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Extracting the spectrum of a flow by spatial filtering
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We show that the spectrum of a flow field can be extracted within a local region by
straightforward filtering in physical space. We find that for a flow with a certain level of
regularity, the filtering kernel must have a sufficient number of vanishing moments for
the “filtering spectrum” to be meaningful. Our derivation follows a similar analysis by
V. Perrier et al. [J. Math. Phys. 36, 1506 (1995)] for the wavelet spectrum, where we
show that the filtering kernel has to have at least p vanishing moments to correctly extract
a spectrum k−α with α < p + 2. For example, any flow with a spectrum shallower than
k−3 can be extracted by a straightforward average on grid-cells of a stencil. We construct
two new “simple stencil” kernels, MI and MII , with only two and three fixed stencil
weight coefficients, respectively, and that have sufficient vanishing moments to allow for
extracting spectra steeper than k−3. We demonstrate our results using synthetic fields, 2D
turbulence from a direct numerical simulation, and 3D turbulence from the JHU Database.
Our method guarantees energy conservation and can extract spectra of nonquadratic
quantities self-consistently, such as kinetic energy in variable density flows, which the
wavelet spectrum cannot. The method can be useful in both simulations and experiments
when a straightforward Fourier analysis is not justified, such as within coherent flow
structures covering nonrectangular regions, in multiphase flows, or in geophysical flows
on Earth’s curved surface.

DOI: 10.1103/PhysRevFluids.3.124610

I. INTRODUCTION

Measuring the spectrum of a flow quantifies the energy content of different spatial scales.
In turbulent flows, it can yield valuable information about the cascade ranges, dissipation, and
turbulence intensity. Determining the power-law slope of a turbulence spectrum has allowed for
comparison between observations and theoretical predictions [1–3]. The spectrum also conveys
information about the regularity (or smoothness) of a flow field (e.g., Ref. [4]). One measure of the
spectral content is the second-order structure function, often employed in turbulence [5,6]. It can be
noisy without averaging over sufficient data points. However, its main drawback is its inability to
yield the correct scaling if the field is too smooth, corresponding to a power-law spectrum steeper
than k−3 as a function of wave number k. By far, the most common method to measure the spectrum
is using Fourier transforms. However, Fourier transforms in nonperiodic domains require tapering
(windowed Fourier transforms) or reflecting the data to make it de facto periodic. Such alterations of
the data can introduce uncontrolled errors which may compromise the results in unknown ways. For
example, the usage of a tapering window introduces an artificial length-scale—that of the window,
and artificial gradients associated with the tapering which can alter the energy content of different
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spatial scales. Moreover, Fourier techniques are inherently global in space and cannot characterize
the flow properties locally.

These shortcomings partially motivated the introduction of wavelet analysis to turbulence [7–
10]. A main advantage wavelets have over Fourier analysis is the identification of flow properties
simultaneously as a function of scale and space. As we shall elaborate below, the results presented
here build upon an important work in wavelet analysis by Ref. [11], who established the relation
between Fourier and wavelet spectra, and identified the conditions under which a wavelet spectrum
is meaningful.

Filtering (or coarse-graining) is a widely used framework in fluid dynamics, especially within
the Large Eddy Simulation (LES) literature [12–14]. It also offers a natural and versatile framework
to understand the multiscale physics of complex flows (e.g., Refs. [4,15–18]). More extensive
discussions of the framework and its utility can be found in many references (e.g., refs. [13,19–23]).
The primary goal of this paper is three-fold: (1) demonstrate that (low-pass) filtering in physical
space can be used to extract the spectrum of a flow, (2) establish the relation between Fourier
and filtering spectra, and (3) identify the conditions under which such a “filtering spectrum” is
meaningful. We will also attempt to shed light on the close connections and important differences
between the method employed here and wavelet analysis.

Beyond its primary aim, we believe this work is potentially important in several respects. It
offers a new way to measure spectra that is consistent with the filtering framework used in LES
and also with coarse-graining analysis of multi-scale dynamics [4,24]. An important advantage
of the method presented here over both Fourier and wavelet spectra is that it allows for a natural
generalization of the notion of “spectrum” to nonquadratic quantities, such as kinetic energy (KE)
in variable density flows, ρ|u|2/2, as we elaborate in Sec. III E. It is advantageous over Fourier
analysis in its ability to measure the spectrum locally in space, similar to wavelet analysis, albeit
the method here is arguably simpler. This allows us, for example, to extract a spectrum within
coherent flow structures covering irregularly shaped regions. This paper also introduces in Sec. V
generalized versions of the top-hat kernel that are compact in physical space, are straightforward
to implement on a discrete grid, and can extract spectra with a wider range of scaling exponents
compared to commonly used filter kernels.

Applications that can benefit from this method include (i) 2D or 3D laboratory flow field data
(e.g., from particle image velocimetry) within a window of interest, (ii) geophysical flows on Earth’s
spherical surface derived from satellite measurements or from general circulation models (GCMs)
[25]. Traditional Fourier analysis on regional oceanic “boxes” is further complicated by Earth’s
curvature since such “boxes” cannot be rectangular on a curved surface. (iii) Flows from the Johns
Hopkins University turbulence database (JHTDB) [26], where a user is querying a local region (as
opposed to downloading the entire dataset) and can extract the spectrum using built-in filters made
available through the JHTDB platform or higher-order compact kernels, such as those discussed
below. (iv) Inhomogeneous flows, such as channel flows, for which a spatially local measurement of
the spectrum is desired and Fourier analysis cannot be employed without altering the data. (v) Mul-
tiphase flows, where it may be insightful to measure the spectrum conditioned on one of the phases.

The outline of this paper is as follows. In Sec. II, we introduce notation and preliminary material.
Section III presents the main results, and Sec. IV discusses similarities and differences with the
wavelet spectrum. Section V discusses the formulation of new filtering kernels. In Sec. VI, we
apply the method to realistic flows, before we conclude with Sec. VII followed by an Appendix.

II. PRELIMINARIES

In a periodic domain x ∈ [−L/2, L/2)d in d dimensions, the Fourier transform and its inverse
are, respectively,

f̂ (k) = 1

Ld

∫ L/2

−L/2
ddx f (x) e−i 2π

L
k·x, (1)

f (x) =
∑

k

f̂ (k) ei 2π
L

k·x. (2)
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This normalization guarantees that f̂ (k = 0) equals the spatial average, 〈f (x)〉 =
L−d

∫ L/2
−L/2 ddx f (x). We define the Fourier spectrum of f (x) as

E(k) =
∑

k− 1
2 <|k|�k+ 1

2

1

2
|f̂ (k)|2, k = 0, 1, 2, . . . , (3)

where |k| is the Euclidean norm,
√

k2
x + k2

y + k2
z . The Fourier coefficients satisfy Plancherel’s

relation: 〈
1

2
|f (x)|2

〉
=

∑
k

1

2
|f̂ (k)|2 =

∞∑
k=0

E(k). (4)

A. Coarse-graining or filtering

For any field u(x), a coarse-grained or (low-pass) filtered field, which contains modes at scales
>�, is defined in d dimensions as

u�(x) =
∫

ddr G�(x − r) u(r), (5)

where G(r) is a normalized convolution kernel,
∫

dds G(s) = 1, for dimensionless s. The kernel
can be any real-valued function which decays sufficiently rapidly for large r . Its dilation in an
d-dimensional domain, G�(r) ≡ �−dG(r/�), will share these properties except that its main support
will be in a region of size �.

Equation (5) may be interpreted as a local space average in a region of size � centered at point
x. It is, therefore, a scale decomposition performed in x space that partitions length scales in the
system into large (��), captured by u�, and small (��), captured by the residual u′

� = u − u�. This
is perhaps made clearer by considering the filtered field in k space,

u�(x) =
∫ +∞

−∞
dk Ĝ(k�) û(k) eikx, (6)

where

Ĝ(�k) = Ĝ�(k) = 1

L

∫ L/2

−L/2
dx G�(x) e−i 2π

L
kx.

From Eq. (6), the spectrum of the filtered field, u�, is

Ẽ(k) = |Ĝ(k �)|2 E(k), (7)

such that Ẽ(k) and E(k) agree at low wave numbers since Ĝ(k) → 1 as k → 0. Ẽ(k) decays rapidly
beyond the cutoff wave number, k�, associated with the filtering scale �; i.e., for k � k� = L/�,
where L is the domain size. In the limit of small filtering length, � → 0, the spectrum of the filtered
field approaches that of the unfiltered spectrum, Ẽ(k) → E(k), as would be expected.

Therefore, it seems it should be possible to infer the spectrum of a field by filtering at different
length-scales, without performing Fourier transforms.

III. EXTRACTING THE SPECTRUM

By varying the filter scale � and measuring the corresponding change in the cumulative energy,
|u�|2/2, we will show that it is indeed possible to infer the spectral content at scale �. In fact,
implementing this procedure with a sharp-spectral filter kernel yields exactly the Fourier spectrum
of a signal as discussed in Ref. [1]. However, filtering with a sharp spectral filter requires performing
Fourier transforms, whereas the goal here is extracting the spectrum while in x space. We will
use the term “filtering spectrum” to refer to the spectrum obtained by filtering in x space and to
distinguish it from the “Fourier spectrum” obtained by traditional Fourier transforms in k space.
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To justify comparing the slopes of filtering spectra to those from turbulence theory or to global
Fourier spectra, it is necessary to ensure that slopes are consistent. As we shall elaborate in this
section, the kernel G(r ) has to satisfy certain conditions to guarantee that the filtering spectrum
conveys the correct energy content at different length scales.

A. Kernel properties

We shall assume that the kernel is a real-valued even function, G(r) = G(−r). Hence, its Fourier
transform, Ĝ(k), will also be real-valued. Any spherically symmetric kernel is even. We also assume
that the filter kernel is normalized,

∫
dr G(r) = Ĝ(k = 0) = 1.

In practical applications, filtering kernels are often chosen to be sufficiently localized in x space
to avoid prohibitive computational costs. Therefore, we shall restrict our consideration to kernels
that decay faster than any power in x space, G(r) � (const.)r−m for any m as |r| → ∞, where
r = |r| =

√
x2 + y2 + z2 is the Euclidean norm. Examples of such kernels include the Gaussian,

( 1
2π

)
3
2 e−|r|2/2, or any kernel that has compact support (i.e., has zero value beyond a finite spatial

extent) such as the top-hat kernel,

H�(x) =
{

1/�, if |x| < �/2.

0, otherwise.
(8)

These kernels are well-localized in x space which makes them useful in practical problems. They
are also useful analytically since the fast decay in x space guarantees smoothness in k space. A
Taylor-series expansion near the origin in k space yields

Ĝ(k) = Ĝ(0) + k Ĝ(1)(0) + k2 Ĝ(2)(0)

2!
+ · · · , (9)

where f (n)(s) denotes the nth derivative, ∂n

∂sn f (s).
Moments of a kernel are related to its derivatives in k space:∫ +∞

−∞
dx xn G(x) = Ĝ(n)(k)|k=0. (10)

Since even kernels, G(x) = G(−x), have vanishing odd moments, it follows from Eq. (10) that
Ĝ(n)(0) = 0 for all odd integers n for any even kernel G(x).

We shall call a kernel G(x) “pth order” iff∫ +∞

−∞
dx xnG(x) = 0 for n = 1, . . . , p,

and ∫ +∞

−∞
dx xp+1G(x) 
= 0. (11)

Any even kernel is of an odd integer order p � 1. For example, the Gaussian and top-hat kernels
are of order p = 1. As we will discuss below, the order of the kernel is a key property for extracting
the correct spectrum by filtering. We will also show how to construct simple kernels of any order.

For a normalized even pth-order kernel, the Taylor expansion in Eq. (9) becomes

Ĝ(k) = 1 + kp+1

[
Ĝ(p+1)(0)

(p + 1)!
+ k2 Ĝ(p+3)(0)

(p + 3)!
+ · · ·

]
︸ ︷︷ ︸

φ(k)

, (12)

where

φ(0) = (const.) 
= 0. (13)
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Note that in the Taylor expansion in Eq. (12), we are using smoothness properties (in k space) of
the kernel and not of the field being filtered.

B. The filtering spectrum

We define the filtering spectrum as

E(k�) ≡ d

dk�

〈|u�(x)|2〉/2 = −�2

L

d

d�
〈|u�(x)|2〉/2, (14)

where k� = L/� over a domain or region of interest with characteristic length L. It agrees with
the traditional Fourier spectrum under certain conditions, as we shall show. We also define the
cumulative spectrum, following Ref. [1], as

E (k�) ≡ 1
2 〈|u�(x)|2〉. (15)

We work in one dimension to simplify the presentation. The filtering spectrum in Eq. (14) can be
expressed as

E(k�) =
∫ ∞

0
dk

[
d

dk�

∣∣∣∣Ĝ(
k

k�

)∣∣∣∣2
]
E(k). (16)

Note that the function multiplying the Fourier spectrum, E(k), in the integrand,

F (k) ≡ d

dk�

∣∣∣∣Ĝ(
k

k�

)∣∣∣∣2

,

gets dilated (becomes broader) as a function of k when k� → ∞. For any fixed k�, the function F (k)
is a hump that is approximately localized around k ∼ k� and tends to zero for k � k� and k 
 k�.
This leads to the averaging integral in Eq. (16) deriving most of its contribution from wave numbers
k in the vicinity of k�. However, the larger is k�, the broader is the averaging integral due to the
broadening of F (k). This is analogous to what happens in a wavelet spectrum, as highlighted by
Perrier et al. [11], who observed that the scaling of the wavelet (or filtering, in our case) spectrum
at large k� depends on the properties of the wavelet (or filtering kernel, in our case) at small wave
numbers.

Following the analysis of Perrier et al. [11] for the wavelet spectrum, assume that E(k) =
(const.)k−α over ka < k < ∞, then the filtering spectrum using a pth-order kernel scales as

E(k�) =
∫ ∞

0
dk

d

dk�

∣∣∣∣Ĝ(
k

k�

)∣∣∣∣2

E(k)

=
∫ ka

0
dk

d

dk�

∣∣∣∣Ĝ(
k

k�

)∣∣∣∣2

E(k)︸ ︷︷ ︸
term 1 ∼k

−(p+2)
�

+ (const.)
∫ ∞

ka

dk
d

dk�

∣∣∣∣Ĝ(
k

k�

)∣∣∣∣2

k−α︸ ︷︷ ︸
term 2 ∼k−α

�

. (17)

The derivation is provided in the Appendix. Equation (17) implies that if the Fourier spectrum
decays faster than k−(p+2), the small-wave-number contributions in “term 1” dominate at large k�,
whereas if α < p + 2, then the “filtering spectrum” has the same power-law slope as the Fourier
spectrum.

We conclude that if the Fourier spectrum has a power-law scaling E(k) ∼ k−α at high wave
numbers, then the “filtering spectrum” obtained by filtering with a pth-order kernel G(r ) scales as

E(k) ∼
{
k−α, if α < p + 2
k−(p+2), if α > p + 2

. (18)

Therefore, the steeper is the underlying spectrum, the higher is the order of the filtering kernel
required for extracting such a spectrum. For example, the Gaussian or top-hat functions are
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FIG. 1. Comparing Fourier and filtering spectra for a synthetic doubly periodic velocity field with a preset
Fourier power-law spectrum (black): E(K ) ∼ K−5/3 (upper left panel) and E(K ) ∼ K−4 (upper right panel).
The filtering spectra, E(K ) are computed by convolving the velocity in x space with top-hat (dark blue) and
Gaussian (light blue) kernels. These two kernels correctly extract the k−5/3 scaling, but not the k−4, locking-in at
a k−3 scaling instead as described by Eq. (18). Lower two panels show the corresponding cumulative spectra,
E (K ), from which the filtering spectra are derived [Eqs. (14) and (15)]. Note that using any kernel, E (K )
converges to the total energy (normalized to unity) at large K , demonstrating energy conservation [Eq. (20)].

first-order kernels and can only extract power-law spectra shallower than k−3. As Fig. 1 shows,
if the Fourier spectrum decays faster than k−3, the filtering spectrum will “lock” at a k−(p+2)

scaling for kernels with p = 1. A practical consequence of Eq. (18) is that if a filtering spectrum
is measured using a pth-order kernel and exhibits a scaling shallower than k−(p+2), then the user
can have confidence that it reflects the scaling of the Fourier spectrum correctly. Otherwise, if it
scales ∼k−(p+2), then a higher order filtering kernel is required. It should be noted that the scaling
of the filtering spectrum derived in relation Eq. (18) is asymptotic. The agreement of E(k) with the
Fourier spectrum may not be perfect in practice, even when using a kernel satisfying α < p + 2.
This is due to a limited range of scales and the fact that compact spatial kernels are not strictly local
in k-space as the sharp-spectral filter, which can lead to additional smoothing as a function of scale
(e.g., Refs. [22,27]).

C. Energy conservation

It is straightforward to verify that the integral of the filtering spectrum yields the total energy:

1

2
〈|u|2〉 = 1

2

〈∣∣u�0

∣∣2〉 + ∫ ∞

k�0

dk� E(k�), (19)

where �0 = L/k�0 is the largest filtering length scale used. In principle, �0 can be arbitrarily large,
even larger than L, the size of the domain of interest. In practice, since the spectrum itself is
calculated from the cumulative spectrum, E (k�), the total energy is retrieved by taking the limit
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of small filter scale:

lim
k�→∞

E (k�) = 1

2
〈|u|2〉. (20)

Equation (19) and (20) show that the spectral densities obtained with filtering integrate to the total
energy. This is similar to the wavelet spectrum and justifies the calculation of a spatially local
filtering spectrum to characterize and compare spectral properties at different locations in x space.

D. Positive definiteness

One property of the filtering spectrum worth discussing is its positive semi-definiteness; from
Eq. (16), it is can be seen that E(k�) � 0 is guaranteed if the power spectrum of the filtering kernel
itself decays monotonically in k space,

d

dk
|Ĝ(k)|2 � 0, for k ∈ (0,∞). (21)

Condition Eq. (21) is sufficient but not necessary to guarantee E(k�) � 0. For example, both the
Gaussian and sharp spectral filters satisfy this condition, but not the top-hat kernel.

We now offer an alternate argument on why the top-hat kernel should yield E(k�) � 0. It is
known (e.g., Ref. [28]) that if a function J : K → R, where K ⊆ Rn, is convex, then for any v ∈ K

there exists a vector t ∈ Rn such that

J (w) − J (v) � t·(w − v), for every w ∈ K. (22)

The vector t = t(v) lies in a support plane at point v. By taking, J (u) = |u|2, w = u�(x + r), and
v = u�(x), we have

|u�(x + r)|2 � |u�(x)|2 + t[u�(x)]·[u�(x + r) − u�(x)]. (23)

Consider the kernel �(r) = G−1
� ∗ G�. It should satisfy �(r) � 0 if G(r) is concave (which implies

G � 0) and � � � as we discuss in the Appendix. We have

u�(x) = � ∗ u�(x) =
∫

dnr �(r) u�(x + r). (24)

Equation (24) is a “soft deconvolution” (e.g., Ref. [29]), where we deconvolve, G−1
� ∗, at scales

larger than � � �. An interesting limit is when � → 0, such that � → G� � 0. Another relevant
limit is when � → �, yielding � → 1 � 0. A more detailed discussion is provided in the Appendix.

Multiplying Eq. (23) by �(r) and integrating over r yields

� ∗ |u�|2(x) �
∫

dnr �(r) |u�|2(x) + t·[� ∗ u�(x) − u�(x)] = |u�|2(x). (25)

In the limit � → 0, Eq. (25) reduces to a positive pointwise subgrid kinetic energy, (|u|2� −
|u�|2)/2 � 0, as shown in Ref. [30]. Finally, space averaging over x shows that the cumulative
spectrum is a monotonically increasing function of k� = L/�:

1
2 〈|u�|2〉 = E (k�) � E (k�) = 1

2 〈|u�|2〉, for k� � k�. (26)

Therefore, we expect the filtering spectrum, being the derivative of E (k�), to be positive when using
concave (and, therefore, positive) kernels. If either (i) condition Eq. (21) or (ii) concavity of G(r )
are not satisfied by the kernel, then it is possible for E(k�) to have negative values, although this
does not seem to be an issue from the cases we analyze in this paper. By definition, the cumulative
spectrum, E (k�), is always positive.
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E. Energy spectrum in variable density flows

Kinetic energy in flows with variable density, such as in compressible or multiphase flows, is
not quadratic but cubic due to a spatially varying density field. How can one measure its “energy

spectrum”? Traditionally, this has been done by calculating |√̂ρu(k)|2 [31], which circumvents
the problem by decomposing kinetic energy as if it were quadratic. However, as demonstrated by
[32], such a decomposition violates the so-called inviscid criterion, yielding difficulties with dis-
entangling viscous from inertial dynamics in turbulent flows. A Favre decomposition, |ρu�|2/2ρ�,
respects the cubic nature of kinetic energy and satisfies the inviscid criterion, which allows for
disentangling the scale dynamics clearly [32].

The filtering spectrum presented here generalizes naturally to quantities with a nonlinearity
higher than quadratic. A cumulative spectrum in variable density flows that is consistent with the
Favre decomposition can be defined as

EF (k�) ≡ 1

2

〈 |ρu�|2
ρ�

〉
, (27)

and the associated filtering spectrum is

E
F

(k�) ≡ d

dk�

EF (k�). (28)

The filtering spectrum should be positive following an argument similar to that of the preceding
subsection. Taking w = ρu�(x + r)/ρ�(x + r), and v = ρu�(x)/ρ�(x) in Eq. (22), we have

|ρu�(x + r)|2
|ρ�(x + r)|2 � |ρu�(x)|2

|ρ�(x)|2 + t·
[
ρu�(x + r)

ρ�(x + r)
− ρu�(x)

ρ�(x)

]
. (29)

Multiplying Eq. (29) by �(r) ρ�(x + r), where �(r) = G−1
� ∗ G� is the same as in Eq. (24), then

integrating over r yields

� ∗ |ρu�(x)|2
ρ�(x)

� |ρu�(x)|2
ρ�(x)

+ 0. (30)

Note that ρ� > 0 when using kernels G � 0, where ρ� 
= 0 in the absence of vaccum, ρ(x) 
= 0
[24,33]. Finally, space averaging over x gives that the cumulative spectrum is a monotonically

increasing function of k� = L/� and, therefore, E
F

(k�) � 0 when using a concave filter kernel
such as the top-hat. Further discussion and results on this generalized energy spectrum in variable
density flows will be presented in forthcoming work [34].

F. Numerical implementation

Here, we describe how we calculate E(k�) to produce the plots presented in this paper (Figs. 1,
3, and 6–8). We filter the velocity at every grid-point over a sub-domain of interest at two slightly
different length scales, �1 and �2. We require �1 and �2 to be even integer multiples of the grid-cell
size �x to ensure that the filtering kernel is properly resolved on the grid. This is necessary to
guarantee that the discretized kernel (or stencil) moments vanish to within high precision. More
precisely,

�m = 2 m �x, m = 1, 2, ... (31)

The factor 2 ensures that even kernels yield vanishing odd moments. Wave numbers associated with
a scale �m are not necessarily integers,

k�m
= L

�m

. (32)
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This is why plots of E(k) presented here have data points at fractional wave numbers, for example,
at k = 2.3 in Fig. 6, whereas the Fourier spectra do not. Note that L in the definition of wave
number in Eq. (32) can be replaced with any other reference scale, such as the size of a subdomain
of interest.

After filtering, the cumulative spectrum is calculated by averaging the energy over a subdomain
of interest, E (k�) = 0.5〈|u�|2〉subdomain. The filtering spectrum is finally obtained from a finite
difference,

E
(
k�m

) = E
(
k�m

) − E
(
k�m−1

)
k�m

− k�m−1

. (33)

IV. CONNECTION TO WAVELETS

There is a direct connection between filtering and wavelet analysis, the latter being a band-pass
filtering with the proper choice of the filtering kernel. After all, a wavelet is constructed from a
low-pass filter kernel called the scaling function. Wavelets have been used in many studies of
turbulence to overcome some of the Fourier transform’s drawbacks. Meneveau [7,8] employed
orthogonal wavelets to study three-dimensional turbulence as a function of both space and length
scale. Meneveau’s analysis showed that kinetic energy in a turbulent flow is highly intermittent in
space, exhibiting fractal scaling, and that the scale-transfer fluctuates greatly in x space. Wavelets
have also been used extensively by Farge, Schneider, and collaborators [9,10,35,36] to investigate
local properties of turbulence such as energy density, spectrum, and intermittency. They have also
been implemented in compression algorithms for turbulence research [37] and to isolate coherent
vortex tubes from the incoherent background using orthogonal wavelets. It is beyond our scope
here to review more recent studies using wavelets and similar functions, such as curvelets, (e.g.,
Refs. [38–44]), but instead refer the reader to more dedicated surveys [9,45–48].

The filtering spectrum presented here is in several aspects similar to that obtained with continuous
and discrete wavelet transforms (CWT and DWT, respectively), but there are important differences.
Nonorthogonal wavelets in the DWT they cannot be used to calculate the wavelet spectrum since
they do not satisfy Plancherel’s relation, i.e., energy conservation. Orthogonality is a significant
restriction on the type of functions that can be used. For example, the Gaussian or simple stencil
kernels we introduce below are not orthogonal. Orthogonal wavelets with compact support, such
as the Haar and Daubechies wavelets, constitute a relatively small class of functions [49,50]. The
requirement of both orthogonality and compact support results in irregular functions which cannot
be symmetric (except for the Haar scaling function) [51], and which cannot be represented as
explicit functions in closed form, relying instead on recursive algorithms for their evaluation [52].

Unlike the DWT, the CWT conserves energy without requiring orthogonality of the wavelet
functions. Energy conservation by the CWT relies on the Plancherel relation Eq. (4), which is
limited to when energy is treated as a quadratic quantity (e.g., Refs. [53,54]). In contrast, since
the filtering spectrum is the derivative of the cumulative spectrum [Eq. (14)], it conserves energy
due to the fundamental theorem of calculus. This allows the filtering spectrum to analyze energy
with a nonlinearity higher than quadratic as discussed in Sec. III E.

As we mentioned earlier, our results and the derivation in the Appendix build upon the proofs of
Perrier et al. (1995) who showed that in order for a wavelet spectrum to correctly capture a power-
law spectrum E(k) ∼ k−α , the analyzing wavelets are required to have at least the first p moments
vanish, such that α � 2p + 1 (compared to a filter kernel in Eq. (11), a wavelet ψ (x) is said to have
p vanishing moments if,

∫ ∞
−∞ dx xnψ (x) = 0 for n = 0, . . . , p − 1, and

∫
dx xpψ (x) 
= 0. Note

that n = 0 is counted as a moment, unlike that for a normalized low-pass filter kernel which has
to evaluate to unity). This is to be contrasted with the condition on the filtering kernels we derive
here, α � p + 2. Therefore, for a given number of vanishing moments p, wavelets can correctly
extract steeper spectra than is possible with the filtering spectrum. However, for even kernels,
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FIG. 2. Schematic of the SS kernels MI (x) (left panels) and MI (x) (right panels) we construct in 1D and
2D.

G(r) = G(−r), odd moments automatically vanish and p increases in increments of two, elimi-
nating the advantage of wavelets in this regard.

V. CONSTRUCTING SIMPLE STENCIL KERNELS OF HIGHER ORDER

Result Eq. (18) underscores the need to filter with kernels of a sufficiently high order to correctly
capture the spectral scaling. Note that any kernel of order higher than unity cannot be positive
everywhere in x space; otherwise, even moments would not vanish. We will now show how to
construct simple kernels of any order.

In mathematical parlance, a “simple function” is a function that evaluates to a finite number of
constants over different subsets of the domain (e.g., Ref. [28]). The top-hat kernel is an elementary
example of a simple function, taking on values of 1 and 0 over the domain. Figure 2 below shows
two other examples of simple functions that have compact support (i.e., are zero beyond a finite
extent). The advantage of using compact simple functions as filtering kernels is that their dilation,
corresponding to different length scales �, is fairly easy to implement numerically. These kernels
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can be thought of as grid stencils with a finite number of predetermined weights. Simple stencil
(hereafter, SS) kernels of any order can be constructed in a straightforward manner with their
moments made to vanish with high accuracy.

The two SS kernel we introduce, which we label MI and MII and are shown in Fig. 2, are third
and fifth order, respectively. MI and MII take on two and three nonzero piecewise constant values,
respectively.

Let us consider how to construct MI , which we require to be symmetric, normalized, simple,
compactly supported, and have a vanishing second moment. The last requirement necessitates that
the kernel have negative values. The most elementary kernel satisfying these conditions is one with
a main “body” having a positive value c, and a “leg” on either side having a negative value −a, as
shown in Fig. 2. The width of its main body is taken to be �, associated with the filtering length
scale. Parameter c is set by normalization. This leaves two parameters, a/c and the leg width, b.
The former is determined from

∫
dx x2MI (x) = 0, which yields

a

c
= 1

(1 + 2b/�)3 − 1
(MI parameter). (34)

The second parameter, b, is free. In this paper, we take b = �/8, which yields a/c = 64/61 from
Eq. (34) and c = �−161/45 from normalization.

It might be tempting to choose the free parameter b to satisfy
∫

dx x4MI (x) = 0; however,
it is straightforward to check that the solution is not realizable. Therefore, to construct a kernel
MII with a vanishing fourth moment in addition to the requirements on MI , we must infuse MII

with additional structure, shown in Fig. 2 as “arms” with a positive value e and width d = b on
either side, thereby introducing one more parameter. In order for MII to satisfy the two constraints,∫

dx x2MII (x) = 0 and
∫

dx x4MII (x) = 0, we get

a

c
= 124 b3 �3 + 88 b2 �4 + 19 b �5 + �6

4 b2(192 b4 + 400 b3 � + 340 b2 �2 + 120 b �3 + 15 �4)

e

c
= 4 b3 �3 + 8 b2 �4 + 5 b �5 + �6

4 b2(192 b4 + 400 b3 � + 340 b2 �2 + 120 b �3 + 15 �4)

⎫⎪⎪⎪⎬⎪⎪⎪⎭(MII parameters). (35)

Similar to Eq. (34), b is a free parameter, which in this paper we take b = �/8 as in MI . This yields
a/c = 568/257 and e/c = 200/257 from Eq. (35), and c = �−1257/165 from normalization.

Note that the kernels become more complicated with increasing order. They also become
increasingly spread over a wider range (longer stencils). While the width b of the “limbs” (arms
and legs in MI and MII ) is a free parameter that can be chosen by the user, an important practical
consideration is that representing SS kernels on a grid requires at least 1 grid-cell of size �x for each
of the limbs. Therefore, the smallest length scale � that can be probed by such a kernels is limited
by b � �x. However, if the limbs’ width is made too large, the kernel becomes less localized in
x-space and more expensive to use numerically.

The procedure described above can be followed to construct kernels of higher order. It is also
straightforward to generalize any of these kernels to higher dimensions by defining it as a separable
product; for example, in 2D, we define G(x, y) ≡ G(x)G(y). If kernel G(x) is of order p in 1D,
then G(x) is of the same order p in higher dimensions. Figure 2 shows MI and MII in two
dimensions.

From Eq. (18), the steepest slopes that can be measured by MI and MII are ∼k−5 and ∼k−7,
respectively. Using a synthetic velocity field in a doubly periodic domain with a Fourier spectrum
having a power-law scaling ∼k−4, Fig. 3 shows how the “filtering spectrum” using both kernels MI

and MI can capture the spectral slope accurately, whereas the top-hat kernel locks at k−3 in Fig. 1
due to its low order. MII is slightly more accurate in capturing the wave number of spectrum’s peak
compared to MI . Figure 4 shows how MII can capture a spectral slope of ∼k−7 correctly whereas
MI locks at k−5, in agreement with relation Eq. (18).
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FIG. 3. Energy spectrum for a doubly periodic synthetic velocity field with a preset power-law slope of
K−4. Figure compares the Fourier spectrum (—) to the filtering spectrum using kernels MI (—) and MII (—),
which we constructed above. Straight dashed black line with a K−4 slope is for reference.

VI. APPLICATION TO FLUID FLOWS

So far, we have tested the filtering spectrum on synthetic fields in periodic domains, having clear
preset power-law scalings. In this section, we will apply the method to more realistic flows. We
will show how a filtering spectrum can be used locally in x space, over subregions of interest, and
compare to Fourier-based techniques which alter the data to periodize it.

A. 2D decaying turbulence

We analyze the velocity field u generated from a direct numerical simulation of the incompress-
ible Navier Stokes equation,

∂tu + (u · ∇)u = −∇p + ν3∇6u, ∇ · u = 0, (36)

FIG. 4. Demonstrating the “locking” effect implied by our result Eq. (18) when calculating the filtering
spectrum. We use a doubly-periodic synthetic velocity field with a preset spectral slope of k−7. We plot the
filtering spectrum using top-hat (—), MI (—), and MII (—) kernels, along with the Fourier spectrum (—). We
see that the filtering spectra using the three kernels (top-hat, MI , MII ) lock at k−3, k−5, and k−7, respectively,
consistent with Eq. (18).
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FIG. 5. Visualization of normalized vorticity (top-left) and kinetic energy (top-right) of the 2D periodic
flow we analyze. The subdomain is highlighted as a dashed white box. To calculate the Fourier spectrum over
the subdomain, the flow is periodized by tapering (lower-left) or mirroring (lower-right).

which is solved pseudospectrally in a doubly periodic domain [−L/2, L/2)2 = [−π, π )2 on a 5122

grid. Here, p is the pressure, ν3 = 5 × 10−14 is the hyperviscosity. The flow is randomly initialized
such that the initial energy and enstrophy are at the large scales and we resolve the forward enstrophy
cascade range where the energy spectrum is expected to scale as E(k) ∼ k−3 [55–58]. The energy
spectrum we measure in Fig. 6 is consistent with that scaling, albeit slightly steeper. We analyze a
snapshot of the flow visualized in Fig. 5.

To show how the filtering spectrum performs over small regions in the flow which may be of
interest in an application, we choose a sub-domain box of size L/2 × L/2 shown in Fig. 5. Since
the flow over the subdomain is not periodic, measuring the Fourier spectrum requires either tapering
the flow near the edges or mirroring (reflecting) the subdomain to periodize the data. Figure 5
visualizes the flow resulting from these two methods. A Fourier spectrum can then be measured
from each of the two periodized velocity fields, as shown in Fig. 6. Note that with the tapering
method, the largest length-scale is L/2, which corresponds to a smallest wave number of k = 2
in Fig. 6. The mirroring method, in this case, yields a “super-box” of the same size as the original
domain (this is not generally true). We compare these with the filtering spectrum using the top-hat
and MII kernels, which can be applied over the subdomain without having to periodize the data.

Since the flow is statistically homogenous and the subdomain covers a significant portion of
the domain, we expect the local spectrum to be similar to the global Fourier spectrum. Both the
filtering spectrum using MII and the Fourier spectrum evaluated over the “super-box” yield spectra
fairly similar to the global Fourier spectrum, with the latter performing slightly better, especially
at small scales. However, it can be seen from Fig. 5 that mirroring the flow introduces an artificial
periodic pattern at the largest scales, which appears in the “super-box” Fourier spectrum at k = 2
in Fig. 6. Below, we shall discuss an example where the spurious artifacts from mirroring dominate
the Fourier spectrum. In comparison, the windowed Fourier spectrum obtained by tapering does not
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FIG. 6. Figure of spectra from a doubly periodic 2D flow, normalized by the spatial average of energy over
the entire domain. It shows the Fourier spectrum over the entire domain (—) decaying slightly steeper than
k−3. It also shows the Fourier spectrum over the sub-domain highlighted in Fig. 5, calculated by the tapering
(– –) and mirroring (– –) methods. We compare to the filtering spectra using a top-hat kernel (—) and the MII

kernel (—). Note that tapering, while it reduces the total energy in the subdomain, redistributes some energy
from the largest scales to smaller scales, creating a significant bump over k ∈ [2, 20]. The filtering spectrum
with a top-hat kernel “locks” at a k−3 scaling as expected for this flow. Both the filtering spectrum with the
MII kernel, and the Fourier spectrum using mirroring yield spectra that follow closely the Fourier spectrum
over the entire domain.

perform as well with significant deviations at the large scales and in the power-law scaling. This is
due to the artificial gradients introduced by tapering which can alter the spectral content.

Figure 7 shows a similar analysis on 10242 slices of 3D forced isotropic turbulence obtained
from the JHU turbulence database [26]. Here, we expect a k−5/3 scaling of the spectrum associated
with a forward energy cascade. We calculate the global Fourier spectrum, along with Fourier spectra
obtained from the subdomain shown using the two periodization methods, mirroring and tapering.

FIG. 7. A sample 2D slice of the normalized kinetic energy of a 3D flow from the JHTDB (left panel).
The dashed white box bounds the subdomain of interest. Right panel shows the Fourier spectrum over the
entire domain (—). It also shows the Fourier spectrum over the subdomain periodized by the tapering (– –) and
mirroring (– –) methods. We compare to the filtering spectra using a top-hat kernel (—) and the MII kernel
(—). All spectra are normalized by the spatial average of energy over the entire domain.
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FIG. 8. Streamlines of a large scale strain defined by u = (y, x ) (top-left panel). We calculate the spectral
content in the subdomain [−π/4, π/4]2 (black dashed box). Top-right panel shows the filtering spectrum over
the subdomain using MII (—), and the Fourier spectrum by the mirroring (−−) and tapering (−−) methods.
Inset plots the cumulative spectrum, E (k). Here, k = L/�, with L = 2π . Bottom three panels show the kinetic
energy of the unfiltered flow, |u|2/2 (left), and that of the filtered flow |u�|2/2 at � = L/3 (middle) and � = L/6
(right). All three bottom panels look almost identical, indicating the absence of small scales, consistent with
the flow being a large-scale smooth coherent strain. This is revealed in the filtering spectrum, which shows
almost zero spectral content at all small scales probed. In contrast, the Fourier spectrum is almost 12 orders of
magnitude larger, exhibiting a power-law over a continuum of scales due to the spurious patterns that arise from
mirroring. Both the Fourier spectrum and the filtering spectrum measure the same total energy as evidenced
from E (k) at large k in the inset of top-right panel.

We also calculate the filtering spectrum over the subdomain and observe a putative power-law
scaling very similar to that of the global Fourier spectrum. However, the Fourier spectrum obtained
with mirroring seems to match most closely the global Fourier spectrum. The Fourier spectrum
obtained with tapering suffers from problems similar to those we discussed in Fig. 6.

To illustrate a situation in which the Fourier spectrum obtained by the mirroring method can
yield misleading results, we consider a large-scale strain field,

ux = y, uy = x, (37)

shown in Fig 8. This flow is not periodic and is large scale in the sense that its derivative, the strain
field, is a constant. Equivalently, the velocity components ux (y) and uy (x) are linear functions with
no small-scale variation. Therefore, we should expect a spectrum to reveal zero spectral content
at small scales. In fact, Fig. 8 shows that filtering the smooth flow at two different scales yields
absolutely no change to the unfiltered flow, indicating the absence of small scales. This is consistent
with the filtering spectrum (see Fig. 8) over the region [−π/4, π/4]2, which shows almost zero
energy at small scales. In contrast, the Fourier spectrum obtained by mirroring exhibits a k−4

power law over a continuum of scales, which is an artifact of the periodic patterns that arises from
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mirroring. This example highlights that for flows in which there is a strong coherent smooth flow
with weak turbulence, or a significant separation between the large scales and the turbulence such
as in rapid distortion theory, measuring the spectrum with Fourier methods can yield misleading
results.

VII. CONCLUSION

We have shown that the power-law spectrum in a turbulent flow can be extracted by a relatively
simple procedure of low-pass filtering in x space. We have also shown that for a flow with a
certain level of regularity or smoothness (as quantified by the steepness of its spectrum), the filtering
kernel must have a sufficient number of vanishing moments in order for the filtering spectrum to be
meaningful. The smoother is the flow (steeper is the spectrum), the more complicated the filtering
kernel has to be. Since most spectra encountered in turbulence are not smooth, having a slope
shallower than k−3, a simple averaging of adjacent grid-points, equivalent to filtering with a top-hat
kernel, can uncover the power-law spectrum of the flow. This can be done with a few lines of code,
which we believe is a main appeal of the method. However, if the filtering spectrum using a top-hat
yields a power law scaling of k−3, then slightly more complicated SS kernels constructed above can
be used to extract the spectrum. These SS kernels are also quite straightforward to implement on a
numerical grid.

An important advantage of the method presented here over the wavelet spectrum is that it
can be used to calculate a generalized “spectrum” of any quantity that is nonquadratic. The
wavelet spectrum relies on Plancherel’s relation to conserve energy and, therefore, requires treating
quantities as quadratic even when they are not. In contrast, the filtering spectrum conserves energy
due to the Fundamental Theorem of Calculus. In forthcoming work [34], we will show how it can be
used to extract a generalized “spectrum” of energy in compressible or variable density flows, when
such energy is cubic as emphasized in Refs. [32,33,59].
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APPENDIX

1. Filtering spectrum scaling

We first discuss the scaling in Eq. (18). Assume that E(k) = (const.)k−α over ka < k < ∞, then
we have

E(k�) =
∫ ∞

0
dk

d

dk�

∣∣∣∣Ĝ(
k

k�

)∣∣∣∣2

E(k)

=
∫ ka

0
dk

d

dk�

∣∣∣∣Ĝ(
k

k�

)∣∣∣∣2

E(k)︸ ︷︷ ︸
term 1

+ (const.)
∫ ∞

ka

dk
d

dk�

∣∣∣∣Ĝ(
k

k�

)∣∣∣∣2

k−α︸ ︷︷ ︸
term 2

. (A1)
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The small-wave-number contributions to the filtering spectrum E(k�) at any k� are captured by
“term 1,” which will be shown to scale as ∼k

−(p+2)
� , whereas the high wave-number contributions

in “term 2” scale as ∼k−α
� and reflect the scaling of the Fourier spectrum. Therefore, if the Fourier

spectrum decays faster than k−(p+2), the small-wave-number contributions in “term 1” dominate the
scaling of the “filtering spectrum” at large k�, whereas if α < p + 2, then the “filtering spectrum”
has the same power-law slope as the Fourier spectrum.

Term 2 can be rewritten with a change of variable s = k/k�:∫ ∞

ka

dk
d

dk�

∣∣∣∣Ĝ(
k

k�

)∣∣∣∣2

k−α = k−α
�

∫ ∞

ka/k�

ds
d

ds
|Ĝ(s)|2s1−α. (A2)

Under mild smoothness and decay conditions on Ĝ(s), the integral on the right-hand side converges
to a constant and “term 2” scales as k−α

� .
To analyze the scaling of “term 1,” we use the Taylor series expansion of Ĝ(s) from Eq. (12)

with s = k/k� such that

d

dk�

∣∣∣∣Ĝ(
k

k�

)∣∣∣∣2

= −2

[
1 +

(
k

k�

)p+1

φ(s)

][
(p + 1)

kp+1

k
p+2
�

φ(s) + kp+2

k
p+3
�

φ(1)(s)

]
∼ k

−(p+2)
� kp+1φ(s)︸ ︷︷ ︸

term a

+ k
−(p+3)
� kp+2 φ(1)(s)︸ ︷︷ ︸

term c

+ k
−(2p+3)
� k2p+2|φ(s)|2︸ ︷︷ ︸

term b

+ k
−(2p+4)
� k2p+3 φ(s) φ(1)(s)︸ ︷︷ ︸

term d

. (A3)

Consider the first of these small-wave-number contributions for large k�:

term 1a =
∫ ka

0
dk

[
k

−(p+2)
� kp+1φ

(
k

k�

)]
E(k)

≈ k
−(p+2)
�

∫ ka

0
dk (const.)kp+1E(k) ∼ k

−(p+2)
� ,

where we used Eq. (13) in the second step, that φ(k/k�) ≈ (const.) when k� → ∞.
Similar analysis on the other terms yields that the other terms, 1b, 1c, and 1d, are subdominant

to k
−(p+2)
� for large k�. Therefore, we have that

E(k�) =
∫ ka

0
dk

d

dk�

∣∣∣∣Ĝ(
k

k�

)∣∣∣∣2

E(k)︸ ︷︷ ︸
∼k

−(p+2)
�

+ (const.)
∫ ∞

ka

dk
d

dk�

∣∣∣∣Ĝ(
k

k�

)∣∣∣∣2

k−α︸ ︷︷ ︸
∼k−α

�

. (A4)

2. Positive definiteness

We now discuss the sign of the kernel �(r) = G−1
� ∗ G� used in Eq. (24), with � � �. We

assume that the filtering kernel G(r) is a concave function (and therefore G � 0). The soft
deconvolution can be written as an expansion [29]:

�(x) = G−1
� ∗ G�(x) =

∞∑
k=0

(I − G�)k ∗ G� ≈ G� + (G� − G� ∗ G�), (A5)

where I is the identity operator and we assume that the series converges sufficiently fast to justify
truncating the expansion. We then have

G� − G� ∗ G� = −
∫

dr G�(r )[G�(x + r ) − G�(x)] ≈ − �2

�2
(∇2G)�

∫
dr r2G(r ), (A6)
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where we Taylor expanded the even kernel G�(x + r ) near x and (∇2G)� = 1
�d

∂2G(x/�)
∂ (x/�)2 in d-

dimensions. Since the kernel is concave, then −(∇2G)� � 0 and we have

�(x) = G−1
� ∗ G�(x) ≈ G� + (G� − G� ∗ G�) � 0. (A7)

Note that in the limit � � �, (G� − G� ∗ G�) in Eq. (A5) is proportional to (�/�)2 and, therefore,
� ≈ G� � 0. The reader should realize that the analysis just presented is not a rigorous proof but
an argument which relies on significant approximations. We speculate that it may be possible to
show positivity of � using a more careful analysis which does not, for example, require G(r ) to be
concave but only that it is positive.
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