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Understanding rare events in turbulence provides a basis for the science of extreme
weather, for which the atmosphere is modeled by Navier-Stokes equations (NSEs). In
solutions of NSEs for isotropic fluids, various quantities, such as fluid velocities, roughly
follow Gaussian distributions, where extreme events are prominent only in small-scale
quantities associated with the dissipation-dominating length scale or anomalous scaling
regime. Using numerical simulations, this study reveals another universal promotion
mechanism at much larger scales if three-dimensional fluids accompany strong two-
dimensional anisotropies, as is the case in the atmosphere. The dimensional crossover be-
tween two and three dimensions generates prominent fat-tailed non-Gaussian distributions
with intermittency accompanied by colossal chainlike structures with densely populated
self-organized vortices (serpentinely organized vortices). The promotion is caused by a
sudden increase of the available phase space at the crossover length scale. Since the
discovered intermittency can involve much larger energies than those in the conventional
intermittency in small spatial scales, it governs extreme events and chaotic unpredictability
in the synoptic weather system.
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I. INTRODUCTION

Since fluid turbulence is chaotic, probability distributions in addition to averaged physical
quantities are imperative in order to understand the turbulence deeply [1]. For the average energy
flux, Kolmogorov showed that the energy injected at large (long) spatial scales cascades into
smaller (shorter) scales and energy injection balances dissipation at small scales, forming an inertial
range between the spatial scale of the energy injection and the dissipation range. Kolmogorov’s
self-similarity assumption asserts that the mean energy spectra E(k), where k is the wave number,
follow universal power laws, E(k) ∝ kζ with ζ ∼ −5/3 for three-dimensional (3D) turbulence [2]
and ζ ∼ −3 for two-dimensional (2D) turbulence [3] within the inertial range. These power laws
have been supported by experiments and numerical simulations, at least approximately [1].

The probability density function (PDF) P (A) of a macroscopic quantity A is critical for
understanding the chaotic and intermittent behavior of turbulence. The Gaussian distribution
predicts a very low chance of extreme events. Deviations from it can be probed by the nth moment
〈An〉 = ∫AnP (A)dA, such as the flatness defined by F (A) = 〈(A − 〈A〉)4〉/〈(A − 〈A〉)2〉2; the
intermittency associated with promoted rare-event occurrences is typically signaled by F exceeding
the Gaussian value 3.

Kolmogorov’s claim with the assumption of self-similarity was challenged by Landau’s remark
[4] on the intermittent nature of the dissipation, which invalidates the self-similarity. Subsequent
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FIG. 1. Illustrative sketch of large chainlike structure named the serpentinely organized vortices (SOVs).
A SOV structure contains a mass of coherently assembled elementary vortices. Sizes of these element vortices
are comparable or smaller than the CLS. The SOV structure looks like many densely distributed peas (vortices)
contained in a pod (chain structure).

studies on intermittency, inspired by concepts such as anomalous scaling and multifractals [4–9],
have proven fruitful and shown the existence of intermittency even in the inertial range. However,
it should be pointed out that the intermittency (non-Gaussianity) expected in these studies emerges
at small length scales, much smaller than the system size. In such small length scales or large
wave numbers k, the contained energy is small as well because of the Kolmogorov law E(k) ∝ kζ

with ζ < 0. Therefore, the intermittency arising from these mechanisms (anomalous scaling and
dissipation) have only a limited impact on the global phenomena at least for simulations with the
Reynolds number available in the present computer power (in comparison to the finding under
the condition of the present work as we see later including the atmospheric simulation). In fact,
non-Gaussian distributions are empirically visible only for high-order spatial derivatives associated
with the anomalous scaling expected for asymptotically small scales or small scales connected to
the dissipation range in isotropic fluids [5–8,10–14].

The present study describes a case in which an unexplored type of strong intermittency emerges
in the inertial range potentially at a much larger length scale than the scale of the dissipation and the
anomalous scaling when the fluid is in a flattened 3D space, namely, flat 3D fluid (F3DF), where
the vertical dimension (thickness) is much smaller than the two horizontal dimensions. F3DF has
2D-like behavior at scales larger than the crossover length scale (CLS), determined by the thickness,
and 3D-like at smaller length scales. Unlike the large-scale intermittency associated with shear or
wakes behind obstacles, the present intermittency in F3DF is not associated with large-scale forcing
or boundaries. For instance, the atmosphere is a typical F3DF. Recent observations [15,16] and
numerical simulations [17,18] have revealed the atmosphere’s average statistics: The energy spectra
of winds exhibit the 2D-like exponent ζ ∼ −3 for the scale of O(100–10,000 km) and the 3D-like
exponent ζ ∼ −5/3 for scales smaller than the CLS, around O(100 km).

The present study demonstrates that the dimensional crossover at the CLS generates unexplored
strong intermittency, further spreading to the 3D inertial range. This spatial intermittency is also
corroborated by the temporal intermittency generated at the crossover timescale derived from the
CLS with the aid of the spatiotemporal correspondence hypothesized by Tennekes [19]. The CLS
can be much larger than the length scales of the dissipation and the asymptotic anomalous scaling
regimes; thereby the intermittency induced at the CLS may involve much larger energies than the
intermittency induced at those small length scales. This is indeed the case for the atmosphere, where
the CLS is around 100 km and the dissipation range is below 1 km.

Our study further reveals that the CLS intermittency generates sinuous chainlike structures,
which we call serpentinely organized vortices (SOVs). The width and depth of the SOV structure are
comparable to the CLS, while the length is much longer than the CLS as schematically illustrated
in Fig. 1. Inside the SOV structures, extreme events are highly promoted, which is surrounded by
relatively calm areas. A SOV structure contains a mass of coherently assembled elementary vortices.
Sizes of these element vortices are comparable or smaller than the CLS. The SOV structure looks
like many densely distributed peas (vortices) contained in a pod (chain structure).
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TABLE I. Computational settings for the DNS of F3DF. kmax (=Nx/3 in the present simulation) is the
maximum effective wave number and η is the Kolmogorov scale. TKE (=(u2

x + u2
y + u2

z )/2) is the turbulent
kinetic energy.

Aspect ratio λ Grids Nx × Ny × Nz Re kmaxη TKE

N4096-λ64 64 4096 × 4096 × 64 1.25 × 104 4.46 0.506
N4096-λ128 128 4096 × 4096 × 32 1.25 × 104 5.08 0.545
N1024-λ32 32 1024 × 1024 × 32 1.00 × 103 4.34 1.06

The finite-time Lyapunov exponent (FTLE) is a measure of chaos, in which an infinitesimally
small difference in the initial condition grows exponentially (see Appendix A). We find that a region
of large FTLE forms large-scale chain structures in the same regions with the SOV observed at the
CLS intermittency, indicating that the same origin as the CLS intermittency enhances the chaos
as well. Here, the origin of the intermittency is ascribed to a strong violation of the self-similarity
intrinsic at the CLS.

Furthermore, a global atmospheric simulation reveals similar strong intermittency and chaos
at the CLS, namely, at the mesoscale O(100 km), implying the universality of our finding. This
finding is important because the CLS intermittency involves much larger energies than those in the
asymptotically small scales responsible for the conventional intermittency in isotropic fluids and
has much stronger spillover effects, for instance, those on the origin of synoptic events such as
cyclogenesis.

II. DIRECT NUMERICAL SIMULATION OF F3DF

We performed a direct numerical simulation (DNS) for a F3DF. The continuity equation (∇ · u =
0) and the following incompressible Navier-Stokes-type equation are solved for a flat cuboid with
periodic boundary conditions for all three directions.

∂

∂t
u(x, t ) = −u(x, t ) · ∇u(x, t ) − ∇p(x, t ) + 1

Re
∇2u(x, t ) − α8∇−16u(x, t ) + f (x, t ), (1)

where u[=(ux, uy, uz)] and p are the velocity vector and pressure, respectively, at position x =
(x, y, z) and time t . The Reynolds number is denoted by Re. Note that all the variables presented in
Eq. (1) are nondimensionalized. Table I summarizes the computational settings. The computational
domain has the spatial size of 2π × 2π × (2π/λ), where λ is the aspect ratio. The present study
mainly discusses the case with λ = 64 (i.e., N4096-λ64); two other cases (i.e., N4096-λ128 and
N1024-λ32) are used to investigate the effect of the aspect ratio. The grid resolution kmaxη, where
kmax (=Nx/3 in the present simulation with the two-thirds dealiasing method) is the maximum
effective wave number and η [=(Re3〈ε〉)−1/4, where ε is the energy dissipation rate] is the
Kolmogorov scale, is larger than 4, and is thus fine enough for investigating dissipation-scale
motions. The last source term f (x, t ) represents the divergence-free random force used to maintain
turbulence [20,21], through which the energy is supplied at an input rate of εin = 4 at input wave
numbers centered at kin = 4 with a range of ±2 throughout this paper. The second-to-last term
represents the eighth-order superdrag with α8 = 4 [22]. This term is added simply to absorb the
energy inversely transferred from the energy source. It should be noted that the inverse-cascade
process at k < kin is not the main subject of this study and details of the superdrag term do not alter
the findings. The pseudospectral method based on the Fourier-Galerkin method was used to solve the
governing equations [23]. After having confirmed that the flow reached a statistically steady state,
the simulation was continued for a sufficiently long time, compared to the energy input timescale
(εink

2
in )−1/3, and statistics were collected.
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FIG. 2. Energy spectra of horizontal velocity, Eh(kh) = 0.5[|ǔx (kh)|2 + |ǔy (kh)|2], normalized by Eh at
kh = kin. Here, ǔx (kh) = [

∑
kz

û2
x (kh, kz )]1/2 for (a) N4096-λ64 and (b) N4096-λ128. The vertical downward

(horizontal) blue arrows indicate the center (spread) of energy injection. The red upward indicate half of the
CLS wave number, i.e., 0.5kcr .

Figure 2 shows the energy spectra E(kh) ∝ k
ζ

h , where kh [=(k2
x + k2

y )1/2] is the horizontal wave
number. The spectra are the average horizontal modal spectra, computed as an average over
concentric cylinders with the absolute value of kh [=(kx, ky )] ranging from kh − �k

2 to kh + �k
2

with any kz. The step of the wavelength �k was set to unity. The results confirm that ζ ∼ − 5
3 for

large wave numbers and ζ ∼ −3 for smaller wave numbers, consistent with earlier studies [2,21,24].
The 2D-to-3D crossover from ζ = −3 to −5/3 occurs at kh ∼ 0.5kcr, corresponding to roughly
half of the inverse of the vertical system size Lz, namely, kcr = 2π/Lz = kmin

z (=λ) [2,24]. The
observation that the crossover from ζ = −3 to −5/3 occurs always at a somewhat smaller wave
number than kcr has been previously reported [21,25]. A comparison between Figs. 2(a) and 2(b)
clearly shows that the crossover from ζ = −3 to −5/3 at k ∼ 0.5kcr is a universal phenomenon,
irrespective of the aspect ratio of the system.

Figure 3 shows that the horizontal velocity uy (and equivalently ux) follows essentially
a Gaussian distribution, as expected, whereas the horizontal velocity increment at half-height
separation �uy (Lz/2, 0) = uy (x, y, z = Lz/2) − uy (x, y, z = 0) clearly deviates, exhibiting an
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FIG. 3. PDF of horizontal velocity uy (red curve with red squares) and �uy (Lz/2, 0) (blue curve with

blue circles) for N4096-λ64, with the Gaussian distribution shown for reference (gray without symbols). Here
and in the following figures, the abscissae of the PDF and the color contours are normalized by each standard
deviation (σ ). �uy (Lz/2, 0) shows a wider tail, meaning stronger intermittency.
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FIG. 4. Typical in-plane contour snapshots of horizontal velocities and bird’s-eye views for (a) |uh| at
z = 0 and (b) |�uh| for N4096-λ64. The color contours are normalized by the standard deviations of uy , σ (uy )
[or equivalently σ (ux )] in (a) and σ (�uy ) [or σ (�ux )] in (b). The mean and standard deviaitons are 0.899

and 0.737, respectively, in (a) and 0.0374 and 0.0327, respectively, in (b). Note that |uh| =
√

u2
x + u2

y and
|�uh| =

√
�u2

x + �u2
y . Large values appear in (b), corresponding to the wide tail in the PDF of �uy (Lz/2, 0).

intermittency (note that the x and y dependences are omitted in the notation). We demonstrate later
that this non-Gaussianity of �uy emerging at the CLS increment differs from the non-Gaussianity
at small increments related to the dissipation scale and the anomalous scaling regime, which is
restricted to asymptotically small scale in presently available simulations [5–8]. It should also be
emphasized that such non-Gaussianity of �uy is not clearly visible in a 3D homogeneous fluid even
when one simulates by using the presently fastest available supercomputers because the Reynolds
number cannot be taken large enough [see such an example in Fig. 14(a) in Appendix B].

Figure 4 shows snapshots of the magnitude of the horizontal velocity |uh| (=
√

u2
x + u2

y ) and
the magnitude of the horizontal velocity increment |�uh| [=

√
�ux (Lz/2, 0)2 + �uy (Lz/2, 0)2].

The intermittency associated with the non-Gaussianity is manifested in the snapshot for |�uh| as
sparsely distributed areas that conspicuously exhibit promoted extreme events (as an assembled
needlelike structure) (typically |�uh|/σ�uh

> 4) in Fig. 4(b), in contrast to the gentle structure in
Fig. 4(a).

Figure 5 shows the flatness of the horizontal component of the velocity ũK
h obtained after filtering

by the spherical-shell filter (see Appendix C 1), which picks up only the contribution within the
wave number range k − �k/2 < K < k + �k/2 with a window width of �k = 1. The flatness of
ũK

h shows a sharp peak at a filter size equal to the CLS, e.g., K = 64 for N4096-λ64, irrespective of
the aspect ratio. The peak at K = kcr clearly demonstrates that the present intermittency is distinct
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K

FIG. 5. Flatness factors of the spherical-shell (band-pass)-filtered horizontal velocity ũK
h with filter scale

K (see Appendix C 1) for N4096-λ64, N4096-λ128, and N1024-λ32. Arrows indicate kcr for each case (red
circles, blue squares, and green triangles, respectively). The prominent intermittency is always observed at the
CLS.
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FIG. 6. xy-plane cross section of (a) |�uh(Lz/2, 0)| (see also Movie S1 [26]), (b) enstrophy ζ , and (c)
finite-time Lyapunov exponents � at z = 0 for N4096-λ64. The region shown in (c) corresponds to the close-up
of the dotted square areas in (a) and (b). The color contours are normalized by standard deviations. The mean
and standard deviaitons are 2.28 and 6.55, respectively, in (b) and 0.603 and 0.378, respectively, in (c). The
distributions of extreme values indicated by red or dark yellow areas form a SOV (chain structure) and the
shapes are very similar among the three panels.

from the conventional asymptotically small-scale intermittency. Such a prominent intermittency is
not visible in the inertial range in 3D homogeneous isotropic flow, as shown in Appendix B.

Figure 6 shows snapshots of the x-y plane cross section for the horizontal velocity increment,
enstrophy, and FTLEs (see Appendix A), which measure unpredictability (chaos), at the same
simulation time as that in Fig. 4. A remarkable feature that persisted during the simulations [see, for
example, Figs. 6(a) and 6(b)] is that an intermittency consisting of prominent eddies of CLS size
is assembled and forms SOV structures. Note that the raw enstrophy, i.e., even without any filter
operations, exhibits the intermittency. This is due to the derivative operations applied to the velocity
in the derivation of the enstrophy that give more weight to small scales, making the intermittency
visible at the CLS.

Figure 6(c) indicates that in regions with such SOV structures, the Lyapunov exponent is
remarkably large. Later in the Discussion section, we will discuss the origin of the chaotic behavior
at the SOV structure. Since the SOV structure has much longer length than the CLS, one might
argue that the structure could be induced simply by the external artificial forcing. However, this is
not the case. Figures 7(a)–7(e) show the low-pass-filtered horizontally oriented vorticity at the same
xy-plane cross section as that in Figs. 6(a) and 6(b) (see Appendix C 2 for the low-pass filtering).
The SOV structure appears only in Figs. 7(d) and 7(e), where the modes with k = kcr are included.
This indicates the necessity of the CLS contribution for the SOV structure formation. It should be
emphasized that the conventional asymptotically small-scale intermittency does not generate such a
large coherent structure.

Figure 8 shows an example of a 3D snapshot of horizontally oriented vorticity and enstrophy.
It reveals that the long SOV structures consist of a mass of assembled small spots or specks, each
of which has a scale comparable to the CLS or smaller. The temporal evolution of the large SOV
structures is found in Movie S2 in the Supplemental Material [26], which shows that the large SOV
structures move on a slow timescale, such as the eddy turnover time Te [=Lx/urms, where Lx (=2π )
is the horizontal size of the system and urms is the root mean square of the horizontal velocity].

In order to further clarify the CLS intermittency, Gaussian filtering was applied, where the
weight given by the Gaussian distribution around k = 0 with width 1/α is imposed as the filter
(see Appendix C 3). This filter can also be regarded as the real-space filter to measure the local
distribution with width α because the Gaussian distribution is Fourier transformed into another
Gaussian in real space with the inverse width. Therefore, one can gain insight into the intermittency
in real space. See Appendix D for the Gaussian filtered analysis. (Figure 15 in Appendix D shows
a peak in the Gaussian-filtered distribution at around 0.5kcr.) It was also confirmed that isotropic
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FIG. 7. xy-plane cross section of low-pass-filtered horizontally oriented vorticity ωy (see Appendix C 2) at
z = 0 with threshold wave numbers of (a) 10, (b) 20, (c) 40, (d) 80, and (e) 4096 for N4096-λ64. The color
contours are normalized by the standard deviations. The characteristic large-scale SOV feature is observed only
when the crossover wave number is included, i.e., only in (d), (e).

3D fluid does not have such an intermittency except at dissipative small scales when the Reynolds
number is comparable to the F3DF simulation done in the present work (see Appendix B). All
additional simulations support that the intermittency is triggered exclusively at the CLS.

FIG. 8. Distributions of the horizontally oriented vorticity (color contour) at three vertical walls whose top
view coordinates are indicated by black dashed lines in Fig. 6(a) together with the color contour at the bottom
plane at z = 0 for N4096-λ64. The enstrophy is also plotted by the white 3D isosurface. The threshold of
the white isosurface was set at m + 3σ , where m and σ are the mean and standard deviation, respectively.
The vertical real-space scale is doubled. For vorticity, calm regions are colored green in the planes, and
active regions are colored red or blue (as in the color scale bar). Large structures (SOVs) consist of a mass
of assembled tiny active spots and specks with sizes comparable to or smaller than the CLS. The bottom
plane cross section corresponds to the cross section illustrated in Fig. 6(b) and the active SOV structure has
one-to-one correspondence. See also Movie S2 [26] for a temporal evolution of the structures.
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FIG. 9. Flatness of the time series of uy estimated after frequency-resolved band-pass filtering at frequency
ω (see Appendix C4) for N4096-λ64. The abscissa shows k∗

h(≡ω/urms, where urms is the root mean square of
velocity in the whole simulation). The red arrow indicates the CLS wave number, kcr .

The present DNS adopts periodic boundary conditions and spatial Fourier analysis, which are
not applicable to usual flows in the real world. Instead, time series data at a measurement point
are commonly analyzed. When the energy-containing large scale and the scale of interest are
well separated, the Tennekes sweep hypothesis [19], which states that large-scale eddies advect
small-scale ones, can map temporal data with time t into spatial data with length scale � via
the relation � = Ut , where U is the representative velocity of the system. Figure 9 shows that
strong intermittency starts rising at k∗ = 2π

�
∼ kcr. This supports that the strong intermittency at

the CLS is separated from the conventional small-scale intermittency [1,5–8,10–14]. The enhanced
intermittency continues rising above kcr and plateaus at larger k∗. This spillover effect may be the
consequence of the influence of the higher-harmonic peaks in Fig. 5(a), which are broadened due to
the approximate nature of the Tennekes hypothesis.

III. ATMOSPHERIC SIMULATION

The results of a high-resolution simulation using the global atmospheric model MSSG-A [27]
are described here. MSSG-A is one of the three models that participated in the global 7-km-mesh
nonhydrostatic-model intercomparison project for typhoon predictions [28]. Its dynamical core is
based on nonhydrostatic equations, and it predicts the three wind components, air density, and
pressure. A six-category bulk cloud microphysics model is used for the equation of state for water;
that is, MSSG-A is a cloud-resolving model. In contrast to the DNS for F3DF, this global simulation
accounts for the effects of Earth’s rotation, gravity, fluid compression or expansion, topography,
moisture, and heat radiation. The 5-day time integration from 00:00UTC on 13 September, 2013,
performed for Typhoon Man-yi was analyzed.

In the energy spectrum in Fig. 10(a), the crossover of the slope is from −3 to −5/3 at kh ∼
10−5 rad/m, which corresponds to O(100 km), as in earlier observations [15,16] and atmospheric
simulations [17,18]. In contrast to the equality between the CLS and the domain depth in the DNS,
the atmospheric CLS is larger than the atmosphere depth O(10 km) because of complexities such as
nonzero fluid compressibility, gravitation, Earth’s rotation, and boundary conditions.

Similarly to the DNS, strong intermittency is observed at kh ∼ 10−5 rad/m, i.e., at the CLS, in
addition to the dissipation scales [Fig. 10(b)]. Large structures observed in the figures of the wind
increment and the Lyapunov exponents are also observed [Figs. 11(a) and 11(b)], in accord with
the DNS of F3DF. Here, the large structures are synoptic-scale structures, e.g., tropical cyclones.
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FIG. 10. Results from global atmospheric simulation. (a) Energy spectra of horizontal wind at 200 hPa.

(b) Flatness of horizontal velocities at 200 hPa estimated by frequency-resolved band-pass filter. The graphs
were obtained by averaging the data at 1024 measurement points, which were dispersed uniformly on the whole
globe. Here, k∗

h [=2π (Ut )−1, with U chosen to be the root mean square of the horizontal velocity at 200 hPa
for the entire global domain] is the effective wave number. The red arrows indicate the CLS wave number.

Despite the various complexities of the atmospheric system, the structure of the intermittency shows
remarkable similarities to the DNS results.

IV. DISCUSSION

The conclusion that the chainlike colossal structures of the assembled vortices, namely, SOVs,
are induced at a relatively small CLS appears to break causality, because energy cascades from
large to small scales. Our reasoning is as follows. A fraction of the vertically oriented vortices
governing the 2D turbulence at scales larger than the CLS are transformed in the energy cascade
process into horizontally oriented vortices around the CLS. There, the modes with (kh, kz) = (kcr, 0)
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FIG. 11. (a) Absolute value of the difference between the horizontal winds at 700 and 850 hPa |�uh| =
|uh(700 hPa) − uh(850 hPa)| (see also Movie S3 [26]). (b) Finite-time Lyapunov exponent � at 700 hPa. The
color contours are normalized by σ (�uh) in (a) and σ (�) in (b). The mean and standard deviations are 4.27
and 3.07, respectively, in (a) and 2.42 × 10−5 s−1 and 2.15 × 10−5 s−1, respectively, in (b). Active regions form
similar structures in (a), (b).
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FIG. 12. Schematic illustration of the formation mechanism of the colossal structure. Vector k3, whose
horizontal wave number is small, is generated via mode coupling that satisfies momentum conservation.

are scattered via mode coupling into same-energy modes at kh ∼ 0 and kz = kcr (Fig. 12), which
necessarily generates a large horizontal structure because kh ∼ 0. The resultant colossal SOV
structure develops a dominant rigid backbone, even at small scales, because the generated calm
areas left behind at the CLS remain intact throughout the later cascade process.

We here discuss the mode coupling process in more detail. Vortices in the turbulence are
generated in the cascade from large-scale structures to smaller ones through the dynamics of vortex
breakup and energy flow from low to high wave numbers. In the cascade down to the CLS, the
vortices are only 2D-like because the wave number kz is always zero. The 3D vortex structure
(horizontally oriented vortices) emerges only when a mode whose wave number is larger than the
CLS is involved in the breakup process. Note that a horizontally oriented vortex contains fluid flow
in the opposite direction between two points at the same x, y coordinates but different z coordinates.
In the Fourier analysis, this means that a mode with nonzero kz must be involved. For instance, the
vortex with a size of Lz (largest 3D vortex) mainly contains the mode with kz = kcr, which is the
smallest nonzero wave number in the z direction. Therefore, it is clear that the 3D vortices are
generated from the breakup of 2D vortices in the cascade beyond the CLS. During the generation of
horizontally oriented 3D vortices, momentum conservation must be satisfied by the mode coupling
in Navier-Stokes equations, such as the scattering process of k1 = k2 + k3. Here, k1 = (kh1, kz1)
satisfies |kh1| ∼ kcr and kz1 = 0, contributing in real space to the mode of vertically oriented vortices
with a radius on the scale of 1/kCLS. The scattered modes k2 = (kh2, kz2) and k3 = (kh3, kz3) must
satisfy |kh2| ∼ |kh1| + p and |kh3| = p, respectively, whereas kz2 = −kz3 = kcr (see Fig. 12). The
modes k2 and k3 both contribute to horizontally oriented vortices. The process with |kh3| � kcr (or
equivalently |kh2| � kcr) contributes to the colossal structure formation with length scale 1/|kh3|
(or 1/|kh2|). These processes generate the horizontally oriented vortices via mode coupling in phase
space expanded to the z direction. These mode coupling processes are clearly a consequence of
the nonlinear coupling of the momenta in Navier-Stokes equations. Further discussion on mode
coupling is given in Appendix E.

The interscale mode transfer from the CLS to the larger length scale, kh ∼ kz ∼ 0 also exists.
However, the energy transfer is expected to be small. It is intriguing to clarify its role in the
formation of the SOV structure in the future. Since the forcing wave number kin introduces another
characteristic large length scale, kin may be involved in determining the SOV structure through the
mode coupling in addition to the system size itself in the horizontal direction. The involvement of
kin for the structure and dynamics of the SOV structure is an interesting subject left for future study.

The self-similarity assumed by Kolmogorov [2] addresses that the space is active everywhere
filled with vortices via the self-similar energy cascade. If the fluid is isotropic 2D, the approximate
Kolmogorov law (and self-similarity) results from the nature of the vortex breakup, where after
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2D cascade
2D-3D crossover

active calm

intermittency

z

x
y

FIG. 13. Schematic illustration of the emergence of the intermittency by phase space expansion at the
2D-3D crossover. In the 2D cascade, the self-similarity is approximately satisfied and the broken-up smaller
vortices fill the space again. However, at the 2D-3D crossover, the active area is unable to fill the whole phase
space anymore because of the expansion of the phase space in the z direction. This generates active and calm
regions with intermittency.

every breakup the resultant broken-up vortices fill almost the whole 2D space at each wave number
(Fig. 13). As a result, everywhere in real space is active, and thus there is no prominent intermittency.
The same is true for the case of an isotropic 3D fluid.

The intermittency is generated by the breakdown of the self-similar cascade in the dissipative
range and in the anomalous scaling range, where the active eddies break up into small eddies, filling
only a fractal dimension smaller than the real spatial dimension [1,9]. This generates contrasting
active (extreme) and calm (inactive) regions. However, the effect of this intermittency, restricted
to the dissipative range or the anomalous scaling range for isotropic fluids, is small in presently
available simulations because the involved energy is limited. In contrast, when the space is suddenly
expanded to the third dimension at the CLS of F3DF by including nonzero kz, vortices whose
size is smaller than the CLS are unable to fill the whole real space anymore because some modes
escape to the 3D vortices, resulting in part of the space remaining calm without small 2D vortices
(Fig. 13). Such expansion completely destroys the approximate 2D self-similarity [2,9,29]. The
intermittent structure emerges from the contrast between the region filled with vortices (active
region) and the empty region (calm region). It is important that this mechanism of the intermittency
does not require the presence of dissipation and can be effective deeply inside the inertial region.
The CLS scale can be much longer than the length scale of prominent anomalous scaling as well
and the CLS intermittency can involve much larger energies as in the present simulation. This is an
interesting route to the breakdown of the self-similarity assumed by Kolmogorov. This mechanism
is supported by the fact that the above-mentioned intermittency is observed in 3D-like quantities,
such as horizontal vorticity, and the vertical velocity, whereas it is absent in essentially 2D-like
quantities.

Here we discuss the origin of the chaotic behavior at the SOV. Since the motion of the SOV
structure is slow and continuous as is observed in Movie S1 in the Supplemental Material [26],
the global motion of the SOV may not be the origin of the chaos. We speculate that the enhanced
Lyapunov exponent is caused by the internal dynamics of the SOV. Inside the SOV, the vortices are
actively created and annihilated with their interactions and collisions. Dynamical processes of the
nonlinear excitations such as vortices and solitons are known to cause chaos [30].

The present study reveals a previously unknown type and mechanism of intermittency, which
had mainly been explored before in connection to dissipation and anomalous scaling. An alternative
route for strong intermittency is opened by the suddenly expanded phase space at the dimensional
crossover. The mechanism of intermittency generated at the CLS and the resultant SOV together
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with the enhanced Lyapunov exponent may have a deep impact and connection to the synoptic
structure formation and the extreme weather. This will open important future research areas about
the origin and mechanism of the climate and weather dynamics as well as atmospheric phenomena,
which cause disasters on the earth. Simulations within the restricted grid resolutions that do not
fully cover both 2D- and 3D-like regions would fail to estimate this dominant crossover-scale
intermittency. For instance, climate models that assess extreme weather are required to well resolve
the present CLS intermittency. That is, they need to use at least a few-10-km or lower resolutions to
resolve the O(100 km) CLS.
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APPENDIX A: FINITE-TIME LYAPUNOV EXPONENT

The Lyapunov exponent of a dynamical system is a measure that characterizes the rate of sepa-
ration of infinitesimally close orbits in phase space. The inverse of the exponent can be a measure
of the predictable time duration of the system. That is, the Lyapunov exponent is also a measure of
unpredictability. Let us consider a particle at position x0 at time t0 advected to position x1 at time t1.
The mapping operator F is defined as Ft1

t0 (x0) = x1(t1, t0, x0). Two neighboring particles initially
located around x0 at t0 would be advected to x1 at t1. The separation vector between the two particles
would be stretched. The stretching matrix for initially infinitesimal separation can be written as

∇Ft1
t0

(x0) ≡

⎛
⎜⎜⎝

∂x1
∂x0

∂x1
∂y0

∂x1
∂z0

∂y1

∂x0

∂y1

∂y0

∂y1

∂z0

∂z1
∂x0

∂z1
∂y0

∂z1
∂z0

⎞
⎟⎟⎠. (A1)

The finite-time Lyapunov exponent � is then defined as [29]

� = 1

|t1 − t0| ln
√

λmax(�), (A2)

where λmax(�) is the maximum eigenvalue of the symmetric mapping matrix �, which is defined
as � ≡ [∇Ft1

t0 (x0)]∗[∇Ft1
t0 (x0)]. The finite time (t1 − t0) was chosen to be one-tenth of the turnover

time of the largest possible eddy Te, defined by Te = Lx/urms for Fig. 6(c), where Lx (=2π ) is
the horizontal size of the system, and urms is the root mean square of the horizontal velocity of the
total system. For Fig. 11(b) and Movie S3 in the Supplemental Material [26], Te = 5 days, which
is a typical synoptic timescale and the integration time duration for the typhoon simulation. The
exponents do not appreciably depend on the choice of Te.

APPENDIX B: THREE-DIMENSIONAL HOMOGENEOUS ISOTROPIC TURBULENCE

For comparison, the data from the DNS of 3D homogeneous isotropic turbulence (HIT) simulated
with 512 × 512 × 512 grids [31] were analyzed. The Taylor microscale-based Reynolds number
was 210. See Fig. 14.

APPENDIX C: VARIOUS FILTERS

The present study uses various filters to extract the wave number–resolved fluid velocity to
capture the role of the CLS throughout the entire energy cascade process.
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FIG. 14. Properties of isotropic homogeneous 3D turbulence. (a) PDFs of horizontal velocity uy (red curve
with red squares) and �uy (Lz/2, 0) (blue curve with blue circles). (b) Flatness factors of the spherical-shell
(band-pass)-filtered horizontal velocity ũK

h with filter scale K. Unlike Fig. 5, which shows the flatness factors in
F3DF, strong intermittency is limited only in the dissipation scales. It should be noted that the Taylor microscale
corresponds to K = 27 in (b).

1. Spherical-shell (band-pass) filter with window function for Fig. 5

A window function depending on wavelength |k| with width �k is used for the spherical-shell
filter:

ũK (x, t ) =
∑

k

ĜK (k)û(k, t )exp(ik · x), (C1)

where

ĜK (k) =
{

1 K − �k/2 � |k| < K + �k/2
0 otherwise, (C2)

where �k (=2π/Lx = 1) is the smallest wave number in the discrete mesh for the simulations.

2. Low-pass filter with step function for Fig. 7

In the low-pass filter, only modes with a wave number of less than K are retained:

ũ<K (x, t ) =
∑

k

Ĝ<K (k)û(k, t )exp(ik · x), (C3)

where

Ĝ<K (k) =
{

1 |k| < K

0 otherwise. (C4)

3. Gauss-weighted filter for Fig. 15

The filtered velocity ũg (kv ) is defined by

ũg (α, kv )(x, t ) =
∑

k

Ĝkv

g (α, k)û(k, t )exp(ik · x), (C5)
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where

Ĝkv

g (α, k) =
{

exp[−{αkh}2] |kz| = kv

0 otherwise.
(C6)

kh(=(k2
x + k2

y )1/2) is the horizontal wave number, and k = (kh, kz). This filter acts as a low-
pass filter that extracts the modes with kh < 1/α in wave number space and those with
[(x2 + y2)1/2 =]lh < 1/α in real space. The advantage of the Gauss-weighted filter is that the
filter in the wave number space is equivalent to the filter in the real space, so that α picks up the
characteristics of the length scale 1/α in real space.

4. Frequency-resolved band-pass filter for Figs. 9 and 10(b)

The band-pass filter in frequency space is defined as

ũ(ω, x0, t ) =
∑
ω′

Ĝω(ω′)û(x0, ω
′)eiω′t , (C7)

where

Ĝω(ω′) = exp

[
−

(
ω′ − ω

�ω

)2
]
, (C8)

where �ω is set to 2π/(αTa ), where Ta is the time length for analysis (i.e., sampling time), and
the factor α is set to 0.125. Ta is 16.4 for the DNS of F3DF and 4.32 × 105 s (5 days) for the
atmospheric simulation. Flatness is obtained as

F (ω, x0) =
1

NT

∑
t {ũx (ω, x0, t )}4[

1
NT

∑
t {ũx (ω, x0, t )}2

]2 . (C9)

Averaging over x0 to reduce statistical error yields

F (ω) = 1

Nx0

∑
x0

F (ω, x0). (C10)
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FIG. 15. Flatness of Gaussian-filtered velocity ũg (kv ) for F3DF with vertical wave number kv = 0 and
kv = kmin

z for (a) N4096-λ64 and (b) N4096-λ128. The intermittency is pronounced only for kv = kmin
z around

1/α = 0.5kcr , indicating that it originated from the dimensional crossover.

124607-14



LARGE-SCALE INTERMITTENCY AND RARE EVENTS …

-10 -5 0 010-3

10-2

10-1

100

P
(s
)

s

-10 -5 0 5 1010-5

10-4

10-3

10-2

10-1

100

P
(s
)

s

(a

5 1

() b)

(c)

-10 -5 0 5 1010-3

10-2

10-1

100
P
(s
)

s

FIG. 16. PDFs of mode-selected velocities. Horizontal (red curve with red squares)/vertical (blue curve
with blue circles) mode-extracted velocities uy|z(k; x, t ) = ∑

k′=k ûy|z(k′, t ) exp(ik′ · x) consist of several
modes (defined below). These PDFs are compared with the Gaussian distribution (gray curves without sym-
bols). (a) k = (±kcr, 0, 0), (b) k = (0, 0, ±kcr ), and (c) k = (kx, ky, ±kcr ) with kcr − 1/2 � (k2

x + k2
y + k2

z ) <

kcr + 1/2. uz(k; x, t ) = 0 is satisfied due to the divergence-free condition in (b). Only (c) shows clear
deviations from the Gaussian distribution, i.e., clear intermittency.

The effective wave number k∗ is introduced to transform ω by k∗ = ω/U . Here, the representa-
tive velocity U is given by the average advection velocity, defined as

U = 1

Nx0

∑
x0

U (x0), (C11)

where

U (x0) =
√

1

NT

∑
t

{
u2

x (x0, t ) + u2
y (x0, t )

}2
. (C12)

APPENDIX D: FLATNESS OF GAUSSIAN-FILTERED VELOCITY

Here, the flatness of velocity ũg (kv ) obtained by the Gaussian filter with width 1/α centered at
k = 0 in momentum space is shown. See Fig. 15.

APPENDIX E: ROLE OF MODE COUPLING IN LARGE SOV STRUCTURE
GENERATION WITH INTERMITTENCY

Velocities band-pass filtered at kcr exhibit strong intermittency, as shown in Fig. 5(a). There are
multiple modes at |k| = kcr , e.g, k = (0, 0,±kcr ) and (±kcr, 0, 0). Figure 16 shows the role of mode
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coupling for the intermittency at |k| = kcr . The PDFs of the velocities that have a single mode
with |k| = kcr exhibit Gaussian-like distributions [Figs. 16(a) and 16(b)], while those containing
contributions from multiple modes clearly exhibit non-Gaussian distributions [Fig. 16(c)]. However,
if different modes follow independent Gaussian distributions, their linear combinations also follow a
Gaussian distribution. Therefore, the non-Gaussianity supports the existence of correlations between
different modes. Mode coupling is essential for the strong intermittency at the CLS, as discussed in
the main text.
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