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Vortex models have been used for decades as computationally efficient tools to in-
vestigate unsteady aerodynamics. However, their utility for separated flows—particularly
when such flows are subjected to incident disturbances—has been hindered by the tradeoff
between the model’s physical fidelity and its expectation for fast prediction (e.g., relative
to computational fluid dynamics). In this work, it is shown that physical fidelity and
speed can be simultaneously achieved by assimilating measurement data into the model
to compensate for unrepresented physics. The underlying inviscid vortex model captures
the transport of vortex structures with a standard collection of regularized vortex elements
that interact mutually and with an infinitely thin flat plate. In order to maintain a low-
dimensional representation, with fewer than O(100) degrees of freedom, an aggregation
procedure is developed and utilized in which vortex elements are coalesced at each time
step. A flow state vector, composed of vortex element properties as well as the critical
leading-edge suction parameter, is advanced within an ensemble Kalman filter (EnKF)
framework. In this framework, surface pressure is used to correct the states of an ensemble
of randomly initiated vortex models. The overall algorithm is applied to several scenarios
of an impulsively started flat plate, in which data from a high-fidelity Navier-Stokes
simulation at Reynolds number 500 are used as a surrogate for the measurements. The
assimilated vortex model efficiently and accurately predicts the evolving flow as well
as the normal force in both the undisturbed case (a separated flow) as well as in the
presence of one or more incident gusts, despite lack of a priori knowledge of the
gust’s characteristics.

DOI: 10.1103/PhysRevFluids.3.124701

I. INTRODUCTION

The closed-loop control of the separated flow over an airfoil is essential for the development of
highly agile aircraft whose flight is robust to disturbances. All control strategies rely fundamentally
on an aerodynamics model that can accurately predict the force (and flow) response of an airfoil to
arbitrary disturbances and/or actuation and which can be run in real time. Unfortunately, classical
linearized quasisteady and impulse response aerodynamic models have difficulty capturing the
intrinsically nonlinear response that is observed when a separated flow is subjected to a broad
spectrum of disturbances or actuation [1]. Thus, it is natural to consider phenomenological models
that can capture this nonlinearity in a direct—but inexpensive—manner. For this purpose, inviscid
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vortex models, in which advecting vortex elements represent the time-varying flow field through
their mutually induced velocities, are a candidate.

Inviscid vortex models have been in common use in recent years to predict the dynamic response
of a flow that tends to separate at the leading edge. One class of methods models the flux of vorticity
into the wake by a continual release of constant-strength vortex elements from one or both edges
of the airfoil [2–4]. As the number of vortex elements increases, their interactions with each other
result in the emergence of large-scale structures. These methods have been successful in modeling
the detailed physics of the development of dynamic stall and the wake, but at the cost of tracking
hundreds to thousands of vortices and their interactions. The continual increase of computational
elements makes this class of vortex models impractical as state estimators in closed-loop flow
control.

Another class of inviscid vortex models handle vorticity flux through point vortices with time-
varying strength [5–8]. In these models, the dominant leading and trailing edge vortices are each
modeled with a single point vortex. The roll-up of the shear layers into large-scale structures is
captured by increasing the magnitude of the point vortices’ circulation. While the low number of
computational elements make this class of methods more suitable for real-time applications, the
resulting model lacks crucial flow physics. Without an explicit representation for the shear layers
that emerge from the edges of the wing, these variable-strength vortex models cannot capture
the transformation of a shear-layer instability into a new coherent vortex. To ease the tradeoff
between flow physics and computational cost, Darakananda and Eldredge [9,10] developed a
hybrid representation in which the evolution of a vortex sheet rooted at each edge of a flat plate
accounts for the natural roll-up of emerging vortex structures, and these structures are represented
by variable-strength point vortices that siphon their strength from the end of each corresponding
sheet. To ensure that this transfer does not spuriously affect the predicted aerodynamic force, an
impulse matching principle, developed by Wang and Eldredge [8], was used to adjust the velocity
of each variable-strength vortex.

A key open problem in vortex modeling is determining how much vorticity to release from
the leading edge. While it is generally accepted that the Kutta condition is an acceptable vortex
shedding criterion to use at the trailing edge, its use at the leading edge in numerous vortex models
[2,5,8] has not led to good results and this has driven the exploration of empirically determined
leading-edge shedding criteria. In the discrete vortex model developed by Katz [11], leading-edge
shedding was tuned with a handful of parameters. Some parameters, such as the position of the
leading-edge separation point, were chosen based on experimental data, while others were adjusted
to bring the predicted force closer to the measured force. In more recent work, Ramesh and
Gopalarathnam [3,12] introduced a shedding criterion based on the observation that real airfoils
can support a modest level of suction around the leading edge before flow separation is triggered.
Correspondingly, the authors suggested the use of the leading-edge suction parameter (LESP), a
nondimensional measure of the integrated pressure at the nose of the airfoil, to govern vortex
shedding. In their model, when the LESP is below a critical value, which we will denote as LESPc,
no vorticity is released. However, when the instantaneous LESP exceeds LESPc, vortex elements
will be released with the appropriate amount of strength to bring the LESP down to LESPc. By
tuning their discrete vortex model with an empirically determined static value of LESPc, the authors
were able to predict lift responses that were in good agreement with experimental results for several
(undisturbed) canonical motions of the wing.

This lack of an obvious theoretical closure in the low-order model at the leading edge has
also motivated the development of “data-assisted” vortex models, which are guided in part by
measurements from the real system (the “truth”). For example, Hemati et al. [13] posed the
combination of vortex model and truth measurements as a constrained optimization problem. In this
perspective, the leading- and trailing-edge vorticity fluxes were interpreted as inputs to a nonlinear
dynamical system. Variational methods were used to compute the time histories of these fluxes that
would minimize the squared error between the empirically measured and model-predicted forces
over a time horizon, subject to the constraint that the vortex elements move according to their
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usual dynamics. They applied this principle to optimize the variable-strength vortex model of Wang
and Eldredge [8] using empirical force data from a high-fidelity simulation of the Navier-Stokes
equations. While this optimization technique produced good results, it requires the measurements to
be available over the entire optimization window. So while it is a useful postprocessing tool, it is also
not directly applicable for real-time estimation. In order to overcome this limitation, Darakananda
and Eldredge [14] developed a “bootstrapping” procedure that applied the optimization over
short time increments, accelerated by an initial guess obtained by regressing over previous time
increments. However, in either form, this optimization framework relies on measurements of
aerodynamic force from the truth case. These measurements are generally unavailable and indeed
comprise part of the state that we seek to predict.

To address the shortcomings of previous approaches, in this paper, we address the problem from
the perspective of data assimilation and investigate whether it is feasible to use real-time (and
possibly noisy) sensor measurements to improve the prediction of a vortex model. To facilitate a
more practical estimation strategy, we will only rely on surface pressure measurements, which will
be folded into the predictive model through a Kalman filter (KF) framework. The KF framework
consists of a predictive step, in which the state of the system is evolved with a dynamical model,
followed by a measurement update step, in which the state is corrected based on new observations.
Both the state’s mean and its covariance matrix—essential for determining the degree to which
measurements shall affect the state estimate—are directly propagated in this framework. However,
the requirements of tracking the covariance matrix render the algorithm intractably expensive for
the moderate- to high-dimensional systems in fluid flows. Thus, in this work, we will utilize an
ensemble Kalman filter (EnKF), which was originally conceived to handle the high-dimensional
nonlinear dynamics found in meteorology [15]. The EnKF obtains the covariance, as well as the
mean state, from an ensemble of randomly initiated instances of the state vector.

The EnKF has recently been investigated for its use in aerodynamics by da Silva and Colonius
[16], in which the state prediction was obtained from a finite-volume Navier-Stokes simulation. In
the present work, state prediction will be obtained from a discrete vortex element model. To enable
the vortex element model to work for wide range of angles of attack, we use the LESP criterion
introduced by Ramesh and Gopalarathnam [12], where the leading-edge vorticity flux is determined
by a critical LESP. The state vector for the EnKF will be composed of the positions and strengths
of all vortex elements, as well as—crucially—the current estimate of the value of LESPc. Thus,
rather than assuming some prior knowledge of LESPc, we will seek to estimate its value from the
measured pressures. To ensure that the length of the state vector remains modest, we will aggregate
the vortex elements by a procedure that we will describe in the appendix. The performance of this
flow estimation framework will be assessed on undisturbed and disturbed separated flows past a
flat plate, using high-fidelity numerical simulations as the truth from which pressure measurements
are sampled.

II. METHODOLOGY

In this section, we present our data-assimilated vortex model. The underlying vortex model we
use is identical to the method introduced by Ramesh et al. [3], aside from the aggregation procedure
that we describe in the appendix. The dynamics of the flow are obtained by a standard collection of
advecting regularized vortex elements (blobs) about an infinitely thin flat plate. The Kutta condition
is enforced at the trailing edge of the plate, while the leading-edge vorticity flux is governed by the
LESP criterion. The critical LESP represents a measure of the tolerance for leading-edge suction
that does not lead to the flux of new vorticity into the fluid; a critical LESP equal to zero is equivalent
to enforcing a Kutta condition at the leading edge. If the instantaneous LESP exceeds the critical
value, then a vortex element is released from the edge, with strength proportional to the amount by
which LESPc has been exceeded. Ramesh et al. [3] chose a single value for LESPc from a priori
comparisons between the vortex model and high-fidelity Navier-Stokes simulations. In contrast, in
this work we estimate the value of LESPc within the data assimilation framework. It is important to
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FIG. 1. Comparison of vortex element distributions (left) and surface pressure coefficient distributions
(right) predicted by a vortex blob model with different LESPc values after one convective time. [(a),
(b)] LESPc = 3.0, [(c), (d)] LESPc = 0.3, and [(e), (f)] LESPc = 0.8. In each surface pressure coefficient
distribution panel, the top of the panel represents the leading edge of the plate, the bottom represents the
trailing edge, and the horizontal axis represents the time (in convective units).

note that, since LESPc determines the flux of vorticity from the leading edge, and subsequently, the
flow field dynamics and their effect on surface pressure, it is expected that measurements of surface
pressure should inform appropriate values of LESPc.

A. The critical leading-edge suction parameter

In order to provide some insight for the role of critical LESP, in Fig. 1 we depict a snapshot
of the evolving vortex element distribution and the history of the surface pressure distribution for
three different constant values of LESPc for a plate set into translation at 20◦ angle of attack; this
configuration will be one of the target problems of our studies in Sec. III. The surface pressure shown
here, as well as in every other pressure plot in this paper, is the difference in pressure coefficient,
�Cp = 2(p+ − p−)/ρU 2, between the upper (+) and lower (−) surface of the plate; negative
values of this coefficient represent suction.

It is important to stress that the choices for LESPc depicted here are made to explore the flow
dynamics under different static values; none is necessarily correct. In the top row, LESPc = 3.0.
Recalling that there must be a sufficiently large leading-edge suction to exceed this critical value, an
alternative interpretation of the value is as a critical angle of attack below which the flow is deemed
to be attached at the leading edge. Though the instantaneous LESP depends on the full instantaneous
flow state, in the absence of ambient vorticity it is solely determined by the angle of incidence of
the flow. The critical angle of attack corresponding to LESPc = 3.0 is larger than 20 deg, so no
vorticity is ever released. In the surface pressure plot, in which the vertical axis corresponds to the
streamwise spatial direction (with flow from top to bottom) and the horizontal axis represents time,
the lack of a leading-edge vortex (LEV) is reflected by a persistent low (suction) pressure in the
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vicinity of the leading edge. In contrast, in the middle row, where LESPc = 0.3, we see that the
model predicts the formation of a coherent LEV. This strong LEV exerts a low pressure on the plate
immediately below it as the vortex convects toward the trailing edge and relieves the low pressure
near the leading edge.

These first two cases illustrate the ends of the spectrum of possibilities for critical LESP. In the
lower row of Fig. 1, we take LESPc = 0.8, and consequently observe the emergence of a weaker
LEV. Because the vortex elements released at the leading edge are relatively weak, they are advected
closer to the plate surface. Without a viscous boundary layer to absorb this vorticity, the vortex
elements create unphysical, impulsive pressure disturbances along the surface.

From these plots of evolving surface pressure distribution, we can clearly see differences in the
growth (or absence) of the LEV for different values of LESPc. This suggests that it may be possible
to estimate LESPc if we are given the surface pressure information. It is important to note that, in
this estimation process, we need not assume that the LESPc remains constant. In this time-varying
form, the underlying physical role of LESPc as a trigger for and moderator of vorticity flux from the
leading edge is generalized, so that it can respond to disturbances of various sorts—incident gusts,
wing maneuvers, or leading-edge actuators. The estimated value can then be used to close the vortex
model and thereby fill in the rest of the evolving flow state. In other words, we seek to assimilate
surface pressure measurements in order to estimate one or more missing parameters in our model.
We might also be able to use these measurements to improve the estimates of other state variables
that are predicted by the vortex model, such as the vortex element positions and strengths.

As with most other inviscid vortex models, the dimension of the system increases with every
time step due to the release of new vortex elements from the edge(s) of the body. The steady and
unbounded increase of the state dimension prevents such models from being used in any real-time
applications. This is essentially the same problem that the hybrid vortex sheet and point vortex
model [10] was constructed to solve. Unfortunately, while the hybrid model performs well for high
angle of attack and pitchup problems, its use of contiguous vortex sheets makes it less suited for
flows at low angles of attack. In the context of the discrete vortex blob method used in the present
work, we will instead aggregate blobs at each step in order to maintain a modest population of
vortex elements. The aggregated vortex elements are farther from the plate, avoiding the nonphysical
interactions observed above. We defer the details of the aggregation method to the appendix, and
focus on the data assimilation component of the method.

B. Ensemble Kalman filter approach

We use a Kalman filter (KF) framework in order to algorithmically assimilate surface pressure
measurements into the vortex model, as we will describe below. The classical Kalman filter is
derived for linear systems. For weakly nonlinear systems, it is popular to use the extended Kalman
filter (EKF) [17], in which the nonlinear operators are linearized about the current state. However,
the linearization can lead to unstable growth of the error covariance. While this can be solved by
using higher order derivatives, the number of terms in the higher order Taylor expansion grows
substantially, which can make the computation prohibitively expensive for real-time applications.
For the present work, we will use the ensemble Kalman filter (EnKF). The EnKF was introduced
by Evensen [15] to explicitly address two key shortcomings in the EKF: the need for explicit
Jacobians of the dynamical model and measurement function and the large computational cost for
high-dimensional systems.

1. Summary of the EnKF

In this section, we provide an overview of the ensemble Kalman filter; further details, including
several practical aspects for computing the Kalman gain from the ensemble statistics, can be found
in da Silva and Colonius [16]. The EnKF is essentially a Monte Carlo version of the classical
Kalman filter. Instead of describing the distribution of the system state using a mean and a
covariance, as in the classical and extended forms of the KF, we approximate the distribution using
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an ensemble of size N of randomly initiated members, where the state of the ith member at filter
step k is denoted by x̃i,k . Suppose we know the ensemble states at step k − 1. We can then propagate
each member of the ensemble forward in time with a dynamical update (e.g., in the present work, a
time-discretized vortex model)

x̃−
i,k = f (x̃i,k−1) for i = 1, 2, . . . , N, (1)

where the superscript “−” indicates that no measurements have been incorporated yet. Note that
there is no process noise term in this update equation; this noise will be addressed in the next
section when we discuss covariance inflation. We now approximate the premeasurement mean and
covariance of the state with their sample values

x̂−
k := 1

N

N∑
i=1

x̃−
i,k (2)

and

P−
k := 1

N − 1

N∑
i=1

(x̃−
i,k − x̂−

k )(x̃−
i,k − x̂−

k )T . (3)

In the standard forms of the Kalman filter, the innovation—the discrepancy between the predicted
measurements and those obtained from the true system, denoted by the vector zk—is defined as

yk := zk − Hk x̂−
k . (4)

To adapt this definition to each ensemble member, we replace x̂−
k with the ensemble’s own

dynamical estimate, x̃−
i,k . However, we cannot use the same measurement zk for all ensemble

members, as Burgers et al. [18] found that doing so in an ensemble ignores the fact that zk is a
random variable and thus introduces spurious correlations in the ensemble covariance. Instead, we
must artificially introduce noise into the innovation of each member of the ensemble

yi,k := zk + εi − Hk x̃−
i,k for i = 1, 2, . . . , N, (5)

where the εi are vectors of random numbers drawn from a normal distribution with zero mean and
covariance V k . The Kalman update step is then applied to each member of the ensemble

x̃i,k := x̃−
i,k + K k (zk + εi − Hk x̃−

i,k ) for i = 1, 2, . . . , N, (6)

where the Kalman gain has its usual form,

K k = P−
k HT

k

(
V k + Hk P−

k HT
k

)−1
. (7)

Thus, while all members of the ensemble share the same Kalman gain, they each have a unique
innovation.

2. Covariance inflation

The EnKF, like the original Kalman filter, is constructed to minimize the final covariance, Pk ,
of the estimated state distribution. In the Kalman filter, information about the process noise and
measurement noise are accounted for via their respective covariances, W k and V k , in the evolved
state covariance matrix. In the EnKF, this process noise is independently sampled from W k and
explicitly added to the ensemble members in the EnKF, comprising a Monte Carlo formulation
of the Kalman filter. In the absence of such added noise, the system variance decreases to a lower
bound determined only by the measurement covariance, V k , so that the estimator cannot distinguish
measurement noise from state uncertainty. As a result, the Kalman gain of the ensemble becomes
minimally small, so that new measurements are effectively ignored by the filter. All members of
the ensemble become essentially identical to one another. This so-called covariance collapse can be
desirable in circumstances in which the dynamical model is completely deterministic and the filter
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has gathered sufficient data to locate the system’s position in state space. However, in the context
of the EnKF, it generally leads to a significant underestimate of the state covariance and suboptimal
measurement corrections.

A class of methods for handling this covariance collapse is called covariance inflation. In
general, covariance inflation modifies the ensemble states before computing the sample mean and
covariance. Each ensemble state is updated by

x̃−
i,k ← x̂−

k + β(x̃−
i,k − x̂−

k ) + αi,k, (8)

where β is the multiplicative inflation factor shared among all ensemble members and αi,k is the
additive inflation factor drawn from a random distribution at each filter step and independently for
each ensemble member [19–21]. After this update, we recompute the ensemble mean and compute
the ensemble covariance. Whitaker and Hammill [21] found that multiplicative inflation tends to
be better at countering the effects of sampling errors, while additive inflation tends to be better at
accounting for modeling errors. Multiplicative inflation tends to be easier to tune as it only involves
adjusting a single value. Adjusting additive inflation, in contrast, requires more understanding about
the actual dynamics of the underlying system.

3. Applying the EnKF to a vortex model

The state vector of our EnKF-assisted vortex model consists of the positions and strengths of the
n vortex blobs, as well as the current estimate of the LESPc:

xk−1 := [
x1

k−1 y1
k−1 �1

k−1 . . . xn
k−1 yn

k−1 �n
k−1 LESPc

k−1

]T
. (9)

The nonlinear state transition function f k propagates the state from step k − 1 to step k by the
following method:

(1) computing the bound vortex sheet strength on the plate from the no-penetration condition,
using the current vortex blob positions and strengths;

(2) computing the velocities of the vortex blobs;
(3) advecting the plate and the vortex blobs;
(4) applying the vortex aggregation algorithm, reducing the strength of any aggregated blobs to

zero instead of completely removing the blob; and
(5) releasing a new vortex blob from each edge of the plate with strengths based on the Kutta

condition at the trailing edge and the current estimate of the LESPc (similar to Ramesh et al. [3]) at
the leading edge.

Note that the dimension of the state vector increases by six (three per new vortex blob) after
every state propagation step. Once all members of the ensemble have been propagated, we look
for any vortex blobs that have zero strength across all members of the ensemble (in terms of its
position and/or index in the state vector) and eliminate them from the ensemble states. This element
elimination process, in conjunction with the vortex aggregation algorithm, keeps the dimension of
the state vector in check. However, by requiring that all ensemble members unanimously agree
on an element’s irrelevance, we ensure that the state vector has uniform dimensionality across all
members. We then apply covariance inflation to the new ensemble states, before computing the
premeasurement ensemble mean x̂−

k and ensemble covariance P−
k with Eqs. (2) and (3).

Our measurements consist of M pressure differences between the upper and lower surfaces of
the plate at every filter step k,

zk := [
�p1

k . . . �pM
k

]T
. (10)

Let us denote the vector of pressure differences predicted by the ith ensemble member at filter step
k by

mi,k := hk (x̃−
i,k ). (11)
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Then the innovation for each member of the ensemble is given by

yi,k = zk + εi − mi,k. (12)

Since pressure is not a linear function of vortex element properties, we need to develop a linear
form of the measurement function hk in order to compute the ensemble Kalman gain. One simple
way to achieve this is to define an augmented state vector containing the measurements themselves

X i,k :=
[

x̃−
i,k

mi,k

]
, (13)

which admits the linear measurement function

Hk := [0(3n+1)×(3n+1) IM×M ], (14)

where IM×M is the M-dimensional identity matrix. Then, denoting the mean of the predicted
pressure distribution by

m̄k := 1

N

N∑
i=1

mi,k, (15)

the covariance of the predicted pressure distribution by

Mk := 1

N − 1

N∑
i=1

(mi,k − m̄k )(mi,k − m̄k )T , (16)

and the cross covariance between the state and pressure with

Ck := 1

N − 1

N∑
i=1

(x̃−
i,k − x̂k )(mi,k − m̄k )T , (17)

we find that the ensemble covariance of the augmented state can be written as

Pa
k := 1

N − 1

N∑
i=1

([
(x̃−

i,k − x̂k )

(mi,k − m̄k )

]
[(x̃−

i,k − x̂k )T (mi,k − m̄k )T ]

)
=

[
P−

k Ck

CT
k Mk

]
. (18)

The Kalman gain of the pressure-augmented system is then

K a
k = Pa

k HT
k

(
V k + Hk Pa

k HT
k

)−1 =
[

Ck (V k + Mk )−1

Mk (V k + Mk )−1

]
. (19)

Since only the first block in the Kalman gain matrix above corresponds to the actual states we are
interested in, we can write the measurement update step for our system as

x̃i,k = x̃−
i,k + Ck (V k + Mk )−1[zk + εi − hk (x̃−

i,k )]. (20)

This procedure, proposed by Evensen [22], can be interpreted as an implicit linearization about the
ensemble mean.

III. RESULTS

We will demonstrate the EnKF-assisted vortex method on three test problems, each involving a
flat plate of chord length c translating at velocity U . Time is measured in typical convective units,
t∗ = Ut/c. In the first two cases, we explore the impulsive translation of the plate at fixed angles
of incidence 60◦ and 20◦, respectively. The third case is initiated in the same manner as the 20◦
case, but two incident disturbances are applied near the leading edge after three and four convective
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time units, respectively. The vortex model uses the same estimation framework for this case and is
given no additional information about these disturbances other than what is measured in the surface
pressure. For all cases, the measurements consist of pressure differences across the plate at M = 50
points, distributed symmetrically about the plate centroid at positions

c

2
cos

(
mπ

M + 1

)
for m = 1, 2, . . . , M. (21)

The truth measurements in all cases are obtained from high-fidelity numerical simulation with
the immersed-boundary projection method [23] of an infinitely thin flat plate at Reynolds number
Re = 500.

Throughout, we use an ensemble size of N = 50. The results are not sensitive to this choice
of size, but it represents a compromise between statistical convergence (with increasing N ) and
speed. We initialize each ensemble member with a starting value of LESPc drawn from a normal
distribution N (0.5, 0.2) (i.e., mean 0.5, variance 0.2). (It should be noted that the definition of
LESP in the present work is larger by a factor of four than the definition used by Ramesh et al. [3].)
The covariance inflation parameters are tuned on the 20◦ impulsive translation case, and take the
following values for all cases:

(1) multiplicative inflation is β = 1.01;
(2) additive perturbations to the vortex positions (normalized by c) are drawn from N (0, 10−5);
(3) additive perturbations to the vortex strengths (normalized by Uc) are drawn from

N (0, 10−3�t∗);
(4) additive perturbations to the LESPc are drawn from N (0, 5 × 10−5); and
(5) artificial measurement noise drawn from N (0, 2.5 × 10−4) is added to the truth pressure

measurements (nondimensionalized by ρU 2).
These inflation parameters are tuned to coerce the EnKF into favoring the modification of the

LESPc over the vortex element positions and strengths. This stems from our underlying assumption
that the key process is still governed by inviscid vortex dynamics, and the assimilation of pressure
data via the EnKF is a closure model to determine vorticity flux. Interestingly, although these
inflation parameters were tuned for one specific test case, we will see that that same parameters work
equally well with the other cases that we will present. For cases in which the vortex aggregation
procedure is applied, we set the error tolerance to εF /(ρU 2c) = 0.25�t∗; the role of this tolerance
is described in the appendix. The vortex model is advanced with a forward Euler scheme with a fixed
time step size of �t∗ = 0.01. The vortex elements are regularized with a blob radius of 0.005c. It
should be noted that the blob radius does not serve as significant a role in this aggregated model
as it does in previous (nonaggregated) vortex models, in which elements are in close proximity
and interact strongly with one another. The aggregated vortices are, in contrast, more isolated and
their interactions require less regularization. The nonzero blob radius mostly serves to regularize the
interactions of elements soon after they are released from the edges; we have found that the results
are relatively insensitive to the choice.

A. Impulsive translation at 60◦

This high angle of incidence presents a relatively simpler estimation problem than the later case at
low angle of incidence because it is expected, from previous experience at high angles [2,4,8,10,24],
that a vortex model with the Kutta condition enforced at both edges can provide a reasonably good
prediction of the flow behavior. In other words, the data assimilation should have a relatively small
role in ensuring an accurate estimate. This case allows us to improve our understanding of the
relationships among surface pressure, critical LESP, and the aggregating vortex model, particularly
when combined within the EnKF. We will compare the proposed EnKF-assisted vortex model
with the high-fidelity numerical simulation at Reynolds number 500 (the “truth” data) and two
“unfiltered” versions of the vortex element model with the Kutta condition applied at both edges: a
straightforward model and a model with the aggregation scheme applied.
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FIG. 2. Comparison of the surface pressure distribution over time along an impulsively translating plate at
60◦ between (a) high-fidelity simulation, (b) a basic discrete vortex element model, (c) a vortex element model
with aggregation, and (d) the proposed EnKF-assisted model. Convective time is defined as t∗ = tU/c.

The top panel in Fig. 2 shows the pressure distribution from the high-fidelity truth simulation.
From visual inspection, we can easily observe the growth and evolution of the LEV, indicated by the
expansion of a negative-pressure region moving toward the trailing edge. After the LEV stretches
across the whole chord at around two convective times, it starts to entrain opposite-signed vorticity
and trigger the development of a trailing-edge vortex, which shows up as a negative-pressure region
near that edge between three and five convective times. These events are confirmed in the top left
panel of Fig. 3, which depicts the vorticity field from this simulation at tU/c = 3. At around tU/c =
4.5, a new negative-pressure region at the leading edge indicates the emergence of a new LEV as
the trailing-edge vortex starts to entrain positively signed vorticity. This event is evident in the upper
right panel in Fig. 3, depicting vorticity after five convective time units.
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FIG. 3. Comparison of vorticity distribution for the 60◦ impulsive translation case at t∗ = 3 (left column)
and t∗ = 5 (right column), predicted by [(a), (b)] high-fidelity simulation, [(c), (d)] a basic discrete vortex
element model, [(e), (f)] a vortex element model with aggregation, and [(g), (h)] the proposed EnKF-assisted
model.

The overall features of this process are also observable in the basic discrete vortex element
simulation, shown in the second rows of Figs. 2 and 3. Indeed, these vortex element results look
very similar to those of the truth, except that the trailing-edge suction region is stronger and larger,
and there is little evidence in the pressure of the new leading-edge vortex at five convective times.
The difference between this prediction and the truth results is more apparent in the normal force
coefficient, shown in Fig. 4. The vortex element model predicts a larger force on the plate and
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FIG. 4. Comparison of the history of the normal force coefficient (normalized by ρU 2c/2) on the plate at
60◦ predicted by the high-fidelity truth simulation (—), a basic discrete vortex element model (—), a vortex
element model with aggregation (—), and an EnKF-assisted vortex element model (—).

exhibits a slight lag in the LEV shedding, indicated roughly by the instant at which the force reaches
its minimum. It is these differences that we seek to reduce with the assimilation of pressure data.

The use of the vortex element model to predict flow behavior comes at the expense of introducing
two new vortex elements per time step; thus, after five convective time units, there are 1000 vortex
elements in the system. For an n-body algorithm such as a vortex element method, this rate of growth
in the population of computational elements becomes impractically expensive without the use of a
fast multipole method. To improve the efficiency, we apply the aggregation scheme described in the
appendix to the vortex element method. In the third rows of Figs. 2 and 3, we show, respectively, the
surface pressure and snapshots of the vortex element distribution predicted by this aggregated vortex
model. The pressure exhibits more oscillations than in the basic (unaggregated) vortex element case,
but the same general behavior; the aggregated vortex elements are stronger and appear to coincide
with the dominant vortex structures. As is clear from Fig. 3, the high error tolerance (set to the
value reported above) has allowed the model to aggressively merge the vortex elements and has
thus reduced the element population by almost two orders of magnitude, as seen in Fig. 5. However,
as Fig. 4 shows, the aggressive aggregation has also introduced spurious disturbances to the force
response.

Finally, we apply the proposed EnKF-assisted aggregated vortex model, using an ensemble of
50 instances of the model. Each member is initialized with no vortex elements—as with any vortex
model of an impulsive start in quiescent fluid—and critical LESP values drawn from N (0.3, 0.2).
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FIG. 5. Number of vortex elements used in vortex models of the impulsively translating plate at 60◦. Basic
vortex element model (—); aggregated vortex element model (—); EnKF-assisted vortex element model (—).
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FIG. 6. Time history of the ensemble mean value of LESPc for the impulsively translating plate at 60◦ case.

These choices for mean and variance do not require much care, and are only made to ensure a high
probability that all ensemble members release vortex elements from the leading edge. The resulting
surface pressure distribution history is depicted in the last row of Fig. 2. It is clear that the predicted
pressure distribution agrees visually well with the high-fidelity truth simulation. The resulting force
of the ensemble mean, plotted in Fig. 4, agrees significantly better than either of the unfiltered vortex
models, albeit with some small-amplitude noise due to the variance across the ensemble.

The vortex element distribution of the ensemble mean, shown at two instants in the last row of
Fig. 3, is slightly less aggregated than in the previous (unfiltered) case; though the error tolerance
is the same, the requirement for unanimous agreement across the entire ensemble restricts the
aggregation somewhat. Furthermore, it is important to note that each of the ensemble members has a
slightly different version of this same distribution. Indeed, the additive covariance inflation of vortex
positions is equivalent to a random walk, used in some previous vortex methods for approximating
viscous diffusion [25]. The main differences in the present approach are that the random walk is
applied across an ensemble of models and that the vortex strengths are also randomly perturbed.
It should be noted, however, that we have not attempted in this work to tune the additive inflation
to capture diffusion at this Reynolds number; this relationship will be explored more thoroughly in
future work.
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FIG. 7. Ensemble variances for the 60◦ impulsive translation case. Variances for (a) element x position, (b)
element y position, (c) element strength, and (d) critical LESP.
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FIG. 8. Vorticity distribution for the 20◦ impulsive translation case at t∗ = 3 (left column), t∗ = 4 (center
column), and t∗ = 5 (right column), from [(a)–(c)] high-fidelity truth simulation at Reynolds number 500,
[(d)–(f)] the EnKF-assisted model without inflation, and [(g)–(j)] the EnKF-assisted model with inflation.

The slightly higher population of the ensemble is more directly observable in the plot of element
population in Fig. 5. The element distribution predicted by the EnKF-assisted model is more
representative of the true vorticity distribution than the unfiltered aggregated vortex model. By
assimilating surface pressure data, we obtain better agreement in pressure and force than the basic
vortex element model while still using two orders fewer vortex particles.

It is interesting to inspect the ensemble statistics to learn more about how the EnKF has helped
achieve this improved estimate. Figure 6 shows the mean critical LESP predicted by the EnKF-
assisted model. The critical LESP is constrained to remain non-negative. The initial statistics of
the ensemble are apparent in the early values of this parameter. However, it is clear that the EnKF
quickly brings LESPc down to almost zero, which essentially enforces the Kutta condition at the
leading edge. This is consistent with the successful use of a leading-edge Kutta condition in previous
vortex modeling work at high angles of attack. (Had we applied the model to measurements obtained
from a rounded-nose airfoil instead of a flat plate, it is expected, based on the work of Ramesh et al.
[3], that the estimated value of critical LESP would be nonzero.)

Figure 7 depicts the ensemble variances of the vortex positions, strengths, and critical LESP at
the end of each measurement update step. We can see that the variances of the vortex states stay
relatively constant over time. As we will see in the next case, the persistence of these values is
due to the additive covariance inflation. However, it should be noted that these values are lower
than the variances of the normal distribution from which additive inflation values are drawn from,
because the Kalman gain in the measurement update step is constructed to minimize these posterior
covariances. Furthermore, it is notable that the variance of the estimated critical LESP of the
ensemble drops to zero at multiple times. This seems to indicate that, in order to achieve better
agreement with the measured pressure data, the EnKF calls for the release of stronger vorticity from
the leading edge. Since the maximum flux of vorticity that can be produced by an LESP-based
vortex shedding criterion is that dictated by the Kutta condition (where LESPc = 0), the EnKF
drives all ensemble members to a critical LESP value of zero in order to release as much vorticity as
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FIG. 9. Histories of the surface pressure distribution along an impulsively translating plate at 20◦, from (a)
high-fidelity truth simulation at Reynolds number 500, (b) EnKF-assisted model without covariance inflation,
and (c) EnKF-assisted model with covariance inflation.

possible. Note that this does not mean that all ensemble members will release a new vortex particle
with the same strength, since the strength also depends on the ambient vorticity, which varies among
ensemble members.

B. Impulsive translation at 20◦

In the previous case, we compared the EnKF-assisted vortex model with unfiltered models. In
this case, in which the plate translates impulsively at 20◦, we will explore the effects of covariance
inflation. Figure 8 depicts snapshots of the vorticity distribution for the high-fidelity truth simulation
compared with ensemble averages of vortex elements in two versions of the EnKF-assisted
aggregated vortex model, without and with additive covariance inflation, respectively. There are
no obvious differences between the two vortex models, except that the version without covariance
inflation appears to have fewer elements. Both models’ element distributions are qualitatively
similar to the vorticity distribution in the high-fidelity truth simulation. However, the differences
between the two approaches are much more apparent in the plot of surface pressure history in
Fig. 9. With no covariance inflation, the surface pressures are stronger and more compact, with
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FIG. 10. Ensemble variances for the 20◦ impulsively translating plate, with no covariance inflation (—)
and with covariance inflation (—). Variances for (a) element x position, (b) element y position, (c) element
strength, and (d) critical LESP.

features that appear to propagate both upstream and downstream. In contrast, the pressure obtained
from the model with inflation is more diffuse and agrees well with the truth data.

The features exhibited in the surface pressure of the noninflated model are typical of a small
number of strong vortex elements undergoing dynamics in the vicinity of the plate. The absence
of these features in the inflated model is due to the persistent variance among ensemble members:
each member’s vortex elements are experiencing slightly different dynamics, and the overall effect
is a more diffuse pressure field exerted on the plate. This variance nearly vanishes in the noninflated
model, as can be observed in Fig. 10. The variances of vortex parameters—positions and strengths—
are generally several orders smaller than in the inflated model, though their positional variances
exhibit an increase at the end of the interval. Most notably, the variance of LESPc has completely
collapsed, so that all ensemble members are generating nearly the same vorticity flux at the leading
edge. As a result of this collapse, the pressure measurements are having little effect on the ensemble.
The covariance inflation prevents this collapse, maintaining a truly random ensemble of vortex
models of the flow that are actively corrected by the pressure measurements.

The resulting histories of force on the plate, from the truth simulation and from the noninflated
and inflated EnKF-assisted vortex models, are depicted in Fig. 11. The force from the inflated
model agrees better with the truth data than the noninflated model. Furthermore, the level of noise,
due to the influence of dynamical interactions between elements and the errors from continuous
aggregation of vortex elements, is somewhat weaker in the inflated model than the noninflated
model due to the effect of averaging over the random ensemble. The element populations are only
mildly different in the two approaches, as evident in Fig. 12, and both are on the order of tens
of elements, much lower than the 1000 elements expected of a basic vortex element model after
the same number of time steps. The element population of the inflated model increases at a faster
rate than the noninflated model due to greater restriction on the aggregation: Unanimous agreement
between ensemble members to aggregate an element pair is harder to achieve when the members
maintain differences from one another.

Finally, Fig. 13 depicts the mean estimate of LESPc obtained from the EnKF-assisted vortex
model. Not surprisingly, the noninflated model, with its collapse covariance, converges quickly

124701-16



DATA-ASSIMILATED LOW-ORDER VORTEX MODELING OF …

0 1 2 3 4 5
0

1

2

3

t*

C
n

FIG. 11. Comparison of the histories of the normal force coefficient for an impulsively translating plate at
20◦ from high-fidelity truth simulation (—) and an EnKF-assisted vortex model without covariance inflation
(—) and with covariance inflation (—).

to a value and remains nearly fixed. Measurements no longer have an effect, and, in the absence
of an underlying dynamical model for critical LESP, there is no other guidance for changing its
value. In contrast, the inflated model remains receptive to surface pressure measurements, and these
measurements continue to provide information for the instantaneous estimate of LESPc. After the
early transient, this value remains reasonably constant in a range between 0.4 and 0.6; this supports
the hypothesis of Ramesh et al. [3] that LESPc is constant for a given wing geometry and Reynolds
number. However, a gradual decay in the estimated value is apparent after three convective time
units. This decay, which triggers stronger vorticity flux from the leading edge, coincides with the
shedding of the original LEV and the development of a new vortex at the leading edge. In other
words, for the model to provide accurate estimation over long times, LESPc must adapt to changing
flow conditions.

C. Response to incident disturbances

The previous case confirmed the need for covariance inflation to maintain variance among
the vortex models in the ensemble. It also demonstrated that LESPc may change with the flow
conditions, even if the plate’s nominal configuration has not changed. In this case, we will evaluate
the estimation framework when the plate is subjected to external disturbances, in the form of two
“gusts” incident upon the plate. Each gust is introduced to the high-fidelity numerical simulation as a
short-duration vertical body force of strength 0.01ρU 2c, applied to the fluid in a small region of the
fluid just ahead of the plate, centered at (0.95c, 0.2

√
πc) in plate-centered coordinates. The gusts

are introduced, respectively, three and four convective time units after the plate’s motion is initiated,
and the plate interacts with each as it translates through the disturbance region. It is important to
stress that these gusts are only present in the truth simulation; the vortex models in the ensemble
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FIG. 12. Number of vortex elements used in the EnKF-assisted model over time for the impulsively
translating plate at 20◦, without covariance inflation (—) and with covariance inflation (—).
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FIG. 13. Time history of the ensemble mean value of LESPc for the 20◦ impulsively translating plate,
without covariance inflation (—) and with covariance inflation (—).

will have no explicit representation of the gusts. Rather, the models will only “feel” the gust via the
measured surface pressures, and then attempt to capture the transient response of the flow to the gust
through the resulting corrections to the state vector, which, as before, consists of vortex parameters
and LESPc.

The surface pressure distribution histories for both the truth simulation and the EnKF-assisted
vortex model are depicted in Fig. 14. As expected, the initial development of the LEV is identical
to the disturbance-free case. At three and four convective time units, we see the gust encounters as
bands of negative pressure across the chord. Although the encounters themselves are short-lived,
we see that they each trigger the growth of a new LEV. The associated vorticity distributions of the
truth simulation are depicted at three instants in the top row of Fig. 15. The first new LEV created
around three convective times is advected along the plate and eventually entrained into the initial
LEV. At four convective times, the initial LEV has shed from the plate, so that the new LEV created
by the second gust remains distinct. The EnKF-assisted vortex model matches the surface pressures
well. Furthermore, the vortex elements, depicted at three instants in Fig. 15, accurately track the
corresponding flow structures in the truth data.
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FIG. 14. Histories of the surface pressure distribution along an impulsively translating plate at 20◦,
subjected to incident gusts at t∗ = 3 and t∗ = 4, from high-fidelity truth simulation at Reynolds number 500
(top) and the EnKF-assisted model with covariance inflation (bottom).
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FIG. 15. Vorticity distribution for an impulsively translating plate at 20◦ subjected to incident gusts, at
t∗ = 3 (left column), t∗ = 4 (center column), and t∗ = 5 (right column), predicted by [(a)–(c)] high-fidelity
truth simulation at Reynolds number 500, and [(d)–(f)] the EnKF-assisted model with covariance inflation.

This agreement in surface pressure and vorticity distribution is also manifested in the normal
force exerted on the plate, shown in Fig. 16. Each gust encounter is clearly evident in the peaks
observed at three and four convective times. The vortex model accurately estimates each of the
peaks. It should be noted that the large spike in force soon after the motion is initiated is likely
due to a spurious encounter of a vortex element with the plate. It may be possible to prevent such
undesirable features by eliminating outliers in the ensemble statistics. The associated mean estimate
of critical LESP is depicted in Fig. 17. This plot shows that the EnKF responds to the measured
disturbances in pressure by temporarily increasing LESPc. Since the increase in critical LESP tends
to reduce vorticity flux, this small pulse in LESPc has the effect of severing the leading-edge shear
layer before developing a new LEV.

As with the previous cases, it is interesting to inspect the variances in the ensemble states. These
are shown in Fig. 18, where they are compared with a noninflated version of the model. As expected,
the ensemble variances of the inflated version of the model remain relatively constant. This
enables the ensemble to remain responsive to measurements. However, as in the previous undis-
turbed case, the ensemble variances of the noninflated case quickly drop to very small values,
blinding the EnKF to new observations. By three convective times, the ensemble variance in LESPc
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FIG. 16. Comparison of the histories of the normal force coefficient for an impulsively translating plate
at 20◦ subjected to two incident gusts at t∗ = 3 and t∗ = 4, from high-fidelity truth simulation (—) and an
EnKF-assisted vortex model (—).
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FIG. 17. Time history of the ensemble mean value of LESPc for 20◦ impulsively translating plate, subjected
to incident gusts at t∗ = 3 and t∗ = 4.

has dropped to essentially zero. When the EnKF detects the pressure signature of the disturbance, the
only state parameters it can adjust are the vortex states, so we see sharp increases in the variances in
the vortex states around three convective times. However, the vortex generated at the leading edge is
stronger than that of the truth case, and the resulting vortex element dynamics do not accurately track
the flow. Covariance inflation is essential for maintaining consistently open channels that transfer
measurement discrepancies to updates in the vortex states and critical LESP.

IV. CONCLUSIONS

In this work, we have developed a dynamic estimation framework for two-dimensional unsteady
separated flows, in which surface pressure measurements from the true system are used to augment
a discrete vortex element model in order to predict the full state of the flow. The vortex model
utilizes advecting regularized vortex elements released from the leading and trailing edges of a
flat plate. At the leading edge, the strength of shed vorticity is determined by the critical leading-
edge suction parameter (LESP). The estimation framework uses an ensemble Kalman filter (EnKF),
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FIG. 18. Ensemble variances for the 20◦ impulsively translating plate, subjected to incident gusts at t∗ = 3
and t∗ = 4, with no covariance inflation (—) and with covariance inflation (—). Variances for (a) element x

position, (b) element y position, (c) element strength, and (d) critical LESP.
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in which a collection of randomly initialized vortex models are used to predict the state of the
flow, continuously updated with the sampled surface pressures from the truth case. We showed that,
with the appropriate tuning of the covariance inflation parameters, the ensemble of vortex element
models was able to predict a vorticity and pressure distribution that closely resembles that from
high-fidelity numerical simulation at Reynolds number 500. Furthermore, once we tuned the model
for a single case—that of the pulse-free 20◦ impulsive translation case—we saw that the same
covariance inflation parameters worked well for other cases, at different angle of attack or with
incident disturbances.

The state vector in our implementation of the EnKF consists of the vortex positions and strengths
as well as the critical LESP. It should be noted that an ensemble of size N of vortex models
consisting of nv elements each is significantly faster than a single model of Nnv elements: Only
the nv elements in each model interact with each other, so the overall ensemble scales linearly
with N rather than quadratically. Thus, even a large ensemble of models of around 30 elements
each can run for five convective time units in around a minute on a laptop computer. It is also
important to stress that we have no dynamical model for the critical LESP; rather, we rely only on
the measured surface pressures along the plate to estimate this parameter via the Kalman gain. In so
doing, we have implicitly shown that the critical LESP—that is, the tolerance of the flow to sustain
relative motion of the fluid about the edge without separating—changes dynamically in response to
changing flow conditions, and particularly, in response to a disturbance. This, in turn, triggers the
appropriate release (and, at times, suppression) of new vorticity at the leading edge in the presence
of such an aerodynamic disturbance. This demonstrates the potential for using real-time data as part
of the closure model for a leading-edge shedding criterion, even in the presence of disturbances of
unknown characteristics. We are currently investigating whether other forms of disturbance, such as
surface actuator pulses or rigid-body excursions, can be similarly represented and observed in the
critical LESP. We are also exploring the relationship between the additive covariance inflation of
vortex parameters in the ensemble and the well-known random walk approach for modeling viscous
diffusion in vortex methods.

In our demonstration of the estimation framework in this paper, we have relied on truth
measurements from a high-fidelity numerical simulation of the flow past a flat plate. In ongoing
work, we are exploring the number and location of pressure sensors that can ensure a good
estimate. Furthermore, it should be stressed that the framework is agnostic to the source of the
truth measurements. This aspect is especially important as the framework serves its intended use
in real-time flow control. Ultimately, we seek to replace these numerically computed pressure
measurements with sampled experimental measurements.
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APPENDIX: VORTEX AGGREGATION PROCEDURE

The vortex aggregation procedure used in this work is a modified version of the hybrid vortex
sheet-point vortex model developed by Darakananda and Eldredge [9]. In the hybrid model, the
leading- and trailing-edge shear layers are each modeled as a vortex sheet rooted near the respective
edge. At every time step, circulation from the free end of a vortex sheet is siphoned into a variable-
strength point vortex. To prevent this instantaneous transport of circulation from adversely affecting
the aerodynamic force response, the velocity of the variable-strength point vortex is adjusted based
on an impulse matching principle developed by Wang and Eldredge [8]. The adjustment comes in
the form of a velocity correction, added to the usual Kirchhoff velocity of a vortex element obtained
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through Biot-Savart summations. For later description, let us label each of these consumed elements
on the sheet as the “source” (with subscript s) and the variable-strength element as the “target” (with
subscript t). The velocity correction of the target element, �żt = �ẋt + i�ẏt , written in complex
notation for brevity, is

�żt = ieiα c

2

[
(p̃s − p̃t )(β� + 1) + (p̃�

s − p̃�
t )(β� − 1)

β + β�

]
�̇

�t

, (A1)

where �̇ is the rate of transfer of circulation from the source to the target, �t is the instantaneous
target element strength, ()� denotes complex conjugation, and, for i either s (source) or t (target),
the unit impulse (accounting for the influence of the plate) is

p̃i := Im{z̃i} − iRe{
√

z̃i − 1
√

z̃i + 1}
and the gradient of the target’s impulse with respect to its position is

β := z̃t√
z̃t − 1

√
z̃t + 1

.

In each time step, the strengths of successive source elements are transferred into the target until a
threshold on error (the spurious change to the predicted aerodynamic force on the plate due to the
transfer) is reached. When it becomes impossible to transfer any circulation from the sheet without
exceeding the threshold, the target element turns into a classical constant-strength vortex and the
tip of the vortex sheet is converted into a new variable-strength point vortex, i.e., a new target. The
connectivity maintained between elements in the sheet makes it always clear which vortex element
consumes circulation and which one supplies it.

By using unconnected discrete vortex elements instead of connected vortex sheets, we lose
the natural ordering of the vortex elements that was provided by the sheets, and thus, we lack
an unambiguous relationship between vortex elements that can be exploited for aggregating these
elements. Instead, we will take the most straightforward approach and simply test every possible
combination of source-target pairs to determine which pairwise transfer will incur the least error
in predicted force. We then perform the transfer on as many pairs as possible while keeping the
accumulated error below a specified threshold, εF . Once we have set an appropriate value for εF ,
we do the following at every time step:

(1) For every possible source-target pair of vortex elements in the model, use Eq. (A1) to
compute and store the hypothetical velocity correction to the target required if all of the source’s
circulation is transferred into the target.

(2) Compute the (uncorrected) velocities of all vortex elements and evolve the system forward
by one time step.

(3) Compute the impulse for each vortex element at this end of this step.
(4) For every possible source-target pair of vortex elements in the system, first determine, from

the velocity correction computed in step 1, the hypothetical impulse that the target element would
have if it had absorbed all the circulation from the source element. Subtract from this the actual
impulse of the source and target elements, computed in step 3. This difference, when divided by
time-step size, is defined as the transfer error and is a measure of the spurious force on the plate due
to the aggregation.

(5) Sort the source-target pairs based on the magnitude of their transfer error.
(6) Starting from the pair with the lowest error, transfer circulation between as many pairs of

vortex elements as possible, stopping just before the accumulated error exceeds εF .
This aggregation procedure naturally favors merges between elements of similar significance

to force generation. Many such element pairs are closely separated, but not all closely separated
pairs are merged: For example, two nearby elements of opposite-signed strength or widely different
velocities may not be merged by these criteria.
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Although the procedure listed above contains multiple steps, with pairwise interactions that are
usually undesirable, it also serves to prune a significant number of vortex elements in the system.
In practice, the computational savings of keeping the state’s dimensionality small far outweighs the
cost of executing this procedure at every time step. The cost of a similar procedure was analyzed in
detail in Ref. [9].
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