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At high Reynolds numbers, the logarithmic range in wall-bounded flows spans
many scales. An important conceptual modeling framework of the logarithmic range is
Townsend’s attached eddy hypothesis [The Structure of Turbulent Shear Flow (Cambridge
University Press, Cambridge, 1976)], where high Reynolds number wall-bounded flows
are modeled as assemblies of space-filling, self-similar, and wall-attached eddies. Re-
cently, Yang et al. [Phys. Rev. Fluids 1, 024402 (2016)] reinterpreted this hypothesis
and developed the “hierarchical random additive process” model (HRAP), which pro-
vides further insights into the scaling implications of the attached eddies. For exam-
ple, in a recent study [Yang et al., Phys. Rev. Fluids 2, 064602 (2017)], the HRAP
model was used for making scaling predictions of the second-order structure function
〈[u′

i (x) − u′
i (x

′)][u′
j (x) − u′

j (x′)]〉 in the logarithmic range, where ui’s are the velocity
fluctuations in the ith Cartesian direction. Here, we provide empirical support for this
HRAP model using high-fidelity experimental data of all three components of velocity in a
high Reynolds number boundary layer flow. We show that the spanwise velocity fluctuation
can be modeled as a random additive process, and that the wall-normal velocity fluctuation
is dominated by the closest neighboring wall-attached eddy. By accounting for all the three
velocities in all the three Cartesian directions, the HRAP model is formally a well rounded
model for the momentum-carrying scales in wall-bounded flows at high Reynolds numbers.

DOI: 10.1103/PhysRevFluids.3.124606

I. INTRODUCTION

Wall-bounded flows are often encountered in engineering and geophysical applications. Near
the wall, the flow is dominated by viscous effects, and away from the wall, the flow is subject
to large-scale boundary effects. At high Reynolds numbers (Reynolds numbers that are relevant for
aerodynamics and geophysics), a logarithmic range emerges between viscosity-dominated near-wall
scales and the bulk-range scales [1,2]. Many efforts have been devoted to modeling the flow within
the logarithmic range (see, e.g., Refs. [3–6]), and an important modeling framework is provided by
the attached-eddy hypothesis. The attached-eddy model was pioneered by Townsend [7] and then
extended by Perry, Chong, Marusic, and coauthors by accounting for wake effects, vortex clustering,
and spatial exclusion of the wall-attached eddies of the same size [3,8–11]. A comprehensive review
of the works as related to the hypothesis may be found in Ref. [12]. Briefly, the attached-eddy
hypothesis models the high Reynolds number boundary layer flows as assemblies of space-filling,
self-similar, and wall-attached eddies (see a sketch of the modeled boundary-layer flow in Fig. 1);
and velocity fluctuations at a generic location in the flow field are modeled by adding up the eddy-
induced velocities there. Earlier works as related to the attached-eddy idea have mostly relied on
a few specifically-shaped eddies (e.g., �-eddy, �-eddy, etc. [9,10]), and there was only limited
discussion on the scaling implications of the attached eddies. Recent works by Meneveau, Marusic,
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flow direction

attached eddies
an additive cascading

FIG. 1. A sketch of the modeled turbulent boundary layers at high Reynolds numbers. Three hierarchies of
attached eddies (inclined solid lines) are sketched. The number of visible eddies on a vertical cut (as is sketched
here) doubles as the sizes of the eddies halve. The velocity fluctuation at a generic point in the flow field is an
additive superposition of the eddy-induced velocities.

Lohse, and coauthors have led to new insights into the scaling implications of the attached eddies
[5,6,13,14], and one notable development was the “hierarchical random additive process” model
(HRAP), where the eddy-induced velocities are modeled as random addends:

u =
Nz∑
i=1

ai, (1)

where i is an integer, and ai’s are addends that model the eddy-induced velocities at the wall-normal
height z. Frisch referred to multifractal models as “hierarchical intermittency models” [15], where
the term hierarchical refers to a collection of scales. The term “hierarhical” was also used to refer to
“relative importance of entities within a group” in Ref. [16]. The term “hierarchical” in “hierarchical
random additive process” refers to a collection of scales, and there is no relative importance between
the scales. Throughout the paper, we will use u, v, and w for the streamwise (x), spanwise (y),
and wall-normal (z) velocity fluctuations, respectively. The number of contributing eddies can be
computed by integrating the eddy population density P (z) from z to the boundary-layer height,

Nz =
∫ δ

z

P (z′)dz′ ∼ log(δ/z), (2)

where the eddy population density P (z) ∼ 1/z is inversely proportional to the wall-normal distance
(see Fig. 1). This compact form proves to be quite useful. For example, it directly follows from
Eq. (1) that

〈u2〉 =
(

Nz∑
i=1

ai

)2

= Nz〈a2〉 ∼ log(δ/z), (3)

i.e., the logarithmic scaling of 〈u2〉 as a function of the wall-normal distance, where 〈·〉 is the
ensemble average of the bracketed quantity, δ is the boundary layer height, ai’s are identically,
independently distributed random addends (i.i.d., 〈aiaj 〉 = 0 for i �= j , and a is a random variable
that has the same statistical properties as ai). Determining the constants in Eq. (3), i.e., the slope
and the intercept of the logarithmic scaling, requires knowledge of the statistical properties of the
addends ai . However, this is not straightforward, as it is difficult, if not impossible, to extract
an attached eddy from a turbulent flow field. Nonetheless, we will demonstrate that by assuming
the addends to follow a Gaussian behavior and quantifying deviations from the resulting Gaussian
statistics, a new physical insight of the wall-bounded flow can be obtained.

Unless otherwise noted, we will use the wall units, i.e., the friction velocity uτ and the
viscous length scale ν/uτ , for normalization. The HRAP model has been used to provide scaling
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estimates for velocity moment-generating-functions [17] and velocity structure functions [18], and
quantities that involve the wall-shear stress fluctuations and fluctuations of passive scalars [19] in
wall-bounded flows at high Reynolds numbers. However, so far, the model is formally only for the
streamwise velocity fluctuation.

Due to the experimental challenges associated with accurately measuring the weaker spanwise
and wall-normal fluctuations compared to the streamwise counterpart in a wall turbulent flow,
traditionally the focus of near-wall turbulence modeling has been on the u velocity. However,
advancements in computational capabilities and measurement techniques over the past two decades
have led to renewed interest in the spanwise and wall-normal velocity components. For example, del
Alamo et al. [20] found evidence of wall-scaling in two-dimensional spectra for all three velocity
components. Furthermore, Krug et al. [21] showed universality across a wide range of flows for the
streamwise and spanwise velocities using an extended form (i.e., the ratio between two structure
functions of different orders). Access to three-dimensional volume in direct numerical simulation
(DNS) allows two-point statistics to be constructed, which captures the bulk contribution to the u, v,

and w velocities from features that remain coherent in the order of δ [22]. As the two-point statistics
are obtained by ensembling in time, they are symmetric in the homogeneous direction. However,
Sillero et al. [22] found that instantaneously the area occupied by the positive and negative spanwise
velocities in a wall-parallel plane from a channel DNS have tendency to be oblique and inclined at
±45◦ to the flow direction in the wake region. Since the likelihood of negative or positive spanwise
velocity is equal, this leads to a squarish-shaped two-point correlation function. Furthermore, de
Silva et al. [23] found that the obliqueness of spanwise velocity extend into the log region if
conditioned both on the sign of the streamwise and spanwise velocities, based on wall-parallel large
field of view particle image velocimetry (PIV) experiments in turbulent boundary layers. Motivated
by these new insights gained in the spanwise and wall-normal components, here we aim to extend
the work of Yang et al. [6] to include these velocity components.

The rest of the paper is organized as follows. In Sec. II, we detail the model formalism for the
spanwise and the wall-normal velocity fluctuations. The model is tested in Sec. III, and conclusions
are given in Sec. IV. We use the cross-wire measurements of boundary layer flow at Reτ ≈ 10 000
for testing the model. Details of the dataset can be found in Refs. [24,25].

II. A HRAP MODEL FOR THE SPANWISE AND WALL-NORMAL VELOCITY FLUCTUATIONS

Following Ref. [18], the spanwise velocity fluctuation at a wall-normal height z is modeled as

v =
Nz∑
i=1

bi, (4)

where bi are i.i.d. addends [but possibly with a different distribution than the ai’s in Eq. (1)]. For
now, we make the simplification that bi and ai are independently distributed. Because of the wall
blocking effect, the wall-normal fluctuation is dictated by the closest neighboring attached eddy

w = −CwaNz
, (5)

where aNz
is the last additive in Eq. (1), and Cw is a positive constant. A formal discussion of the

locality of the wall-normal velocity fluctuation may be found in, e.g., Refs. [3,7]. Here, we only
briefly recap the basic ideas in Refs. [3,7]. Consider, for example, two wall-attached eddies that
are very different in their sizes. Figure 2 shows a sketch of such two wall-attached eddies. Let hB

and hA be the heights of eddy-B and eddy-A, and let hA 	 hB . The sum of the induced velocities
in the wall-normal direction by eddy-A and its mirror at height h (denoted by a dot in Fig. 2) is
approximately 0 because h/(hA − h) ≈ h/(hA + h) ≈ 1. (Note that in Ref. [7] prescription of a no-
penetration, slip surface with w(0) = 0 is equivalent to a mirrored eddy.) However, the sum of the
induced velocities by eddy-B and its mirror at the h is finite, because h/(hB − h) �= hB/(hB + h).
Hence, the local eddy determines the wall-normal velocity fluctuation. In addition to above
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FIG. 2. A sketch of two wall-attached eddies eddy-A and eddy-B (solid lines), along with their mirror
eddies, eddy A′ and eddy B ′ (dashed lines). The induced velocity of a wall-attached eddy in a generic location
in the flow is a sum of the induced velocity of this eddy and its mirror. The induced velocities at the dotted
location at height h are indicated using arrows with the line types and colors in accordance with these of the
sketched eddies.

arguments, Eqs. (1) and (5) lead to

〈uw〉 ∼ −
Nz∑
i=1

〈
aiaNz

〉 = −〈
aNz

aNz

〉 = −Const, (6)

i.e., the expected constant momentum flux in the logarithmic range.
The goal of this work is to provide empirical support for Eqs. (4) and (5). However, because

neither of the equations can be directly verified, we will use Eqs. (4) and (5) to make scaling
estimates of various statistics and compare these scalings to the experimental data. From a statistical
perspective, central moments are useful tools for describing a stochastic quantity. High-order
moments emphasize large fluctuations, and the general behaviors are characterized by low-order
moments. However, central moments do not distinguish between positive and negative fluctuations,
and a complete statistical characterization of the turbulent velocities is provided by the moment
generating functions (MGFs), i.e., 〈exp(qv)〉 and 〈exp(q1v(x) + q2v(x + r ))〉 if two-point flow
statistics are of interest. The MGFs, by definition, can be used to compute central moments to
arbitrary order

〈vm〉 = ∂m〈exp(qv)〉
∂qm

∣∣∣∣
q=0

,

〈vm(x + r )vn(x)〉 = ∂m

∂qm
1

∂n

∂qn
2

〈exp[q1v(x) + q2v(x + r )]〉
∣∣∣∣
q1=0,q2=0

,

where m, n are integers. The parameters q, q1, and q2 may be used to as dials to emphasize
different parts of the velocity probability density function (p.d.f.), e.g., a positive q emphasizes
large positive v fluctuations and a negative q emphasizes negative v fluctuations. For example,
a sketch of the premultiplied p.d.f. exp(qg) · P (g) is shown in Fig. 3, where g is Gaussian and
P (g) ∼ exp(−g2). Different parts of the g-p.d.f. are emphasized when choosing different q’s, and a
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FIG. 3. Premultiplied p.d.f. of exp(qg) · P (g) for g being a zero-mean unit-variance Gaussian variable. The
premultiplied p.d.f.’s are normalized for better visualization. 〈exp(qg)〉 equals the area under the corresponding
premultiplied p.d.f.

large |q| emphasizes the tail of the p.d.f. It is also worth noting that the MGFs as defined correspond
to a highly simplified and real-valued subset of the more general object described by the Hopf
equation [26], which is an equation of the generalized MGF, 〈exp(i

∫
θ (x)u(x)dx3)〉. The Hopf

equation describes the full N -point joint p.d.f. of velocity fluctuations, where N is the total number
of different spatial points needed for a complete description of the flow. The interest in the Hopf
equation comes from the fact that it is linear, and therefore self-contained, requiring no closure
[27]. Considering the usefulness of MGFs, our discussion will focus on the scalings of MGFs. We
will make scaling estimates of velocity MGFs, and test the model’s predicted scalings against the
available experimental data.

Following the same arguments that lead to the power-law scaling of the streamwise MGFs
[17,28], i.e.,

〈exp(quu)〉 ∼ (δ/z)τu(qu ), τu(qu) ∼ log[〈exp(qua)〉], (7)

Eq. (4) leads to

〈exp(qv)〉 = 〈exp(qb)〉Nz ∼ (δ/z)τv (q ), (8)

where the power-law exponent is

τv (q ) ∼ log[〈exp(qb)〉], (9)

and b is a random addend that is statistically similar to the bi’s in Eq. (4). If the random addends bi

are Gaussian 〈exp(qb)〉 ∼ exp(q2) [29], Eq. (9) leads to

τv (q ) = Cq2, (10)

where C is a constant. Equations (8) and (10) may be used to compute the central moments of v,

〈v2p〉1/p =
[

∂2p〈exp(qv)〉
∂q2p

∣∣∣∣
q=0

]1/p

∼ [(2p − 1)!!]1/pA1,v log

(
δ

z

)
, (11)

leading to a logarithmic scaling of the even-order moment 〈v2p〉1/p, where

A1,v = d2

dq2
[Cq2]

∣∣∣∣
q=0

= 2C. (12)
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It is worth noting that the logarithmic scaling of 〈v2〉 [i.e., taking p = 1 in Eq. (11)] was previously
reported in, e.g., Refs. [30–32].

Gaussianality is but a crude approximation of real turbulence, and therefore the resulting Eq. (10)
is also a crude approximation of the power-law exponent τv (q ). If we do not invoke the Gaussian
assumption, per the definition of τv (q ), we know that τv (0) = 0 because 〈exp(0 · v)〉 = 1, and that
d2k+1τv/dq2k+1|q=0 = 0, because 〈v2k+1〉 = 0. Here k = 0, 1, 2, etc., is an integer. Using only the
above two pieces of information, the central moments are

〈v2〉 = A1,v log(δ/z)

〈v4〉 = 3A2
1,v[log(δ/z)]2 + τ (4)

v (0) log(δ/z) (13)

〈v6〉 = 15A3
1,v[log(δ/z)]3 + 15τ (2)

v (0)τ (4)
v (0)[log(δ/z)]2 + τ (6)

v (0) log(δ/z),

where τ (k)
v (0) is the kth derivative of τv (q ) evaluated at q = 0, and A1,v = τ (2)

v (0). At sufficiently
high Reynolds numbers and for z 
 δ, the first term dominates and Eq. (13) degenerates to Eq. (11).
Hence, as far as the central moments are concerned, invoking the Gaussianality or not leads to the
same scaling predictions.

Evaluating two-point MGFs is slightly more involved than single-point MGFs. However, if we
follow the steps in Ref. [17], for relevant two-point displacement r in the streamwise direction
(i.e., h = r tan(θ ) being in the logarithmic range, where θ is the inclination angle of a typical wall-
attached eddy), the two-point MGF is

Wv (q1, q2; z, r ) ≡ 〈exp(q1v(x) + q2v(x + r ))〉 ∼ (z/δ)−τv (q1 )−τv (q2 )(r/δ)�v (q1,q2 ), (14)

where

�v (q1, q2) = min[τv (q1) + τv (q2) − τv (q1 + q2), 1]. (15)

It follows from Eq. (14) that

Wv (q,−q; z, r ) ∼ (r/δ)min[τv (q )+τv (−q ),1], (16)

i.e., a scaling transition at τv (q ) + τv (−q ) = 1. Equations (10), (14), and (15) may be used to
compute any two-point central moments. For example,

〈v(x + r )v(x)〉 = ∂

∂q1

∂

∂q2
W (q1, q2; z, r )

∣∣∣∣
q1=0,q2=0

= ∂

∂q1

∂

∂q2
(r/δ)−2Cq1q2

∣∣∣∣
q1=0,q2=0

= A1,v log(δ/r ). (17)

The scaling transition is not relevant for deriving the central moments because q1, q2 are evaluated
at q1 = 0, q2 = 0, and at q1 = 0, q2 = 0, we have �v (q1, q2) < 1. It then follows that

〈(v(x) − v(x + r ))2〉 = 2〈v2〉 − 2〈v(x)v(x + r )〉 = 2A1,v log(δ/z) − 2A1,v log(δ/r ) ∼ log(r/z).

(18)

Generally, the two-point MGFs can be used to compute 〈vm(x + r )vn(x)〉 for arbitrary m and n.
With 〈vm(x + r )vn(x)〉 known, the even-order structure functions are known according to

〈[v(x + r ) − v(x)]2p〉1/p =
[

2p∑
n=1

Cn
2p〈vn(x + r )v2p−n(x)〉

]1/p

, (19)

and one may verify that

〈[v(x + r ) − v(x)]2p〉1/p ∼ log(r/z), (20)
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where Cn
2p = 2p!/[(2p − n)!n!], and second that

S1,v = 〈v(x)v(x + r )〉 ∼ log (δ/r ), (21a)

S2,v = [
3
2 〈v2(x)v2(x + r )〉 − 1

2 〈v4(x)〉]1/2 ∼ log (δ/r ), (21b)

S3,v = [
5
2 〈v3(x)v3(x + r )〉 − 3

4 (〈v(x)v5(x + r )〉 + 〈v5(x)v(x + r )〉)
]1/3 ∼ log(δ/r ). (21c)

The same scalings in Eqs. (20) and (21) were reported for the streamwise velocity counterpart in
Ref. [6], although a slightly different approach was taken in Ref. [6] for deriving these scalings.

In addition to the spanwise velocity MGFs, Eqs. (1), (4), and (5) give rises to power-law scalings
of mixed MGF:

〈exp(quu + qww)〉 =
〈

exp

(
qu

Nz∑
i=1

ai + qw

(−aNz

))〉
=

〈
exp

(
qu

Nz−1∑
i=1

ai + (qu − qw )aNz

)〉

=
〈

exp

(
qu

Nz−1∑
i=1

ai

)〉〈
exp

(
(qu − qw )aNz

)〉
= 〈exp(qua)〉Nz−1 · 〈exp((qu − qw )a)〉. (22)

Next we will need to relate Nz − 1 to a wall normal distance, where 1 is an infinitesimal increment.
For simplicity, the random additive model uses a discretized representation of the wall normal
coordinate, which works well in most circumstances. However, in reality the hierarchies have a
continuous distribution and hence Nz − 1 in discrete representation can be replaced by an analogous
term log(δ/(z + dz)), where dz is an infinitestial increment. It then follows from the above equation
that

〈exp(quu + qww)〉 ∼ Ce[(z + dz)/δ]−τu(qu )〈exp(qua − qwa)〉
∼ Ce(z/δ)−τu(qu )(1 + dz/z)−τu(qu )〈exp(qua − qwa)〉
∼ Ce(z/δ)−τu(qu )[1 − τu(qu)dz/z]〈exp(qua − qwa)〉
∼ Ce(z/δ)−τu(qu )〈exp(qua − qwa)〉, (23)

where Cd , Ce are O(1) constants, τu(q ) is the power-law scaling exponent of 〈exp(qu)〉. The
statistical object 〈exp(quu + qww)〉 provides a new perspective for conducting quadrant analysis.
We can emphasize different combinations of u and w by choosing different values for qu and qw,
e.g., a positive qu and a negative qw emphasize events when u and w are positive and negative,
respectively. The measured mixed MGFs may be compared to the model, i.e., Eq. (22), which func-
tion is determined using only measurements of the streamwise velocity. Measuring the combined
p.d.f. of u and w, i.e., conducting conventional quadrant analysis, however, needs simultaneous
measurements of both u and w. Last, in addition to 〈exp(quu + qww)〉, the other quantity of
interest include W (qu, qw; z) = 〈exp(quu + qww)〉/〈exp(quu)〉. Because the wall-normal velocity
fluctuation is determined by the local attached eddy, and is statistically correlated to only the last
addend in u, we may expect that 〈exp(quu + qww)〉 ≈ 〈exp(quu)〉. It follows from Eqs. (7) and (22)
that

W (qu, qw; z) = 〈exp(quu + qww)〉/〈exp(quu)〉 ∼ (z/δ)−τu(qu )〈exp(qua − qwa)〉
(z/δ)−τu(qu )

= 〈exp(qua − qwa)〉 = exp(Cu(qu − qw )2), (24)

is independent of the wall-normal distance, where we assume the addend a is Gaussian.
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FIG. 4. Color contours are the combined p.d.f. of u and v at a wall-normal height in the logarithmic range,
z+ = 600, z/δ = 0.06 in a Reτ ≈ 10, 000 boundary layer [24,25]. Cross-wire data are used here. Line contours
are the product of the p.d.f. of u and the p.d.f. of v. The contour levels are evenly spaced, and the exact values
of the contour levels are not relevant here.

Before we compare the model predictions to data, we make a connection to the random
multiplicative process, which has been used to model the energy cascade process in isotropic
turbulence (see, e.g., Ref. [33], and the references cited therein). The energy cascade process is
a hierarchical process, where turbulent kinetic energy transports from large scales to small scales
and lesser scales, until it is dissipated at viscous scales. The random multiplicative models of above
process is as follows:

εl =
Nl∏
i=1

mi, (25)

where εl is the instantaneous coarse-grained dissipation rate at the scale l, mi’s are identically,
independently distributed random multiplicative, and may be interpreted as the energy transfer rate
from a large-scale mother eddy to its next small-scale daughter eddy, the number of multiplicatives
depends on the number of cascade steps from the integral scale L to the scale l, and is Nl ∼
log(L/l). If one takes logarithm of Eq. (25), the multiplicative process becomes an additive process,
thus presenting to us an exact analogy between the energy cascade in isotropic turbulence and the
momentum transport process in wall-bounded flows [1], which is probably already clear from Fig. 1.
If the model predictions in this section can be found in data, it would be highly suggestive that a
hierarchical structure that exists in the energy cascade process may also exist in the momentum
transport process in wall-bounded turbulence.

III. RESULTS

The purpose of this work is to provide empirical support to Eqs. (4) and (5), and the model
is validated if the predicted scalings are found in the data. We use cross-wire measurements of
boundary layer flows at Reτ ≈ 10 000, and compare the data to the predicted scalings in the
previous section. We will also provide supporting evidence to a few modeling assumptions, e.g., the
assumption of addends bi’s in Eq. (4) and the addends ai’s in Eq. (1) being statistically independent.

A. Statistical independency of the addends contributing to u and v

Figure 4 shows the combined p.d.f. of the streamwise velocity fluctuation u and the spanwise
velocity fluctuation v, P (u, v), at a wall-normal height nominally in the logarithmic region (z+ ≈
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FIG. 5. (a) 〈v2p〉1/p as functions of the wall-normal distance for p = 1, 2, 3, 4. (b) The measured slope
Ap,v/A1,v as a function of the moment order p. The solid line corresponds to [(2p − 1)!!]1/p .

600; z/δ ≈ 0.06). The combined p.d.f. is compared to P (u) · P (v) (shown as line contours), where
P (·) is the p.d.f. of the bracketed quantity. Figure 4 shows that P (u, v) ≈ P (u) · P (v) to a good
approximation. Hence, by definition, u and v are statistically independent. The results are the same
at other wall-normal distances in the logarithmic range and are not shown here for brevity.

A direct result of the above empirical observation is that the wall-normal velocity fluctuation
w, being modeled as proportional to the last addend in u, is also statistically independent of
the spanwise velocity component. This leads to trivial scaling predictions including 〈vw〉 = 0,
〈[v(x) − v(x + r )][w(x) − w(x + r )]〉 = 0, etc., which are not discussed in the previous section
for brevity.

B. Single-point even-order central moments

Figure 5(a) shows 〈v2p〉1/p as functions of the wall-normal distance for p = 1, 2, 3, 4 on a
semilog scale. A logarithmic scaling is found between z+ ≈ 100 and z/δ ≈ 0.3. Limited by the
statistical convergence, we show only data for p < 5. The logarithmic range of 〈v2〉 spans more
scales than the streamwise counterpart, which is only between z+ ≈ 3

√
Reτ and z/δ ≈ 0.15 [2,34].

The measured slope A1,v ≈ 0.3 is about 25% smaller than the measurement of 0.4 in a periodic
channel at Reτ ≈ 5000 [32]. This difference in the log-law slopes is notable. Unravelling the
physical mechanism behind this difference, however, falls out of the scope of this work and therefore
is left for future investigation. Figure 5(b) shows the measured slopes Av,p as a function of p.
Ap − Ap−1 increases as a function of p, and therefore the measurements are super-Gaussian, i.e.,
Av,p/Av,1 > [(2p − 1)!!]1/p. This is in direct contrast with the streamwise velocity, where previous
works have shown that the streamwise velocity statistics are sub-Gaussian [13]. As far as the purpose
of this work is concerned, the scalings in Eq. (11) are found, and the data support the HRAP model.

C. Single-point MGFs

Figure 6(a) shows the measured single-point MGFs for a few q values as functions of the wall-
normal distance. A power-law scaling is found within the wall-normal distance range 100 � z+,
z/δ � 0.3, i.e., within the same wall-normal distance range where 〈v2

z 〉 follows a logarithmic
scaling. It is worth noting that 〈exp(qv)〉 �= 〈exp(−qv)〉 in the near-wall region, leading to a
breakdown of the spanwise symmetry. The breakdown in symmetry is thought to arise due to a finite
wire separation between the two hot wires in the cross-wire probe. Effects becomes more prominent
close to the wall (see the Appendix), leading to a noticeable breakdown in the v symmetry as the
probe approaches the wall. In Fig. 6(b), the measured power-law exponent τv (q ) is compared to
Eq. (10). Furthermore, τv (q ) � Cq2, which is consistent with a super-Gaussian scaling exponent
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FIG. 6. (a) 〈exp(qv)〉 as functions of z for q = ±0.33, ±0.67, ±1.00, ±1.33. Filled symbols are for
positive q’s and hollow symbols are used for negative q’s. The extent of the power-law scaling is 100 � z+,
z/δ � 0.3, and this range is enclosed within two solid lines. (b) Scaling exponents τv (q ) (symbols). A
quadratic fit around q = 0 leads τv (q ) = 0.15q2 (the red solid line). A fourth order polynomial, i.e., τv (q ) =
0.055q4 + 0.15q2 (the yellow solid line), seems to be a good working approximation of the data away from
the origin. However, as shown in Eq. (13), only the second order term enters the logarithmic scalings of even
order moments.

τv (q ). The constant C ≈ 0.15 [Eq. (10)], leads to A1,v ≈ 0.3 [Eq. (12)], i.e., the same as the
measurement in Sec. III B.

Limited by the data convergence, we have shown data for only −1.33 � q � 1.33. A larger |q|
emphasizes rarer events and therefore is more difficult for statistical convergence. The statistical
convergence of a quantity f (v) may be examined using the premultiplied p.d.f., i.e., f (v) · P (v).
Figure 7 shows the premultiplied p.d.f. P (v) · exp(qv) for q = 1 and q = 2 at a specific wall-normal
height z+ ≈ 600. The measured 〈exp(qv)〉 is the area under the premultiplied p.d.f.. For q = 1, the
premultiplied p.d.f. drops to ≈ 0 at both ends, and therefore 〈exp(v)〉 is statistically converged. For
q = 2, however, because rare events that contribute to 〈exp(2v)〉 do not have a sufficiently large
sample, the premultiplied p.d.f. does not drop to 0 at the positive end of v, and therefore 〈exp(2v)〉
is not statistically converged. For brevity, this exercise is only done one time for this one quantity.
For all other statistics shown in this work, it is implied that the data are statistically converged.

It follows from Eqs. (14) and (15) that the scaling transition is at τv (q ) ≈ 0.5 and q ≈ 1.8.
For this dataset, the data are only statistically converged for |q| < 1.5, and therefore the scaling

FIG. 7. Premultiplied p.d.f. P (v) · exp(qv) at z+ ≈ 600 for q = 1, 2.
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FIG. 8. (a) Linear-log plot of Sp,v as functions of r/δ at z+ ≈ 400 (bold lines), z+ ≈ 800 (thin lines). The
extent of the log-law scaling is empirically observed within 0.01 � r/δ � 0.1, which is marked with the two
vertical lines. Panel (b) is the same as (a) but for the streamwise structure functions. The vertical lines enclose
the region 0.1 < r/z < 1.

transition cannot be tested. For brevity, we state without showing evidence that the two-point MGFs
follow the expected power-law scalings for |q| < 1.5.

D. Spanwise structure functions and generalized two-point correlations

Figure 8(a) shows Sp,v [defined in Eqs. (21)] at z+ ≈ 400, 800 as functions of the two-point
displacement r/δ for 0.001 < r/δ < 1. Limited by the data convergence, we only evaluate Sp,v

for p � 3. Logarithmic scalings are found within 0.01 < r/δ < 0.1 for Sp,v for p = 1, 2, 3. The
spanwise structure functions are shown as functions of the two-point displacement in Fig. 8(b), and
logarithmic scalings are found within 0.1 � r/z � 1. In conclusion, the scalings in Eqs. (20) and
(21) are found, and the data support the HRAP model.

E. Mixed MGFs

We investigate the functional behavior of mixed single-point MGFs. First, a few specific scalings
in Eqs. (22) and (24) are compared to the data. Figure 9(a) shows 〈exp(qu − qw)〉 as functions
of the wall-normal distance. Power-law scalings are found within the wall-normal distance range

FIG. 9. (a) Log-log plot of 〈exp(qu − qw)〉 as functions of z. Symbols are the same as in Fig. 6. The
vertical solid lines are at z+ = 100, 600, 2000. The bold solid lines indicates the power-law scalings for
q = ±1.33. (b) Same as (a) but for 〈exp(qu − qw)〉/〈exp(qu)〉.
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FIG. 10. Same as Fig. 9 but for qu = qw = q.

600 � z+, z/δ � 0.2 for q < 0 and 100 � z+, z/δ < 0.2 for q > 0. The power-law region is more
confined for negative q-valued MGFs than positive q-valued MGFs. The same observation was
made in Ref. [17], where the power-law scaling of 〈exp(qu)〉 extends more scales for q > 0 than
for q < 0. The HRAP model is a model for flow in the logarithmic range, where fluid motions are
dominated by inertia. For a boundary layer at Reτ ≈ 10, 000, the logarithmic range is between z+ ≈
400 and z/δ ≈ 0.2. The predicted scaling are found in this region for both positive and negative q

values. The fact that the model seems to work still for positive q beyond the logarithmic range may
suggest that positive streamwise velocity fluctuations are inertial dominated even below z+ ≈ 400.
This is possible because positive fluctuations are likely the results of sweep motions, which comes
from the upper part of the boundary layer. Figure 9(b) shows W (q,−q; z) [defined in Eq. (24)]
as functions of the wall normal distance. A plateau is found within the wall-normal distance
ranges where 〈exp(qu − qw)〉 follows a power-law scaling. Figure 10(a) shows 〈exp(qu + qw)〉
as functions of the wall-normal distance and Fig. 10(b) shows W (q, q; z). Power-law scalings are
again found. Different from W (q,−q; z), which is a function of q, W (q, q; z) is a q-independent
constant to a good approximation. As far as this work is concerned, the data are in favor of the HRAP
model. A detailed comparison between the measured W (q,±q; z) and the Gaussian approximation
are shown in Fig. 11. According to Eq. (24),

W (q,−q; z) = exp(4Cuq
2), W (q, q; z) = 1. (26)

FIG. 11. Measured W (q, ±q; z) (symbols, denoted as exp) against the model predictions (solid lines,
denoted as RAP).
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FIG. 12. (a) Measured log10(〈exp(quu + qww)〉) at a fixed wall normal distance z+ = 1000 for qu, qw

ranging from −1.5 to 1.5. (b) Results from Eq. (22). The prefactor is Ce = 0.98. (c) log10(〈exp(quu + qww)〉)
at qu = 0.

The constant Cu = 0.63 is measured in a previous study [17], and is half of the Townsend-Perry
constant A1. The measurements of W (q,±q; z) in the logarithmic region is

W (q,±q; z) =
∫

W (q,±q; z)d log(z)∫
d log(z)

, (27)

where the integration is 100 < z+, z/δ < 0.2 for q < 0 and 600 < z+, z/δ < 0.2 for q > 0. The
integration is based on d log(z) instead of z to give equal weights to attached eddies of different
scales. For W (q,−q; z), the data are sub-Gaussian. For W (q, q; z), the data deviate slightly from
unit at large |q|.

Last, we study the functional behavior of MGF 〈exp(quu + qww)〉. We measure
〈exp(quu + qww)〉 at z+ ≈ 1000 (a height corresponds to z/δ = 0.1) for qu, qw ranging from −1.5
to 1.5. The measurements are shown in Fig. 12(a). Figure 12(b) corresponds to Eq. (23). A constant
Ce is used such that the difference between log10(Ce(z/δ)−Cuq

2
u eCu(qu−qw )2

) and the measured
log10(〈exp(quu + qww)〉) is minimum in an L2 sense. Furthermore, it is worth noting that we
encountered difficulties when trying to directly evaluate log10(Ce(z/δ)−Cuq

2
u eCu(qu−qw )2

), presumably
due to insufficient numerical precision. Instead, here we evaluate −Cuq

2
u log10(Ce(z/δ)) + Cu(qu −

qw )2 log10(e), which is analytically equivalent. According to Fig. 12(a), events in the first and third
quadrants dominate [35]. Comparing Figs. 12(a) and 12(b), Gaussianity leads to stronger stretching
in the direction of w. Figure 12(c) shows the measured and the modeled 〈exp(qw)〉 [i.e., slices
along u = 0 of Figs. 12(a) and 12(b)] at z+ = 1000, where it is evident that the Gaussian model
under-predicts the empirical results. The fact that the Gaussianity leads to stronger stretching than
the measurements in Fig. 12, suggests that the wall-normal velocity is super-Gaussian. A similar
observation was made in Ref. [36], where super-Gaussianity was also found in the wall-normal
component. Except for the stretching in the qw axis, the model otherwise agrees well with the data.
The results at other wall-normal planes are very similar and are not shown here for brevity.

IV. CONCLUSIONS

The HRAP model is extended to account for the spanwise and the wall normal velocity
fluctuations in the logarithmic region. Following the HRAP model to its logic conclusions, we
have provided scaling predictions for a few different flow statistics that involve v, and such
statistics include the single-point, two-point moment generating functions, streamwise structure
function, generalized two-point correlations, and mixed single-point MGFs. Empirical evidence
for these scalings is shown, and the data generally support the HRAP model. Measurements show
that 〈exp(qv)〉 ∼ (δ/z)0.055q4+0.15q2

, exp(qw) ∼ exp(0.63q2) (cf. Figs. 6 and 12). The proportional
constants are left undetermined as they depends on the flow and are not universal. The constant
Cu = 0.63 corresponds to half of the Townsend-Perry constant A1/2. The constant 0.15 is half of
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spanwise counterpart of the Townsend-Perry constant, i.e., the slope of the logarithmic scaling of
〈v2〉. The streamwise moment generating function was already measured in Ref. [17]. The above
formulations can be used to determine the scaling of the central moments and the slope of the
resulting logarithmic scalings. The intercepts of these logarithmic scalings, however, depends on
the proportional constants in the above formulations and are not universal. In this work, we have
examined moments up to the sixth order. Converged statistics of higher order moments will require
more data and will be examined in future works. As the HRAP model can already account for
the streamwise velocity fluctuation [6], by accounting for both the spanwise and the wall-normal
velocity fluctuations, the model provides a complete description of velocity fluctuations in all three
Cartesian directions in the logarithmic region. It is worth noting that we have put our emphasis on
identifying and verifying the forms of the predicted scalings, not the constants in them, which is by
itself an interesting topic that worth investigating in the future.

Although HRAP itself does predict the exact values of the constants in the various scalings, it is
worth noting that the model as is can already be used for predictive modeling. For example, in LES
wall modeling, if one needs information about u2 in the first cell, where the eddies are not resolved,
one could adopt the logarithmic scaling u2 ∼ log(z), and use a dynamic procedure to determine the
coefficients from the resolved motions.

The obtained new physical insights may also be incorporated into wall-modeled turbulence
simulations. For this, it is necessary to make use of numerical methods that easily encapsulate the
high-order moment information of near-wall flow fields. The recently popularized discontinuous
Galerkin method [37–39] based on variational formulation could be a good candidate.
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APPENDIX: EFFECTS OF VERTICAL DISPLACEMENT OF HOT WIRES
IN A CROSS-WIRE PROBE

Because of the symmetry in the spanwise direction, one expects 〈exp(qv)〉 = 〈exp(−qv)〉. This
expectation bears out for z+ � 200, but for z+ � 200, negative-q-valued MGFs are consistently
higher than positive-q-valued MGFs (see Fig. 6). This asymmetry is highlighted in the p.d.f. of the
spanwise velocity fluctuation (shown in Fig. 13), where the p.d.f. of v is shown as functions of
both v+ and −v+. The asymmetry is likely due to the finite displacement of the two hot wires (in

FIG. 13. The p.d.f. of the spanwise velocity v at z+ = 42. The p.d.f.’s are shown as functions of both v+

and −v+ to emphasize the asymmetry in the measurements.
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FIG. 14. A sketch of the setup of a cross wire that measures both the streamwise and the spanwise
velocities. The cross wire is placed at a wall normal distance z. The two wires are displaced by a small distance
�z (to prevent a short circuit). (a) Side view. (b) Top view.

a cross wire) in the wall-normal direction (see Fig. 14 for a sketch of the wire setup). Because of
this setup, measurements of the spanwise velocity in the positive-y direction and in the negative-y
directions are not at the same wall-normal height, leading to the observed asymmetry in Fig. 13. As
sketched in Fig. 14, the top wire is more sensitive to v fluctuations in the positive-y direction and
the bottom wire to v fluctuations in the negative-y direction. While the effect of the displacement
�z is negligible for z 	 �z, this displacement becomes significant for measurements in the near
wall region.

To quantify the effect of the above mentioned misplacement on 〈exp(|q|v)〉, 〈exp(−|q|v)〉, we
use the following quantity

ρa = 〈exp(qv)|v > 0〉
〈exp(−qv)|v < 0〉 .

Without loss of generality, we take q > 0. Because 〈exp(qv)〉 ∼ (z/δ)−τv (q ), ρa is approximately

ρa =
(

z − �z/2

z + �z/2

)−τv (q )

. (A1)

The displacement �z is constant for a given cross wire. For a fixed q, ρa is 1 for large z values; for
a fixed z, ρa deviates from unit as q increases, leading to the observed asymmetry in Fig. 6. The
distance between the two wires is 2 mm. We compare Eq. (A1) to data in Fig. 15. The comparison

FIG. 15. A comparison of the measured 〈exp(qv)〉/〈exp(−qv)〉 to Eq. (A1).
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is only meaningful in the wall-normal distance range where a power law scaling of 〈exp(qv)〉 is
expected. The data is not inconsistent with our interpretation.

It is worth noting that this asymmetry is not because of the finite span of the hot wire. Finite span
of a hot wire leads to spatially filtering of the velocity signal [40,41], and can be highlighted using
conventional central moments.
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