assumption
as these modes reach equilibrium within orders of magnitude fewer collisions than the vibrational
mode [2]. Most studies previously cited [4,5,7,10—14] use a multitemperature approach to describe
vibrational nonequilibrium: The vibrational state distribution is considered to remain Boltzmann
at a different temperature than the translational temperature. This relies on the assumption that the
relaxation timescales are identical for all energy states. However, as the vibrational quantum number
increases, the state-to-state energy difference decreases, resulting in a much faster relaxation process
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at higher energy levels, effectively distorting the distribution from its original Boltzmann shape.
This error grows as higher vibrational energy levels are populated for hotter flows, and can lead
to erroneous estimation of reaction rates and translational temperature. This last point is crucial in
determining the local gas kinetic viscosity, and therefore accurately resolving turbulence structures.
In an effort to capture the complexity of the vibrational relaxation process through molecular
inelastic collisions, a quasiclassical trajectory model is used to calculate state-specific population
rates. This allows the description of non-Boltzmann distribution throughout the flow.

The paper is organized as follows: the first section presents the conservation equations for the
single-species compressible flow solver with state-specific vibrational relaxation rates. Then, the
derivation of these rates using the QCT approach is detailed for N, molecules. The third section
presents the application of the QCT-derived rates to resolve 0-D thermal baths. Finally, the state-
specific compressible flow solver is used to study a N, turbulent jet with vibrational nonequilibrium
by the mean of DNS. In the rest of the manuscript, “equilibrium and nonequilibrium” will simply
refer to “vibrational equilibrium and nonequilibrium.”

II. COMPRESSIBLE FLOW SOLVER WITH VIBRATIONAL STATE-SPECIFIC
RELAXATION RATES

In this section, the details of the state-specific nonequilibrium description are provided.

A. Conservation equations for thermally perfect gas

In this work, all simulations are carried out using N, as the fluid. To begin with, the conservation
equations that describe thermally perfect equilibrium gas are written as

ap  dpu;
— 4+ — =0, 1
ot + 0x; M
opu;  Opu;u; oP 0t
Pl OPMiM) _ 0 0N )
ot 8Xj 0x; 3)Cj
0pE  dpu;E oPu; Odtu; 0
R 3)

ot 0X; 0x; 0X; 0Xx;

where p is the mass density of the fluid, u; the ith velocity component, P is the static pressure, T;;
is the surface shear stress tensor, £ = e + %u,-ui is the total energy, e is the mass-specific internal
energy, and ¢ is the heat diffusion rate. Also, ¢t and x; represent time spatial coordinates, respectively.
The specific heat capacity used to compute the internal energy is based on a ninth-order polynomial
function [23]. The shear stress components 7;; are defined assuming the flow is a Newtonian fluid,

so that
ou;  du; 2 Ouy
= (o o = Sa ), 4
il “(aijrax,- 3 Jaxk> ®

where the kinetic viscosity w is evaluated using Sutherland’s law and is a function of the flow
translational temperature 7', and § is the Kronecker operator. The heat diffusion rate is defined
assuming Fourier’s law, so that

_ aT 5)
1= 8)6,' ’

where X is the thermal conductivity calculated from the Prandtl number Pr, which relates heat and
momentum diffusion. A constant Pr = (.72 is used in this study.
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B. Modifications to resolve vibrational state-specific nonequilibrium

To resolve vibrational nonequilibrium, it is necessary to split the total energy conservation
equation into its different modes. There are many levels of description possible. Two different
approaches will be used in this work. In both descriptions it is assumed that the translational and
rotational modes are in equilibrium and only the vibrational mode is out of equilibrium. Given
a molecular population, the internal energy in the vibrational mode is the sum of the internal
energies of the individual molecules. From an energy balance perspective, the internal energy is
split into molecular vibrational energy, e,, translational energy e;, and rotational energy e,. As a
first approximation, the distribution of energies in each mode is assumed to follow the Boltzmann
function with a corresponding temperature. The vibrational temperature is denoted by 7, while a
single temperature is used for the translational and rotational modes (denoted simply by 7' from
henceforth). For a diatomic molecule such as N, e, and T, form a bijection, which for this work is
given by

ev(Tv) = e(Tu) - etr(Tv) (6)

T,
/ co(THdT' — §R(Tv — Tret), (7N
Tret 2
where e, = e, + e, is the ro-translational energy, Ti.s = 298.15 K is a reference temperature, R is
the gas constant, and c, is the gas specific heat at constant volume. Note that in this formulation,
e, equals 0 at Ter and therefore does not account for the ground-state vibrational energy, which is
naturally included in the ¢, relation.

Decomposing the total energy relation defined in Eq. (3), the transport relations for the kinetic-
translational-rotational energy, denoted eqx = ¢, + ¢, + %u iu;, and the vibrational energy are given
by

opeu . duj(pewk + P) 0 oT 0
=—\r— ) - —(nu —V, 8
ar T ox; ox, \Max; ) T g, () Omrey ®
dpe,  Opuje, 0 aT,
= 2 (1,22) — oy, 9
dt 8xj B)Cj va)Cj QTR v ( )

where Qrgr_v is the energy exchange rate between the internal translational-rotational and vibra-
tional energy modes, and X, is the vibrational conductivity. To be consistent with Eq. (3), the
vibrational conductivity is defined as

_ Kpw
oPr
In this work, the Prandtl number is assumed to be identical for all internal energy modes. The
Otr-v energy exchange rate can be evaluated using Landau-Teller model with Millikan and White
relaxation timescales [2,3,7,24].

By using a single temperature to describe the vibrational energy, the multitemperature model
has made a fundamental assumption: The distribution of vibrational energy among the molecules
is governed by a Boltzmann distribution, albeit with the vibrational temperature 7, that is different
from the translational temperature. As previously explained, this assumption is unlikely to be valid
for high enthalpy flows, and could introduce errors in the estimation of chemical reaction rates even
for lower enthalpy flows. A more detailed approach is to directly solve for the population density in
individual vibrational states. This is equivalent to solving the master equation for spatially extended
systems.

When using the state-specific approach, Egs. (1), (2), (3), and (8) are still used. However, Eq. (9)
is further decomposed into a set of transport equations for the fractional number densities that
describe the populations of molecules in individual vibrational energy levels, denoted by ¢, for
vibrational state v. That is, for a particular vibrational state v, the number density 7, is the number

Ay (10)
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of particles per unit volume at that state (units of 1/m3), and ¢, =n,/n, wheren = ) __n,. Note
that ¢, is dimensionless and ) _ ¢, = 1. Furthermore, considering that nmy, = p, where my, is the
mass of one molecule, then p¢, represents the mass of all the particles with vibrational quantum
number v per unit volume (units of kg/m?). Next, note that the state-averaged vibrational energy is
defined as

v _UO v _UO v _UO
ev=28(v) 8()”v=28(v)p8()n¢v=zg(v) s()% an

I " mn,

where &,(v) is the quantized vibrational energy of a molecule in vibrational state v. Hence,
transporting all the states number fractions permits one to calculate the gas vibrational energy and
replace Eq. (9). The transport equation for fractional density ¢, can be written as

8p¢v + 3,OM[¢U _ 0 D a¢u

ot o ax' ox,

where the mass diffusion rate pD is evaluated using a Schmidt number Sc equal to 0.72, such
that pD = £-. S, is the vth number fraction source term. This source term is calculated from the
state-specific inelastic scattering rates of the following collision process:

No(v1) + No(v2) —> No(v)) + No(v3). 13)

+ S, (12)

The inelastic collisions, which result in a change of vibrational quantum numbers, evolve the states
fraction numbers through time. As such, every ¢, can be considered as a distinct species and the
inelastic collisions as reaction rates. This analogy permits us to evaluate S, using a law of mass
action for every collision as

\ kS i s Uj 5 T
5= X S s D (), (14
i Jj k 1 2

where My, is the molar mass (units of kg/mol), g, ;;xi is a degeneracy factor which characterizes
the impact a particular reaction would have on the mth population level. Here, g, ;i is defined as

8v.,ijkl = _85,1) - Sj,v + 8k,v + Sl,u- (15)

Here, these scattering rates k; are calculated using a QCT approach which will be presented in detail
in the following section.

In the multitemperature model, the coupling between Eqgs. (8) and (9) occurred through the
energy exchange term Q1gr_v. In the state-specific approach, Qtgr_v can be calculated from all the
scattering rates k; which naturally account for the energy exchange between translational+rotational
and vibrational modes. For instance, the k, rate for reaction (v; = 1, v, = 1) to (v] = 1, v} = 2)
characterizes a transfer of energy from the translational and rotational modes to the vibrational
mode, hence a negative Qrr_v. Likewise, (v; = 1, v, = 2) to (v; = 1, v = 1) corresponds to a
positive Qtr_v. Therefore, Qrr_v is calculated in the state-specific approach as

v - uo c
O y=-Y 2 =80 (16)

v mn,

III. DERIVATION OF STATE-SPECIFIC VIBRATIONAL RELAXATION RATES

A. QCT formulation of inelastic rates

The vibrational inelastic rates k; for the reaction presented in Eq. (13) were calculated using
QCT analysis [9,20,21,25,26]. The potential energy surface (PES) utilized for these calculations
was developed by Bender ef al. [20], which was an extension of the surface developed by Paukku
et al. [27]. This analytic PES was accessed via an online potential energy surface library, POTLIB
[28]. As detailed by the developers, the PES was fit using a set of approximately 17,000 ab initio
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data points [20]. The reported root-mean-square error compared to the quantum calculations is
1.3 kcal/mol for energies less than 100 kcal/mol and 6.7 kcal /mol for all data points on the surface.

We note here that this PES was not originally intended for predicting modest temperature
scattering processes as those of interest in this work. Instead, the PES was developed with the
purpose of studying nitrogen dissociation at earth reentry conditions. At higher temperatures, direct
molecular simulations (DMS) have shown reasonable agreement compared to Millikan and White
[29]. However, no formal validation of the vibrational exchange rates has been performed for this
surface for temperatures at and below 4 000 K.

Here, the rates were determined as a function of a translational-rotational temperature 7', an
initial set of vibrational quantum numbers v = (v;, v3), and a final set of vibrational numbers
v’ = (v}, v5). The scattering rate is denoted as k;(v, v’, T). For each trajectory, v is fixed, and
the relative speed and initial rotational quantum numbers, J = (J;, J>), are sampled from their
respective probability distribution functions (PDFs). Since the rotational and translational motions
are assumed to be at equilibrium, these PDFs represent the Boltzmann and Maxwell distributions,
respectively. After the N, molecules collide, the final state is marked (i.e., v") based on the closest
state. The aggregation of the outcomes is used to determine the inelastic scattering rates. The
following section describes the process used in calculating k for the N>-N, system.

Following conventional QCT averaging methods, which utilize Monte Carlo integration to
approximate the integrals associated with sampling the phase space of the system [30], the scattering
probability P; is approximated by

N,(v', J")
Nw,J,g,b)

where g is the relative speed of the reactants, b is the impact parameter, N is the number
of trajectories sampled at fixed (v, J, g, b) with all other initial conditions sampled from there
respective PDFs, and N, denotes the number of trajectories with a post-collision rovibrational
quantum numbers (v’, J'). The relative uncertainty of P, denoted by U, is defined in this work
as two standard deviations normalized by P; (this corresponds to a 95% confidence interval), which

is given by [9,20,25,26]
1 1\ /2 1\ 12
U, =2 ———) %2(— s (18)
Ny, N N;

where dependencies were dropped for brevity and the approximation is valid when N > N;. So,
for a 95% confidence interval to be within 5% of the mean (i.e., U, = 0.05), approximately 1600
trajectories in which v — v’ need to be observed.

If the rotational state, relative speed, and impact parameter are also sampled from their respective
PDFs as initial conditions, then the transition rate from one vibrational state to another for a fixed
temperature is approximated by

Pv—=>v,J—> J,g.b)~ a7

k(v =1, T)~ nbﬁm

172 ,
(8k3T> N;(v) (19)

Tm, N®w)’

where P; = 0 for all b > bp.x, m, is the reduced mass of the reactants, and kp is the Boltzmann
constant. The PDFs for b, g, and J; are, respectively, defined as

Jo =2mb, o0
3/2
fg(g;T):<27Tk;T> 47182€—m,g2/2kBT’ o
€ing (Vi i) —€int (v.0)
s J’ 2Jz De kT
foiCi, Ty = 8@ e B (22)

0,i(v;, T)
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where g, is the spin degeneracy of the rotational state, €, is the internal energy, and Q, is
the rotational partition function, which normalizes f,;. The combined rotational PDF is denoted
f(Lv,T) = fri(Usu, T) fra(Josva, T).

The rates as defined in Eq. (19) are completely independent of one another. Thus, the QCT-
calculated rates are not necessarily symmetric and detailed balance at thermal equilibrium is not
guaranteed. To ensure that the rates are consistent (i.e., the rates are symmetric and satisfy detailed
balance), the rates are averaged accordingly. First, for symmetry, the rates are modified so that

ks[(vi, v2) = (vy, v)] = ks[(v2, v1) = (v3, v))] (23)
This relation is imposed directly in Eq. (19) by setting

N(w) = N(vi, v2) + N(va, v1) (24)

Ny(v = v') = Ny(v1 = v}, v2 = v5) + Ny(v2 = v, v1 = v)). (25)

Note that v is added as a dependency for N; to clarify how final states are counted. Next, for detailed
balance, the rates are modified so that

fo, Dks(v - v/, T) = f,(v/, ks (v — v, T), (26)

where f, (v, T) is the Boltzmann PDF characterizing vibrational state v’s number fraction. The final
rate used in the CFD simulations, i.e., the rate inserted into Eq. (14), was chosen as the average of
the two rates defined in Eqgs. (19) and (26). That is, k; was is now defined as

b2 (8ksT\'*T Ny — v')  fo(@', T) Ny(v' — v)
2 ( ) [ N(v) £, T)  N@) }

where N and N; are defined in Eqs. (24) and (25), respectively.

kk(v—=>v,T)=

27)

Tm,

B. State-specific relaxation rates

Inelastic scattering rates were directly calculated using the QCT method as derived in Sec. III
at nine translational-rotational temperatures 7 = [500, 1000, 1500, 2000, 2500, 3000, 4000, 5000,
6000] K.

The first 10 vibrational quantum numbers were sampled, so for N,-N; collisions, there exist
10* vibrational state combinations (i.e., degrees of freedom). A total of 2.8 x 10? trajectories were
simulated using the QCT program developed by Voelkel et al. [9,21,25] on the Texas Advanced
Computing Center (TACC) machine using 4104 cores for 30 hours. At the end of each trajectory,
the final vibrational quantum number was determined as the closest lying state compared to the
classical vibrational energy resulting from the collision.

In total, 9 x 10* rates needed to be calculated based on the sampled states (including both
inelastic and elastic collisions). However, many of the final states were never observed, implying
that the probability of the particular transition was approximately zero. Table I summarizes the
number of trajectories and rates calculated per temperature.

Fewer transitions were observed at lower temperatures (resulting in fewer calculated rates)
because the total energy of the colliding N»-N, pair was not sufficient to shift the vibrational state.
At high temperatures and vibrational quantum numbers, more energy is stored in translational-
rotational and vibrational energy modes on average. This increases the total energy that can
be repartitioned during the collision event, which in turn increases the likelihood of observing
vibrational transitions.

The sets of directly calculated inelastic rates at 2000 and 4000 K are plotted in Fig. 1, which are
referred to as the rate matrix for a particular translational temperature. The x and y axes correspond
to the initial/final state of the first and second nitrogen molecule, respectively. Because symmetry
was enforced, the rate matrix is symmetric across the x = y diagonal. Note that if the rate is zero,
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TABLE I. Number of trajectories and rates calculated per sampled temperature.

Temperature (K) Trajectories Calculated rates
500 2.3 x 108 438
1000 2.3 x 108 468
1500 2.3 x 108 480
2000 2.3 x 108 526
2500 1.6 x 107 512
3000 2.3 x 108 877
4000 6.3 x 108 2493
5000 5.0 x 108 4344
6000 5.0 x 108 6124

this implies that the transition was not recorded throughout the QCT simulation. Hence, the rate
matrix at 2000 K is sparse because most vibrational state transitions were not observed, whereas the
rate matrix at 4000 K is less sparse. Note that the rates at the other temperatures follow the general
trends seen for these two temperatures.

In Fig. 1(a), the directly calculated rates for low-lying vibrational states is observed to be zero, but
the physical rate is nonzero. This discrepancy is due to the statistical nature of the QCT method and
the low probability of observing such a transition. To reduce this statistical error, the scattering rates
at low temperatures were extrapolated from the rates at high temperatures. Furthermore, from the
set of directly calculated rates, as modified to enforce the detailed balance [Eq. (26)], the scattering
rates were also fit to an functional relation. This fit was then tabulated and accessed during the CFD
simulations to determine the rate for intermediate temperatures between 2000 and 4000 K. For the
interpolation, it was assumed that log(k,) o« 7', similar to the conventional Arrhenius expression.
The interpolated (or extrapolated if necessary) rate matrices at 2000 and 4000 K are plotted in
Fig. 2. Comparing Fig. 2(b) with Fig. 1(b), notice that the structure of the rate matrix for 4000 K
is approximately unchanged. However, at 2000 K, the interpolated rate matrix is significantly
less sparse than before. Specifically, the nonzero entries in the rate matrix were increased from
526 to 2521. These interpolated rate matrices are used in the simulations presented in Secs. IV
and V.

0 20 40 60 80
v N, + v}
(a)

FIG. 1. Directly calculated inelastic scattering rates [units for the rate are cm3/(mol s)]: (a) T = 2000K;
(b) T =4000K
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0 20 40 60 80 0 20 40 60 80
v N, + ] v1 N, + ]
(a) (b)

FIG. 2. Interpolated and extrapolated inelastic scattering rates [units for the rate are cm3/(mol s)]: (a) T =
2000K; (b) T = 4000 K.

The relative error of the Arrhenius fit (denoted &) is shown in Fig. 3.

The points only represent comparisons to those rates which were directly calculated. In general,
the high rates have a lower error, which is good because those rates were well resolved. At lower-
valued rates, the difference between the fit and the rate is more sporadic. However, the lower rates
generally had a higher corresponding uncertainty, thus implying that the directly calculated rates
had a larger margin of error. Furthermore, the rates span six orders of magnitude, implying that the
relative effect of the lower rates on the simulation will be less impactful.

C. Compact formulation of the state-specific rates

In an effort to reduce the cost of evaluating S'U [Eq. (12)] at each time step, the source term is not
directly evaluated as a summation over all 10* states [Eq. (14)]. Instead, this evaluation is reduced

102 : « T =4000 K
: T = 3000 K
10! . T = 2500 K
T = 2000 K
1004
| ‘ THa,
ﬁ 107! B
= ol
1073 P . .
1074 : .
107 108 107 1010 101! 1012 1018 101

ks [cm3/(mol s)]

FIG. 3. Relative error of Arrhenius fit rates compared to directly calculated rates.
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v=6 v=7 v=_§
0 0 0
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
8 8 8
9 9 9
0123456789 0123456789 0123456789
j j j

FIG. 4. R,;; for the first 9 levels (v = [0 8]) normalized by its peak values at a temperature of 4000 K.
Dark blue corresponds to a maximum depletion, and dark red to a maximum replenishment of ¢, .

into a more compact form during the initialization of the simulation. In Eq. (14), the summations
on the index k and / corresponding to the product of the scattering reaction rate can be precomputed
into a three-dimensional matrix R,;; of size Nlivel, where Nieyer is the number of levels. R,;;
defined as

ki(v; > v, v; > v, T)
Ruij = Y D Guijut X MNZ : (28)
ko1

Then, Eq. (14) simply becomes

So="2_2 Ruij(p$:)(0,). (29)
i

For each vibrational energy level v, R,;; provides information on the addition/depletion of
population due to combination of states {i, j}. Figure 4 presents R;; for the first 9 levels (v = [0 8])
at a temperature of 4000 K. Note that the range for each level v is normalized by its peak value
max(|R,|) = [0.648.5470.61239.72401.13915.35262.46474.47467.3] x 10°kgm~s~! to better
reveal the slow-reacting lower levels contours. Note that the highest level rates are 4 orders of
magnitude higher than the ground-state rates. As necessary, the table is symmetric along the i = j
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FIG. 5. Vibrational state populations versus time in constant volume for varied initial conditions; (a) T =
2000 K, Ty = 4000 K; (b) 7" = 4000 K, T, = 2000 K.

diagonal. A first observation is that almost all cells located on the i = v or j = v lines are blue; i.e.,
collisions involving at least one molecule of level v usually result in a depletion of ¢,. At higher
levels (v > 3), depletion is usually maximum when both colliding molecules are initially at level
v. However, peak depletion tends to be shifted towards the right or left of the (7, j) = (v, v) cell
for lower levels as inelastic collisions with a molecule is more likely to occur when involving
a partner at a higher level. This trend is clearly observed for the v = 2 table. At 4000 K, an
(i, j) = (2,2) collision is less effective at depleting ¢, than a (i, j) = (6, 2) collision. Interestingly,
the ground-state rates table is characterized by a positive production (red cell) for any neighbor of
the (i, j) = (0, 0) cell. Similarly, the highest replenishment rates are found for high levels (v > 3) in
vicinity of the (v, v) cell on its diagonals. For the temperatures considered here, the fourth quadrant
(both i, j > v) always have higher rates than the second quadrant (both i, j < v).

IV. THERMAL BATH SIMULATIONS

The state-specific rates are first used in a zero-dimensional thermal bath in order to verify the
equilibration process. The governing equations for the thermal bath are based on those presented in
Sec. II. Specifically, spatial derivatives are neglected in a constant volume system, which results in a
set of algebraic relations for mass, momentum, and energy. The vibrational population distribution
is then expressed in terms of a set of ordinary differential equations, leading to the following system
of equations:

plew + ey) = po(ey + €y). (30)
d .

T (09 = 5., 31)

o) = fu(v, Typ), (32)

where 0 subscript or superscript refers to the state at time # = 0 (note that mass and momentum
are assumed to be automatically satisfied). The initial vibrational state distribution is defined based
on a Boltzmann distribution at a chosen vibrational temperature. The translational temperature is
independently set, so that the system is out of thermal equilibrium. At the system evolves, the
vibrational state distribution will move towards its equilibrium distribution, and the translational
temperature as well as the pressure will shift due to the conservation relations.

Two cases were tested: (1) 7,0 < Tp (cold to hot), and (2) T, o > Ty (hot to cold). In both cases,
the initial pressure was set to 1 atm. Figure 5 shows one set of simulation results for each of the
two cases. For the cold to hot case, the vibrational states are initially defined by a Boltzmann
distribution at T, 0 = 2000 K, whereas the bath is at 7o = 4000 K. Each of the states relax over
similar timescales, with the v = 9 and v = 0 states taking approximately 5 x 10 sand 2 x 10™*s
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FIG. 6. Vibrational energy versus time in constant volume for varied initial conditions; (a) 7° = 2000 K,
T, varied; (b) Tvo = 4000 K, T varied.

to relax, respectively. In contrast, the relaxation from hot to cold differs considerably. Here, the
vibrational states are initially defined by a Boltzmann distribution at 7, o = 4000 K, whereas the
bath is at Ty = 2000 K. In this system, the high-lying vibrational states relax by 4 x 107> s. At this
point, most of the exchanged energy is deposited into the v = 1 state. Then, a quasi-steady-state is
reached that is sustained until 4 x 10™* s, after which low lying states relax.

The above cases present two different types of relaxation—the Landau-Teller-type linear relax-
ation to the end state and the second quasi-steady-state based exchange of energy. It is found that in
most other cases, both these types are present. However, when the translational temperature is lower
than the initial vibrational temperature, the quasi-steady-state is more pronounced. This is further
seen in the plot of vibrational energies shown in Figs. 6(a) and 6(b). For the cold-to-hot case where
T = 2000 K, the higher initial translational temperatures relax uniformly. The lower translational
temperatures relax to a near quasi-steady-state. In contrast, for the hot-to-cold case where 70 =
2000 K, all of the simulations relax at a similar rate up to 10> s. After this point, the higher
translational temperature simulations continue to relax uniformly, whereas the lower translational
temperature simulations reach a quasi-steady-state before relaxing towards equilibrium. Such quasi-
steady-states have been observed previously in other studies as well [17,18].

Based on these simulations, a relaxation timescale can be extracted assuming a linear process,
and compared with the empirical correlations of Millikan and White [31]. The dependence of these
timescales on the translational temperature is plotted in Figure 7. The translational temperature and
pressure used is taken as the average of the initial and equilibrium values. The relaxation time t, is

—eo— T"=2000K
107° —m— 7Y =14000 K
S e e Empirical relation
g
=,
K10+
2000 2500 3000 3500 4000

T [K]
FIG. 7. Vibrational energy relaxation timescales compared to Millikan and White’s empirical model [31].
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TABLE II. Numerical inflow conditions.

Case Ujel [m/S] Ucoﬂow [m/g] Tjel [K] Tcoﬂow [K] Bulk ReH/2
1 400 80 2000 4000 3921
400 80 4000 2000 1364

defined as the time for the vibrational energy to reach 63.2% of its equilibrium value. It is important
to note that the empirical relation assumes that the relaxation timescale is independent of the initial
vibrational population distribution. However, simulations performed here showed that the initial
conditions have an effect. For instance, when the initial vibrational population is at a higher than
equilibrium total energy, the relaxation time is comparable to the correlation value, but the process
is considerably slower than predicted by the correlation when the initial vibrational temperature
is lower than the translational temperature. Regardless, the dependence on temperature seems to
closely follow the T~!/3 correlation. These differences have been noted at higher temperatures in
other studies as well [18].

V. TURBULENT PLANAR JET SIMULATIONS

The effect of turbulence on nonequilibrium is studied next using a planar jet configuration. This
case involves a central jet issuing into a coflow, with both streams composed only of N,. For this
particular calculation, all streams are subsonic but in the compressible regime. Turbulent mixing is
expected to trigger vibrational nonequilibrium as observed by Reising er al. [32]. For the discussion
below, cold or hot nonequilibrium will refer to a vibrationally under-excited or over-excited flow,
respectively.

A. Numerical details

Two direct numerical simulations of N;-N, mixing are conducted. The height of the planar
jet is 8 mm, while the spanwise width is 16 mm. The computational domain is 160 mm long,
and is discretized using (ny, ny, n;) = (3072, 960, 196) control volumes in the three coordinate
directions. The domain is periodic in the spanwise direction, and nonreflective characteristic
boundary conditions [33] are applied at all the nonstreamwise boundaries of the domain. The inflow
conditions for the central jet are obtained from an auxiliary simulation of a periodic turbulent
channel flow. This fully developed solution is sampled to generate an inflow file that is used to
impose a time-varying but correlated inflow condition. Both the jet and the coflow are specified
to be at a static pressure of 2 atm, and are assumed to be in thermal equilibrium. The two cases
use different static temperatures for the two streams to reproduce hot-to-cold and cold-to-hot
mixing of the vibrational population. The other inflow conditions for the two cases are provided in
Table II.

The simulations were performed using the state-specific nonequilibrium flow approach. The
numerical solver uses a finite difference fifth-order WENO LLF scheme with characteristics
reconstruction to compute the convective fluxes [34], while a fourth-order central scheme is used
for the diffusion terms. Time-integration is carried out using a fourth-order Runge-Kutta scheme.
Other details of the flow solver are provided in Koo [35]. The dynamic viscosity is determined using
Sutherland’s law, but was increased by a factor of 4 in order to provide DNS-like resolution. The
simulations were initially conducted until all initial condition related effects have been convected
out of the domain. Statistics were then sampled over 0.25 ms, which corresponds to 0.5 flow-
through times, evaluated based on the integrated centerline velocity. A Courant-Friedrichs-Lewy
condition of 0.9 was used, leading to time-step of 80 ns. The code uses domain-decomposition
based parallelization, and each simulation was run on 10 000 cores for 16 h. An inert mixture
fraction Z.,;x was transported along with the populations for the 10 vibrational states. Mixture
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FIG. 8. Isocontour of mixture fraction Z,;, = 0.5 colored by streamwise velocity.

fraction is widely used in combustion studies to quantify the interplay between chemical reactions
and turbulent mixing [36]. In these simulations, mixture fraction is set to 1 for the jet inflow,
and O for the coflow. The computational domain and a snapshot of the mixing layer are shown
in Fig. 8.

Figure 9 presents an instantaneous snapshot of the density gradient magnitude, indicating a
highly turbulent mixing layer. It is seen that the potential core of the jet extended until x/H ~ 7.5.
To ensure that the turbulence length-scales are adequately captured, the local grid size is compared
to the Kolmogorov length scale « defined as « = vie~1 where the turbulent dissipation rate €

. oulr . . . . . . s
is defined as € = %rij%. This comparison is presented in Fig. 10. The resolution conditions
J

are shown for both axial and stream-normal directions. As seen, this ratio does not exceed 2
in the entire domain, which is considered sufficient to resolve all dissipation scales of the flow
[37].

B. Bulk vibrational energy mixing

The amount of vibrational nonequilibrium triggered by the turbulent mixing is first investigated.
The flow bulk vibrational energy e, is simply computed by adding the vibrational energy across the

400
300
200

100

0 2.5 5 75 10 125 15 175 20
x/H

FIG. 9. Snapshots of the magnitude of density gradient in kg/m* inside the turbulent planar jet.
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FIG. 10. Spatial resolution in the (top) x and (bottom) y directions.

10 states populations. Its local equilibrated value e,* is computed from the conservation of energy
based on the equilibrated temperature 7*, such that

T+ c,T " =e, +c,T. (33)

In the above relation, 7™ is found using an iterative procedure such that the change in temperature
between successive iterations is less than 0.01%.

The normalized relative difference between e, and e, defined as e“:ef‘ — 1, quantifies nonequilib-

e

rium. It is shown in Fig. 11 as a percentage. The mixing layer is overwﬂelmingly vibrationally under-
excited, with peak departure from equilibrium around 5% from its equilibrated state. Interestingly,
some highly turbulent areas exist where the flow is locally vibrationally over-excited. Since the
mass entrainment ratio (defined based on Ref. [38]) is equal to unity in the current configuration,

FIG. 11. Snapshots of departure between e, and e,* [%]. Red/blue indicate a locally vibrationally over-
/under-excited population.
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FIG. 12. Snapshot of compressibility factor C [%]. Red/blue indicate a locally compressed/expanded flow.

both hot and cold fluids mix equally. In such a case, Reising et al. [32] predicted that e, should be
symmetrically distributed across the mixing layer. In other words, the inner side, closer to the cold
flow, should be vibrationally under-excited, while the outer layer should instead be vibrationally
over-excited.

This observation can be explained by considering the source of nonequilibrium. It is seen that
the flow is mostly under-excited, implying that 7 is larger than the implied T, calculated from
e,. Contrary to the vibrational energy, which changes slowly and only through state transitions,
T is coupled to other flow-related variables. In particular, even at subsonic speeds, the exchange
of energy between translational and bulk mechanical energy modes is important. Hence, as the jet
flow slows down while it interacts with the slower coflow, the local temperature increases very
rapidly through compression. This happens at constant Z,;x as no mixing is needed to decelerate
a flow element emerging from the jet potential core. This implies that compressibility triggers
nonequilibrium, in particular, cold nonequilibrium, since e, remains nearly constant because it
relaxes slowly. By the same argument, the acceleration of the outer shear layer should trigger
hot nonequilibrium, but is not observed in this configuration. This is explained by considering the
volume entrainment rather than the mass entrainment ratio [38]. For the given inflow conditions,
this ratio is 2.1, which indicates that the lower-density jet dominates the nonequilibrium generation
process. As a result, the mixing layer shows an overwhelmingly cold nonequilibrium driven by
compressibility of the fluid.

A compressibility factor C can be defined in order to locate the regions where such mechanical-
translational energy exchange is present. This factor is extracted as the ratio of the local ro-
translational energy to the mixing-based expected energy:

c, T

C= -1, 34
CU[(Zmix’I}et + (1 = Znix) Teoftow)] G

where Zuix is the local mixture fraction. C is plotted in Fig. 12 as a percentage. A positive
value indicates that the flow is locally compressed, which should result in cold nonequilibrium.
Interestingly, the compressibility plots reproduce the features found in the vibrational energy relative
different plots (see Fig. 11). Notably, the rare vibrationally hot areas coincide with the rare expanded
areas. This is further quantified in Fig. 13, which presents scatter plots of the relative error between
e, and e} against the mixture fraction and C. The color scheme indicates the number of realizations
in a bin (blue is lowest, yellow is highest). The conditional plot against mixture fraction shows
that much of the nonequilibrium is vibrationally under-excited, which is essentially the same
data represented as in Fig. 11 but represented differently. The relative difference plot against C
clearly shows that much of the nonequilibrium is created when C > 0, which is in regions where
compressibility has raised the translational temperature of the fluid. However, the relatively sparse
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FIG. 13. Scatter plot of relative difference of e, against the mixture fraction Z;, (left) and the compress-
ibility factor (right) colored by local realization count (blue is lowest, yellow is highest). Plots obtained for
case 1.

hot equilibrium is created by the local acceleration or expansion of the fluid, which reduces the
translational temperature. Such hot nonequilibrium tend to occur in the close vicinity of the cold jet
potential core, where the local mixture fraction is closer to 1.

For the inverse simulations (case 2), the central jet issues at a higher temperature than the coflow
and a higher velocity. As a result, the compressibility factor behaves similar to case 1, but shows
some differences as well. Figure 14 shows the relative difference in the vibrational energy, which
indicates an under-excitation similar to case 1. The compressibility factor also shows a similar
behavior (Fig. 15), with positive C in the mixing layer. However, due to the differences in the density,
the mass and volume entrainment ratios are reversed in case 2. As a result, the outer part of the
mixing layer shows regions of negative compressibility factor, akin to Reising’s theory of symmetric
behavior [32].

This effect is further seen in the scatter plots shown in Fig. 16. It is seen that the relative
difference of vibrational energy as compared to the equilibrium energy is negative, but is found
in regions of negative compressibility as well. Since such regions occur closer to the coflow, which
has a lower temperature, it can be inferred that this part of the nonequilibrium is caused purely
by mixing between two streams with different temperatures. However, to fully isolate the effect
of compressibility, a shearless mixing layer should be used. However, we found that a turbulent
mixing region could not be sustained at these conditions without a velocity difference between the
streams.

FIG. 14. Snapshots of departure between e, and e,* [%] for case 2. Red/blue indicate a locally vibrationally
over-/under-excited population.
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C. Turbulent mixing of vibrational energy states populations

The analysis of the spatial distribution of vibrational energy revealed that the mixing layer is
dominated by compressibility, leading to under-excitation of the vibrational population distribution.
To further understand the impact of nonequilibrium on the different energy states, instantaneous
snapshots of the fractional populations in selected vibrational states are shown for both cases in
Fig. 17. It is seen that the mixing patterns are different for the various states. The lower vibrational
level exhibits spatial distribution that is consistent with passive scalar mixing: it presents a gradual
change from the lower population core jet to the coflow. However, the higher vibrational level
exhibits abrupt changes from cold to hot, similar to fast reacting scalars. For the hot jet configuration
(case 2), the patterns are simply reversed with an inner jet exhibiting higher population in all the
states shown. Note that when the temperature increases, the ground energy level (v = 0) loses
molecules to higher energy levels.

The differences in the behavior of the different energy levels are more evident in scatter plots
against mixture fraction shown in Fig. 18. The data are bounded by two curves: (a) the linear mixing
line that provides the limit when state-to-state transitions are frozen, and (b) the equilibrium line that
provides the limit when the time to reach a Boltzmann distribution is much faster than any of the
timescales associated with the flow. The mixing line is obtained as

O™ = fo(0. Tied) Zumix + fo (V. Teottow)(1 = Zic), (35)
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FIG. 16. Scatter plot of relative difference of e, against the mixture fraction Z;, (left) and the compress-
ibility factor (right) colored by local realization count (blue is lowest, yellow is highest). Plots obtained for
case 2.
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FIG. 17. Snapshots of vibrational state population number densities ¢, for levels v € [1 2 4 9] from top to
bottom for the (left) cold jet and (right) hot jet.

while the equilibrium line is simply obtained from the Boltzmann distribution at the equilibrium
temperature T* [Eq. (33)]. The area between the bounding lines increases with the energy level
since higher energy level distributions are more sensitive to temperature due to the exponential term
in the Boltzmann distribution function. Further, the higher level populations equilibrate rapidly,
and all populations above v = 3 lie close to the equilibrium line. However, the lower levels relax
more slowly, with v =[0 1 2] populations showing significant scatter away from both limits.
Hence, these levels exhibit the highest interaction between state-to-state transition chemistry and
turbulence. These plots clearly demonstrate that turbulence can interfere with relaxation both due to
compressibility of the flow and the timescales associated with the relaxation process itself.

In the discussions above, it was concluded that the vibrational population is under-excited based
on comparison with equilibrium energy. To further understand the distribution of population, the
departure of each state from the corresponding Boltzmann fraction can be obtained. To this end, a
departure function &, is defined as

&, = (P”_—B”(e”), (36)

B,(ey)
where B,(e,) is the number fraction of level v for a Boltzmann distribution yielding the same
bulk e,. Figure 19 shows instantaneous snapshots and conditional plots against mixture fraction
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2000K ) Zix + ¢ (T = 4000K )(1 — Zix) and (dashed red) the Boltzmann number fractions f,(v, T'). Only
case 1 is shown.

of this departure function for select vibrational levels. For v =1, the departure function is
always negative, indicating that the population is lower than that observed at equilibrium. This
is consistent with the under-excitation of the vibrational energy seen in the discussions above.
Since the lower levels contain most of the molecular population, this under-excitation is reflected
in the integrated vibrational energy. The higher levels show interesting trends: v = 3 and higher
levels show significant over-excitation across the mixing layer. Note that the departure function
is defined with respect to the local integrated vibrational energy and not the equilibrium energy.
The over-excitation of the higher levels indicates that (a) the higher levels are first over-populated
compared to equilibrium, (b) the exchange of population between the levels leads to equilibrium. In
other words, the translational energy is first transferred into the higher vibrational levels, probably
due to the smaller gap in energy. This result has important implications. Since chemical reactions
depend preferentially on the higher vibrational levels [10,21], this relaxation route has the potential
to alter chemical reaction rates. The integrated vibrational energy itself is dependent on the lower
energy levels. As a result, the use of multitemperature models that rely on the local vibrational
energy may vastly under-predict the populations in the higher levels.

VI. CONCLUSIONS

The conservation equations of a compressible flow solver resolving vibrational nonequilibrium
using a state-specific approach were presented. The QCT method was used to calculate a set of
vibrational state-specific scattering rates for the collision N»(v;) + N (v;). For the flow conditions
considered, the maximum temperature was 6000 K. Hence, only the first ten vibrational states
were considered as the population density in higher states is generally very small. During the QCT
simulation, the translational-rotational energy was sampled from one of nine temperatures ranging
from 500 K to 6000 K. In total, 2.8 billion trajectories were simulated to calculate the set of rates.

An initial test using homogeneous mixing of streams was used to evaluate the state-specific
rates. Interestingly, it was found that the mixing process is not linear as implied by the Landau-
Teller description of vibrational relaxation but follows a highly nonlinear evolution. In particular,
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FIG. 19. (Left) Instantaneous snapshots of &, [%] for v € [1 2 3 9] from top to bottom. (Right) Realizations
of &, [%] for v € [1 2 3 9] from top to bottom with Z,;x.

the high-lying states relax fast, with the lower states relaxing at a much slower rate. This leads to a
pseudo-steady behavior, whereby the higher states continuously adjust to the relaxation of the lower
states. A relaxation timescale, obtained by tracking the total vibrational energy relaxation towards its
equilibrium value, showed trends that are consistent with the Millikan-White correlation, but also
showed differences, In particular, the timescale is quantitatively different from that predicted by
the experiments, and is dependent on the nature of relaxation. If the initial vibrational temperature
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is lower than the translational temperature, the relaxation process was slower than in the inverse
scenario. These studies exhibit the complexities of vibrational relaxation, and the need to consider
details of the state-specific cross-sections.

Direct numerical simulations of turbulent plane jet coupled with a vibrational state populations
solver were then performed to investigate the coupling between turbulence mixing and vibrational
nonequilibrium for jet and co-flow temperatures of 2000 and 4000 K. It was found that the
nonequilibrium generated at such flow enthalpies are dominated by compressibility effects, where
the local acceleration and deceleration of the flow leads to a change in the translational temperature,
which then affects the vibrational temperature. This resulted in a non-Boltzmann distribution
throughout the mixing layer, which would potentially affect chemical reactions. In particular, a
numerical description of nonequilibrium only resolving the bulk vibrational energy, i.e., integrated
over the whole energy level distribution, would not be able to resolve such details and would
underestimate the reaction rates.

In summary, the use of state-specific rates is important even for internal flows and nominally low
translational and vibrational temperatures. Such flows already exhibit significant deviations from
Boltzmann distributions, especially for the high-lying states. Since chemical reactions are affected
more by the higher energies, any resulting chemical transformation will not follow Boltzmann-based
rate expressions. The impact of non-Boltzmann distributions on the macroscopic observed rates
needs to be studied in more detail.
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