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Effect of normal contact forces on the stress in shear rate invariant
particle suspensions
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We present a tensorial theory for the microstructure and the stress in shear rate invariant
particle suspensions that includes hydrodynamic and normal but not tangential hard sphere
interaction forces. The theory predicts that hydrodynamic forces produce a negligible first
normal stress difference, while contact forces produce a positive first normal stress dif-
ference. The theory thereby provides a rationale for seemingly contradicting experimental
observations in the literature. In addition, the theory captures the experimentally observed
time dependence of the shear stress after shear reversal.
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I. INTRODUCTION

Particle suspensions occur ubiquitously in nature, and their mechanical stress � is governed by
the particle interaction forces, which can be classified into hydrodynamic and nonhydrodynamic.
The nature of the hydrodynamic forces depends on the particle Reynolds number Rep = γ̇ a2/ν,
where a is the particle radius, ν = η/ρ is the solvent kinematic viscosity, η is the solvent dynamic
viscosity, ρ is the solvent mass density, and γ̇ is the shear rate. When Rep � 1, flow inertia is
negligible, and the hydrodynamic forces are governed by the linear Stokes equation.

The Stokes equation predicts that particles make no physical contacts in a fluid, since the
lubrication force diverges at contact [1]. With increasing volume fraction φ, however, the lubrication
films become progressively thinner, and when their thickness approaches the atomic length scale,
the films may disintegrate, resulting in physical contacts.

This work addresses the effect of hard and frictionless contact forces on the particle stress.
Hard contacts do not introduce a force scale F into the system, and the nondimensional suspension
viscosity, �12/ηγ̇ , depends therefore only on the particle volume fraction φ and not on the shear
rate γ̇ , as this cannot be nondimensionalized into a2ηγ̇ /F , due to the absence of F . This study is
therefore restricted to shear rate invariant suspensions.

Experimental data on the suspension stress � are mainly concerned with shear flow, where
L = ∇UT = γ̇ δ1δ2 is the velocity gradient tensor, γ̇ = √

2E : E is the shear rate, E = 1
2 (L + LT )

is the strain rate tensor, U is the velocity vector, and 1, 2, and 3 are the flow direction, the
gradient direction, and the vorticity direction, respectively. Figure 1 summarizes experimental data
on the relative first and second normal stress differences in shear rate invariant suspensions. These
quantities are defined as ζ1 = (�11 − �22)/�12 and ζ2 = (�22 − �33)/�12, respectively. While
ζ2 has always been observed to be negative, ζ1 has been observed to be both negative and small
(compared to ζ2) [5–7], as well as positive [2,4]. It is noted that a positive ζ1 has also been observed
in shear thickening suspensions [8–10], which supports the hypothesis that particle contact forces
are responsible for ζ1 > 0 [11].
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FIG. 1. Measured, steady, relative first and second normal stress differences ζ1 = (�11 − �22)/�12 (open
markers) and ζ2 = (�22 − �33)/�12 (solid markers), under shear rate invariant conditions and as functions
of the particle volume fraction φ. �, a = 20 μm; �, a = 70 μm (polystyrene in water, UCON oil and
zinc bromide [2]); �, a = 35 μm; ♦, a = 70 μm (polystyrene in poly(ethylene glycol-ran-propylene glycol)
monobutylether [3]); �, a = 5 μm (poly (methyl methacrylate) (PMMA) in Triton X-100, anhydrous zinc
chloride, and water (TZW) [4]); ⊕, a = 98 μm (PMMA in TZW [5]); ©, a = 22 μm (glass in corn syrup and
glycerin [6]); and �, a = 20 μm (polystyrene in silicone fluid [7]). The lines are drawn to guide the eye, and
the lower line represents the empirical relation [Eq. (16)].

In addition to normal stresses, effects of contact forces are also reflected by a stress discontinuity
upon the reversal of shear flow. In the absence of contacts, the Stokes equation dictates that the
stress is linear in the velocity. This means that when the flow velocity is instantaneously reversed,
the stress is instantaneously reversed too, as observed experimentally for small φ [12]. For large
φ, particles may experience contacts, and since contact forces are not reversed upon flow reversal,
there is a discontinuity in the (absolute value of the) particle stress upon flow reversal [12–14].

In this work we provide a microstructural explanation for the above mentioned experimental
observations, regarding normal stresses in steady shear flow, and stress discontinuity after shear
reversal. To this end we include hard and frictionless contact forces into a previously proposed
tensorial theory for the suspension microstructure and stress [15].

II. DERIVATION OF THE THEORY

A. Hydrodynamic forces

First we summarize the theory in the absence of contact forces. For a full derivation, the reader
is referred to Ref. [15]. In the two-body approximation the stress is given by [16–19]

� = − 1

V

∑
α>β

Fα,β rα,β = −n〈Fr〉. (1)

Here n = N/V is the particle number density, N is the number of particles inside the averaging
volume V , Fα,β is the interaction force F between particles α and β, and rα,β is the corresponding
particle pair separation vector r = pr , where p is the particle pair orientation unit vector, and r =
|r| is the particle pair separation. The stress is dominated by particle pairs with small gaps:

r = 2a p. (2)
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The interaction force F,

F = Fh + Fc, (3)

is the sum of the hydrodynamic force Fh and the contact force Fc, which is assumed zero, for the
moment. The pair separation vector evolves as

ṙ = c1 L : r p p + L · r · (δ − p p), (4)

and the corresponding lubrication force is to leading order

Fh = −a2ηc2 E : p p p. (5)

Here c1 and c2 are nondimensional functions of r/a and φ. Combining Eqs. (1), (2), (3), and (5) and
using that φ ∼ na3 gives the following particle stress tensor:

� = αηE : 〈 p p p p〉. (6)

Here α = c̃2φ is the lubrication stress parameter, and c̃2 is the effective c2, which is averaged over
the distribution of pair configurations, and which diverges when φ approaches maximum packing.

The average 〈· · · 〉 in Eq. (6) is expressed as an integral over the probability distribution function
�(r ) of the particle pair separation vector r:

〈· · · 〉 =
∫ |r|=2a+δr

|r|=2a

�(r ) · · · d3r, (7)

where the integration is restricted to the so-called interaction shell, where particle pairs have small
gaps: 0 < r − 2a < δr . The evolution of �(r ) is governed by the Smoluchowski equation:

∂t� + ∂k (ṙk� ) = 0. (8)

Since computing �(r ) is costly, we compute instead its second order orientation moment a = 〈 p p〉,
referred to as the microstructure. The evolution equation for a is derived by inserting Eq. (4) into
Eq. (8), multiplying the result by p p, and integrating the result from r = 2a to r = 2a + δr (see
Ref. [15]):

∂t 〈 p p〉 = L · 〈 p p〉 + 〈 p p〉 · LT − 2L : 〈 p p p p〉
−β

[
Ee : 〈 p p p p〉 + 1

15 (2Ec + Tr(Ec )δ)
]
. (9)

The first line of Eq. (9) described rotation of rigid dumbbells, i.e., fixed pair separations. The
second line accounts for changes in the separation, which correspond to an orientation flux between
the interaction shell and the exterior of this shell. This term is interpreted as the association and
dissociation of interacting particle pairs, by the action of the compressive and the extensional parts
of the rate of strain tensor, Ec and Ee, respectively, which pushes particles together and pulls them
apart, respectively. These effects are controlled by the pair association rate β, which is an increasing
function of φ.

To close the theory a relation is needed to express the fourth order moment 〈 p p p p〉 in terms
of the second order moment 〈 p p〉. Here we use the linear closure that was proposed in Ref. [20],
which is accurate when the distribution is close to isotropy, such that �( p) is well captured by a
linear expansion in the anisotropy tensor a − δ/3, i.e., �( p) = (4π )−1[1 + 15

2 (a − δ/3) : p p]:

〈pipjpkpl〉 = − 1
35 〈pmpm〉(δij δkl + δikδjl + δilδjk )

+ 1
7 (δij 〈pkpl〉 + δik〈pjpl〉 + δil〈pjpk〉 + 〈pipj 〉δkl + 〈pipk〉δjl + 〈pipl〉δjk ). (10)

B. Contact forces

Here, we extend the theory with hard and frictionless contact forces. We consider a limiting
member of the class of shear rate invariant suspensions in which the interparticle friction coefficient
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FIG. 2. (a) Modeled [Eqs. (9), (10)] microstructure a as a function of the pair association rate β. (b) Volume
fraction φ dependence of the planar microstructure a2D, measured in Ref. [22] [Eq. (14), markers] and modeled
[Eqs. (13), (15), and (16), lines].

vanishes and tangential friction forces may be ignored (see, e.g., Ref. [21]), and the microstructure
equation [Eq. (9)] is unaffected by the contact forces. It is noted that, under shear thickening
conditions, the tangential friction may have an effect on the particle motion, involving a transition
from sliding to rolling friction, and these effects are not captured by the present theory.

By definition, the normal contact force Fc is directed along p, i.e., Fc = |Fc| p when a particle
pair is under compression, while it is zero, when a pair is under extension. The contact force
magnitude |Fc| is therefore assumed to be proportional to the compressive part Ec of E projected
onto p, i.e., |Fc| = −c3a

2ηEc : p p, where c3 is a nondimensional function of p, and a2η is added
to make the expression dimensionally correct:

Fc = −c3a
2ηEc : p p p. (11)

Combining Eqs. (1)–(3), (5), and (11) and using that φ ∼ na3 we arrive at the following particle
stress tensor:

� = η(αE + χ Ec ) : 〈 p p p p〉, (12)

where χ = c̃3φ is the contact stress parameter, and c̃3 is the effective c3, which is averaged over the
distribution of pair configurations, and which diverges when φ approaches maximum packing.

III. THEORETICAL PREDICTIONS

A. Steady shear

In shear flow Eqs. (9) and (10) predict that particle pairs associate in the compressive quadrants
a12 < 0, rotate towards x2, and dissociate in the extensional quadrants a12 > 0. For β > 3, the asso-
ciation and dissociation dominate the rotation. The resulting distribution aligns in the compressive
quadrant a12 < 0, with a slight tilt towards x2, i.e., a22 > a11. For β < 3, on the other hand, the pair
rotation dominates the association and dissociation. Starting from isotropy, the resulting distribution
oscillates and dampens towards a preferred alignment in the x1 direction, corresponding to a11 > a22

and a12 > 0. As these oscillations have not been observed in experiments, we restrict the following
analysis to β > 3. The corresponding analytical solution to Eqs. (9) and (10),

a = (
6240 + 810β + 135β2

)−1

×
⎛
⎝3256 − 374β + 129β2 252β − 84β2 0

252β − 84β2 904 + 410β + 129β2 0
0 0 820 + 564β + 87β2

⎞
⎠, (13)

is plotted as a function of β in Fig. 2(a).
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FIG. 3. Modeled [Eqs. (9), (10), and (12)] relative first normal stress difference ζ1 = (�11 − �22)/�12

(dashed lines) and second normal stress difference ζ2 = (�22 − �33)/�12 (solid lines), as functions of the pair
association rate β for systems dominated by (a) hydrodynamic forces (α, χ ) = (1, 0) and (b) contact forces
(α, χ ) = (0, 1).

In Fig. 2(b), we compare the modeled microstructure to experimental data from Ref. [22],
reporting the planar, pair distribution function �2D in the (r1, r2) plane. In Fig. 2(b) the markers
indicate the corresponding, measured, planar moments a2D:

a2D =
∫ |r|=2.3a

|r|=1.7a

�2D(r ) p pd2r. (14)

These measurement data show a weak departure from isotropy over the entire φ range, which
supports the validity of the linear closure [Eq. (10)]. To compare our theory [Eq. (13)] to these
experimental data, we convert the modeled volumetric moments a into the planar moments a2D

using

a2D = a
a11 + a22

, (15)

and we convert β to φ by using the modeled relation between β and ζ2 [see Eq. (17) below, assuming
χ = 0], and the empirical relation

ζ2 = −4φ3, (16)

which captures the experimental data shown in Fig. 1. In Fig. 2(b) the resulting modeled a2D are
plotted with the lines. Both experimental data and theory predict that a2D

12 < 0 and a2D
22 > a2D

11 .
The relative first and second normal stress differences are obtained by inserting Eq. (13) into

Eqs. (10) and (12), giving

(
ζ1

ζ2

)
=

⎛
⎜⎜⎜⎝

336(β − 3)χ

α(54β2 − 24β + 904) + (63β2 − 120β + 452)χ

− 48α(β − 3)β + (57β2 + 6β + 128)χ

α(54β2 − 24β + 904) + (63β2 − 120β + 452)χ

⎞
⎟⎟⎟⎠, (17)

which are plotted as functions of β for contactless systems, (α, χ ) = (1, 0), in Fig. 3(a), and for
contact dominated systems, (α, χ ) = (0, 1), in Fig. 3(b). For systems without contact forces, we
find ζ1 = 0 and ζ2 < 0 [Fig. 3(a)], and for systems with contact forces we find ζ1 > 0 and ζ2 < 0
[Fig. 3(b)]. These results may rationalize the data shown in Fig. 1 and suggest that the stress in
Refs. [5–7] is dominated by hydrodynamic forces, while that in Refs. [2,4] is dominated by contact
forces. It is further noted that the positive effect of contact forces on the first normal stress difference
in shear invariant suspensions is supported by two dimensional Stokesian dynamics simulations in
Ref. [23].
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FIG. 4. (a) Modeled [Eqs. (9), (10), and (12)] suspension shear stress, scaled with the steady value
�12/�12,∞, as a function of the strain γ̇ t , after shear reversal, using various β, α, and χ . (b) Measured
�12/�12,∞ as a function of γ̇ t , after shear reversal, using various volume fractions φ [12].

The transition from negligible to significantly positive ζ1 is explained as follows. The hydrody-
namic part of the particle stress [Eq. (12)] produces a first normal stress difference,

�11 − �22 = αηγ̇ (〈p1p1p1p2〉 − 〈p2p2p2p1〉), (18a)

which is quadratic in the microstructure anisotropy and is therefore ignored by the linear closure
[Eq. (10)], which predicts ζ1 = 0. The contact part of the particle stress, on the other hand, produces
a first normal stress difference,

�11 − �22 = χηγ̇
[

1
2 〈p1p1p1p2〉 − 1

2 〈p2p2p2p1〉 + 1
4 〈p2p2p2p2〉 − 1

4 〈p1p1p1p1〉
]
, (18b)

which is first order in the microstructure anisotropy, and according to the linear closure [Eq. (10)],

�11 − �22 = 3
14χηγ̇ (a22 − a11), (18c)

which is positive, since a22 > a11 [see Fig. 2(b)].

B. Shear reversal

Finally we consider the case of shear reversal. We use the Euler forward integration scheme with
a time step of �t = 0.01/γ̇ to compute the time dependent microstructure and stress after shear
reversal, using various values for β, α, and χ . In the computation, the initially isotropic suspension
a = δ/3 is sheared until a steady state is reached, after which the flow direction is reversed from
negative to positive, at which instant we define t = 0. The reversal induces a reorganization of the
microstructure and the attainment of a new steady state.

The modeled shear stress, scaled with the steady value �12/�12,∞, is plotted as a function of the
strain γ̇ t in Fig. 4(a). As expected, the stress in the contactless theory, (α, χ ) = (1, 0), is conserved
upon shear reversal, followed by a decrease and subsequent recovery to the steady value. In the
contact dominated theory, (α, χ ) = (0, 1), on the other hand, the shear stress is not conserved upon
shear reversal; i.e., there is a discontinuous drop, followed by a recovery, in qualitative agreement
with experimental data from the literature [12], which are plotted in Fig. 4(b). The qualitatively
correct prediction of the stress discontinuity, which is related to the contact forces, further validates
the physical significance of the proposed constitutive equations [Eqs. (9), (10), and (12)].

IV. CONCLUSION

We propose a tensorial theory for suspension microstructure and stress that includes both
hydrodynamic and hard sphere interaction forces.

The theory assumes hard and frictionless contact forces, which is a reasonable assumption for
shear rate invariant suspensions but may not be valid for shear thickening suspensions. The theory
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furthermore assumes a linear relationship between the stress and the microstructure anisotropy
[Eq. (10)], which is supported by experimental data in the literature [22], as illustrated in Fig. 2(b).

The theory predicts that hydrodynamic forces produce a negligible first normal stress difference
ζ1, while contact forces produce a positive ζ1. These results may provide a rationale for seemingly
contradicting experimental observations in the literature, as illustrated in Fig. 1.
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