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We study how the dynamics of a drying front propagating through a porous medium
are affected by small-scale correlations in material properties. For this, we first present
drying experiments in microfluidic micromodels of porous media. Here, the fluid pressures
develop more intermittent dynamics as local correlations are added to the structure of
the pore spaces. We also consider this problem numerically, using a model of invasion
percolation with trapping, and find that there is a crossover in invasion behavior associated
with the length scale of the disorder in the system. The critical exponents that describe large
enough events are similar to the classic invasion percolation problem, while the addition of
a finite correlation length significantly affects the exponent values of avalanches and bursts,
up to some characteristic size. We find that even a weak local structure can interfere with
the universality of invasion percolation phenomena. This has implications for a variety of
multiphase flow problems, such as drying, drainage, and fluid invasion.
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I. INTRODUCTION

The flows of many fluids into porous media have been found to evolve complex shapes with
extensive interfaces, which are well described by the fractal morphology of invasion percolation
models [1–5]. Nonetheless, these flows will also often reflect any microstructure of the materials
in which they move, for example traveling along preferential paths like fractures. In fluid-fluid
invasion [6–8], and the drying of porous media [9,10], it has been demonstrated that local
correlations in the pore-scale properties of a granular medium can dramatically modify any fluid
flows within it. For immiscible flows, as occur when oil displaces water, increasing the correlation
length (the distance over which pores are approximately the same size) of pore-scale disorder
has been shown to decrease the residual saturation of the wetting phase at breakthrough [6,7],
leading to a more gradually varying capillary pressure-saturation relation [11,12], and improving
the connectivity, and hence permeability, of both phases [12]. Changes in fluid retention have also
been observed upon varying the correlation length of particle wettability in a bead pack [8]. These
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FIG. 1. Invasion into correlated porous media. (a) A flat pore space is designed and fabricated in a
microfluidic chip by soft lithography techniques. The drying cell consists of an array of pillars, which surround
pores. The pores are initially filled through channels along one edge of the cell and then dry through the
opposite edge, which is open to the atmosphere. (b) Correlations between pillar sizes, and hence pore sizes, are
randomly introduced with different correlation lengths ζ . (c) The drying pattern (shown here at breakthrough,
when the invading phase connects to the back of the chip) and sequence of invaded pores reflect the underlying
structure of pillar sizes.

types of flows have a wide range of practical applications, for example involving the production
of groundwater and hydrocarbons, monitoring or assessing the contamination of soils and water
sources and their remediation, the safe storage of hazardous wastes, and carbon sequestration
[13,14].

The physics of multiphase flows often leads naturally to the idea of intermittent dynamics.
Such dynamics are characterized by short bursts of activity that are separated by much longer
quiescent (i.e., event-free) intervals and appear in diverse physical, biological, and even social
systems [15–18]. For fluids, the classic examples include Haines jumps [19,20], or instabilities
triggered by the burst, touch, or overlap of nearby menisci [21,22]. However, more diverse examples
of the same universal phenomenon range from earthquakes [23] to granular avalanches [24], fracture
propagation [25], turbulent energy transfer [26], variations in stock markets [27], blackouts in power
grids [28], and evolution [29]. Much of the complex behavior of these systems can be captured by
surprisingly simple models. Specifically, the statistics of intermittent dynamics are routinely found
to be equivalent to invasion percolation [1], a model of a network of fragile bonds which fail as a
system is stressed. In this model a failure front, corresponding to the leading edge of a fluid invasion,
reaction, or drying front, drives its way through the network, and the activity of this front is found
to obey well-defined and universal scaling laws [2,30].

Here we consider how local correlations in the strength of a system can modify the universal
response of invasion percolation, and explore this response within a paradigm experimental system,
namely, a drying porous medium. During drying, evaporation of a defending fluid increases the
curvature of any menisci caught in the pore spaces, resulting in the capillary invasion of air, once a
local pressure threshold is exceeded. We study, both experimentally and numerically, the invasion
patterns and statistics of a drying front moving through such a disordered porous medium, where
the sizes of nearby pores are correlated with each other. The experimental realization is a quasi-two-
dimensional microfluidic chip, where fluids can move around an array of rigid pillars arranged on
a regular grid [10], as described in Fig. 1. The pillar radii are correlated over a given length scale ζ

[9,10]. The numerical simulation is that of invasion percolation on a grid, with its parameters taken
from the geometry of the experiments. In both cases, as shown in Fig. 2, the capillary pressure at
the drying front fluctuates, and spatial correlations change the statistics of these fluctuations, such
as the likelihoods of extreme pressures, or the distributions of sudden bursts of activity.
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FIG. 2. Local correlations in the sizes of pores and throats dramatically affect how the fluid pressure
fluctuates as a porous medium is dried, in both experiments and a complimentary invasion percolation model.
When there are no correlations (ζ = 0) the pressure sequence is similar to white noise, centered around the
average invasion pressure of the porous medium (P = 1). In contrast, when the correlation length ζ is 15 times
the typical pore size, the pressure sequence shows strong intermittency.

Our primary aim is to explore and explain the effects of such a correlation length, intermediate
between the pore or grid scale and the system size, on fluid invasion and invasion percolation
phenomena. Given that the intermittent dynamics of the drying front is a critical phenomenon, its
statistics can be characterized by a set of critical exponents [4,5,31,32]. We find that these exponents
are changed by the introduction of the correlation length scale. Connecting these features directly to
our micofluidic experiments, we further investigate these effects and determine the scaling relations
for drying or invading interfaces in corelated media.

II. METHODS

A. Microfluidic experiments

Experiments were conducted in microfluidic chips containing a mechanical micromodel of a
porous medium; detailed methods of their design and fabrication are given in Refs. [9,10]. Briefly,
we used soft lithography techniques to create a pattern of 100 × 100 solid pillars on a regular grid,
of spacing 130 μm, defining a pore space between them. The pillars had an average radius of
a = 50 μm and height h = 40 μm, and the pore space was designed in a Hele-Shaw geometry, as
in Fig. 1(a). To introduce disorder, the pillar sizes were randomized over the range of 40–60 μm.
For samples with no correlations, the size of each pillar was selected randomly from a uniform
distribution over this range. To make geometries with correlations in pillar sizes, such as patches of
larger or smaller pillars, we generated random Gaussian rough surfaces [9,33] with a characteristic
correlation length ζ . Pillar sizes were then assigned by sampling this surface at the grid positions
and mapping the resulting values onto the range of 40–60 μm. The manufacturing tolerance on these
pillar sizes is estimated at about ±3% [10]. The length ζ defines the distance, measured in grid
spacings, over which nearby pillars will have roughly similar sizes. Example designs are shown in
Fig. 1(b).

The system was then filled with a wetting volatile oil and allowed to dry from one edge of the
cell. The drying pattern was imaged by an overhead camera, and the time-lapse images were used to
find the time at which any given pore was invaded by air, as in Fig. 1(c). By identifying the widest

124307-3



BISWAS, FANTINEL, BORGMAN, HOLTZMAN, AND GOEHRING

FIG. 3. Model and statistics of the pressure-saturation fluctuations. (a) The invasion percolation model
tracks an interfacial line between wet (blue) and unsaturated (white) regions. At every time step i the interfacial
throat with the lowest absolute invasion pressure Pi is broken, and air invades the pore behind it. Two example
invasions are shown, highlighted in yellow and green. The difference �P measures the absolute value of the
change in the fluid pressure between the successive invasion of two pores. (b) Bursts are defined by record-
breaking values of the pressure (highlighted in red). Their size is measured by the number of subsequent events
required until the previous maximum pressure is exceeded. Forward and backward avalanches are defined, in
contrast, for every invasion step (as in Refs. [2,30]). Their sizes, Sf and Sb, give the number of invasion events
required before that moment’s invasion pressure is next exceeded, or was last seen, respectively.

exposed throat on each invaded pore, at the moment of its invasion, the sequence of pore invasions
was used to determine the sequence of invasion pressures, during drying. We consider the absolute
value of the pressure sequence, for simplicity, although the actual capillary pressure will be negative
(i.e. lower than atmospheric). These pressures were then normalized by the characteristic pressure
P̄ = 2γ (1/w + 1/h), where w = 30 μm is the average throat width, and γ is the surface tension. In
this study we focused on the relative pressure, P , of the main cluster, which is the set of filled pores
that remain connected to the rear of the chip. As shown in Fig. 2, the observed pressure fluctuations
of the main cluster show intermittent dynamics, which depend on the range of correlations in the
experiment.

B. Invasion percolation model

In order to simulate these dynamics we used a minimal model of the drying front, i.e., the fluid-air
interface of the main cluster. The pore throats each have a threshold pressure (again, taking the
absolute value, relative to atmospheric pressure), which must be exceeded in order to invade a
pore through that throat. As in the experiments, we considered a square lattice of pillars, using the
same algorithms for randomly selecting the pillar sizes, with correlation length ζ . The separations
between adjacent pillars give the throat apertures, and hence the invasion pressures. A simulation
begins with a saturated pore space and is invaded by air from one edge. The weakest throat exposed
to the invasion line, or drying front, is invaded and the position of the front is adjusted accordingly.
The weakest throat along the new front is then identified, the pore behind it invaded, and so on. An
example of this algorithm is shown in Fig. 3(a).

The sequence of the throat invasions provides a sequence of invasion pressures, which can then
be compared with experiments of similar, or identical, sample geometry. In this study, we consider
the effect of spatial correlations on the dynamics of this pressure signal, P . Our quasistatic model is
equivalent to the invasion percolation problem with trapping [1–3,34]. This means that the further
evolution of any isolated clusters, trapped behind the drying front, is not considered. Furthermore,
the dynamics are tracked only by the sequence of pore invasions, rather than any more physically
meaningful sense of time. In these ways it differs from a related pore-network model, which has
been developed to explore the impact of spatial correlations on drying rates [9]. The percolation
model that we consider here exactly reproduces the sequence of pore invasions along the drying
front of that pore-network model but highlights the universal aspects of the system response.
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C. Burst and avalanche statistics

We use a variety of statistics to characterize the fluctuations in the system pressure, Pi , over the
sequence i of pore invasions, as shown in Fig. 3(b). The power spectrum can be calculated directly
from the pressure series, for a relative frequency q normalized by the Nyquist or sampling rate, here
that of the pore invasion rate. Between the invasion of any two successive pores there is a change
in the invasion pressure of �Pi = |Pi − Pi+1|, and the intermittency of the pressure signal can be
characterized by the probability distribution of these steps, D(�P ).

We also measure the burst size distribution N (n), where n is the size of a burst, defined as the
number of events proceeding from one extreme value of the pressure, until this pressure is next
exceeded. In other words, ni is the number of pores invaded between sequential record-breaking
values of the fluid pressure. For a fluid invasion experiment with a controlled injection pressure,
invasion would be unstable between these points and would occur in a rapid “burst,” as in Refs. [4,5].
In contrast, for drying [3,20] or rate-controlled fluid drainage [34] the pore pressure relaxes during
pore invasion, and the intermediate pressures can be more readily observed.

The number of record-breaking events, or bursts, in any particular experiment is relatively small.
Therefore, to characterize the “roughness” of the pressure fluctuations we also measure the size
distributions of forward and backward avalanches, as defined in Refs. [2,16,30]. These note how
after each and every pore invasion the pressure signal may take some time to recover to its former
level, and provide a local definition for the size of an invasion avalanche. In other words, each point
in the pressure signal can be taken as the root, or starting point, of its own specific avalanche. The
size of a forward avalanche, Sf , is thus defined as the number of pore invasion events required until
the pressure at the root of that avalanche is next exceeded. Similarly, by reversing the time series, the
size of a backward avalanche, Sb, may be calculated for every pore invasion, measuring the number
of steps that have passed since that pressure at the root was last exceeded. For discrete data, these
definitions are not necessarily equivalent and can have different power-law distributions [30]. These
local definitions of avalanches allow for all the arbitrarily small peaks and valleys of the pressure
signal to contribute to a statistical distribution, rather than just the few extreme points representing
the pressure bursts.

In the following results we will show how these metrics, and their distributions, are affected by
correlated disorder in both experiments and simulations of invasion percolation.

III. RESULTS

The behaviors of fluids drying in correlated and uncorrelated random media are markedly
different, as was shown in Fig. 2. These differences can be seen more clearly, especially in light
of any experimental noise, in the power spectra of the pressure signals. As shown in Fig. 4, for
uncorrelated (ζ = 0) disorder, the low-frequency fluctuations in the pressure signal are comparable
to white noise, for both experiment and simulation. As correlations are added, they add power to
the low-frequency signal, increasing it until it approaches a 1/q noise spectrum. Our aim here is to
explain these differences, in light of the crossover length scale provided by the correlation length of
the disorder.

Correlations also affect the distribution of the pressure jumps between sequential invasion events,
as represented by the high-frequency response of the invasion pressure. In Fig. 5 the probability
distributions for the sizes of these jumps are plotted for both experiments and simulations. The plots
have similar trends, depending on the correlation length ζ . In particular, an increasing ζ implies that
larger jumps become less common. This can be understood by noticing that once a pore has been
invaded, it is likely to allow the drying front to explore an entire region made up of similarly sized
pores, with similar invasion pressures. The larger, rarer, pressure jumps will frequently represent
the front traveling between correlated regions, separated by areas with tighter pores. Crossing such
a high-pressure barrier triggers an extended avalanche, and then the pressure will start to build up
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FIG. 4. The power spectra of the pressure signals from (a) experiments and (b) simulations respond to local
correlations. For low frequencies, in particular representing fluctuations over tens or more invasion events, the
uncorrelated porous media show relatively flat power spectra, characteristic of white noise. The introduction
of correlations into the pore geometry adds significantly to the low-frequency power, which corresponds to
the jumps of the pressure shown in Fig. 2. For comparison, the dashed lines show a 1/q response, which is
classically associated with intermittency [15].

again as the front explores its new patch of available pores. Since the number of pores in a correlated
region scales with ζ 2, this sets a natural “timescale” for considering crossover behavior.

A common measurable of intermittent phenomena is the burst size distribution. As mentioned
in the previous section, the number of bursts in any given experimental run is rather limited, as the
number of record-breaking events typically grows logarithmically in time. Hence, we consider here
only the simulation results, averaged over 60 independent realizations. To improve the statistics
for this result we also simulate larger areas, of 700 × 700 pores, and correlation lengths of up to
ζ = 30. The results are presented in Fig. 6. Bursts in the uncorrelated (ζ = 0) porous medium
show a clear power-law behavior, with N ∼ n−τ . A least-squares fit to the logarithmically binned
data gives an exponent of τ = 1.41 ± 0.03. This agrees with recent experimental observations of
comparable burst size statistics in drainage [4], where the exponent is measured at 1.37 ± 0.08. It is
also close to, albeit slightly higher than, the burst size distribution predicted by percolation theory
in an infinite two-dimensional system [36], namely, 17/13 � 1.31, and corresponding simulations
[35]. However, as the correlation length ζ increases, the results shift away from this distribution,
especially for smaller bursts. By ζ = 30 a large range of data is seen to be converging to a new
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FIG. 5. Distributions of the pressure changes between subsequent pore invasions are shown for (a) drying
experiments and (b) simulations. As the correlation length ζ increases, there is a tendency to have fewer
extreme events, as more invasion events will occur within correlated regions of a similar pore size. This is
clearer in the simulation data, as uncertainties in exactly determining the experimental pressure signal introduce
high-frequency random noise.
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frequent, but smaller, burst events, such as those confined to a single correlated patch of pores.

power-law distribution, with the steeper exponent of 1.76 ± 0.05. For the intermediate correlation
lengths, the events of smaller sizes resemble the highly correlated regime, while the larger events
approach the response of the uncorrelated system. This crossover is rather intuitive, as the smaller
events preferentially sample nearby pores with similar sizes, while larger events will be limited by
pores outside the immediate correlated patch, which have more random fluctuations.

Avalanche size distributions, as defined in Fig. 3(b), offer a similar metric to bursts but allow
for more statistics to be gathered. They also show a crossover between two types of response. We
consider the size of backward avalanches in Fig. 7, again for simulations of 700 × 700 pores. For
uncorrelated porous media, as in Fig. 7(a), the probability distribution of the backward avalanche
sizes is a power law, Nb ∼ S

−θb

b , with a critical exponent fit to θb = 1.59 ± 0.03. As expected by the
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FIG. 7. Backward avalanches measure the number of events, going backwards in time, until the pressure
of any particular invasion was last exceeded (see Fig. 3). The simulated distributions (a) collapse onto a master
curve (b) when scaled by the area of a correlated patch of pores, ζ 2. The crossover between these two scaling
regimes, marked by a dashed line, occurs at around five times the correlation length, ζ . Essentially, while small
bursts are strongly affected by local correlations, events large enough to average over many such correlated
patches show a mean-field distribution.
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FIG. 8. Backward avalanches were measured in the experimental pressure signals. (a) There is no clear
effect of the correlation length on the avalanche statistics, despite its leading to intermittency in the original
signal (Fig. 2) and power spectra (Fig. 4). We find, however, that the measured avalanche size distribution is
strongly affected by noise or uncertainties in the invasion pressure of each throat. (b) Adding 3% random noise
to each measurement, comparable to our experimental manufacturing tolerance [10], is enough to interfere
with seeing the crossover behavior of our simulations. As a guide to the eye, curves show the fit from Fig. 7(a)
for the noise-free ζ = 0 simulations.

theory of invasion percolation [30], this value is related to the exponent of the burst size distribution
by

θb = 3 − τ. (1)

For invasion into correlated porous media the avalanche size distribution also changes and becomes
shallower. When scaled by ζ 2, as in Fig. 7(b), the results for all correlation lengths collapse onto
one master curve with two distinct scaling regimes. Events that are significantly larger than the
correlated area are consistent with the scaling of invasion percolation in uncorrelated porous media
and are fit by the exponent θb = 1.59 ± 0.06. Smaller events, which are more likely to explore only a
space confined to a single patch of similarly sized pores, show a power-law distribution that is well
fit by the smaller exponent θb = 0.93 ± 0.03. Interestingly, the relationship in Eq. (1) no longer
seems to hold for these local events, where θb + τ = 2.69 ± 0.06. The crossover scale, estimated
by the intersection of the two asymptotic curves, is about 5ζ (specifically, ζ 2 = 23.5). This implies
that avalanche events must cover a remarkably large area before they can average over enough local
structure to return to a mean-field distribution.

We also measured backward avalanche sizes in the experimental invasion pressures, the distri-
bution of which is given in Fig. 8(a). The data generally follow a power law, which is consistent
with the exponent of θb = 1.59 seen in the simulations of uncorrelated media. However, there is
no noticeable effect of correlations on the experimental results, and specifically there is no clear
crossover behavior with ζ . A possible reason for this discrepancy lies in experimental noise: there
is a random manufacturing error, of about ±3%, in the pillar radii [10]. Since we rely on these
radii to infer the pressure signal during drying, there will be a corresponding uncertainty in each
pressure measurement. To test the implications of this, we added a 3% random perturbation to each
value of the simulated pressure signals (using a 100 × 100 grid of pores, to match the experimental
scale) and reanalyzed the resulting data. As can be seen in Fig. 8(b), even this small uncertainty is
sufficient to obscure the crossover between the two limiting types of distribution. In fact, the data
from the simulations with noise now strongly resemble the experimental distributions.

Finally, we measured the forward avalanche sizes, and their distributions, in both simulations and
experiments. The results, plotted in Fig. 9, show similar trends to those of backward avalanches.
For simulations of invasion in uncorrelated porous media, and the larger grid of 700 × 700 pores,
the probability distribution of forward avalanche sizes follows a power law with exponent θf =
1.99 ± 0.05, as in Fig. 9(a). Correlated disorder modifies this exponent: for the ζ = 30 simulations,
the data are instead well fit by the lower exponent θf = 1.66 ± 0.04, for example. However, again,
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FIG. 9. Forward avalanches measure the number of events, going forward in time, until any particular
invasion pressure is next exceeded (see Fig. 3). (a) In simulations the distribution for an uncorrelated
porous medium follows a power-law distribution with exponent θf = 1.99 ± 0.05. This is consistent with
a “superuniversal” distribution, where θf = 2, seen in a large class of invasion models [16,30]. The local
correlations modify this distribution, lowering the exponent to θf = 1.66 ± 0.04. (b) The forward avalanches
in the experiment show little variation with ζ and are consistent with θf = 2. (c) As with backward avalanches,
the introduction of as little as 3% noise into the pressure signal interferes with the clear observation of the
crossover behavior.

this reduction in exponent cannot be detected either in the experimental data of Fig. 9(b), or in
the (100 × 100 pore) simulations to which noise has been added to better mimic the experimental
pressure signal, as shown in Fig. 9(c). In a large class of avalanche statistics, or intermittent
phenomena, it is known that forward avalanches follow a “superuniversal” distribution [16,30],
with θf = 2, and our ζ = 0 results are consistent with that expectation. Interestingly, the local
correlations in the geometry on which invasion happens are able to modify this critical exponent,
with a crossover to a shallower exponent describing avalanches that are comparable to or smaller
than the area of a patch of similarly sized pores.

IV. DISCUSSIONS AND CONCLUSIONS

Inspired by experimental observations of drying [9,10], fluid-fluid invasion [6–8], and drainage
[4,5], we have investigated how local correlations in the structure of an otherwise random porous
medium can affect how fluids move through that material. For this we used a microfluidic
micromodel of drying, which allows matched numerical modeling, by either a pore-network model
[9], or an invasion percolation model of the leading drying front. In all cases, the introduction of
even relatively weak local correlations in the sizes of nearby pores and throats visibly changed
the sequence of invasion pressures. As represented by both time series (Fig. 2) and power spectra
(Fig. 4), the local correlations increase the variability of the pressure signal. Specifically, they add to
the low-frequency aspects of the pressure fluctuations, leading to a pattern similar to the 1/f noise
traditionally associated with intermittency.

These changes are due to the introduction of a length scale, intermediate to the size of a single
invaded pore, and the system size. It describes the size of a patch of similarly sized pores and
corresponds to an invasion landscape consisting of easy-to-invade “valleys,” separated by more
challenging “peaks.” Such a geometry produces fewer extreme events but creates longer-term
fluctuations as activity shifts from one correlated region to another. These effects can be seen
throughout our analysis, from the power spectra of Fig. 4, the distribution of pressure changes
between sequential invasion events (Fig. 5), and the probability distribution of the sizes of pressure
bursts (Fig. 6). Although it has been known that correlations in pore geometry can affect the
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breakthrough saturation and fractal dimension of invasion phenomena [6,7,37], we have shown
that they can also interfere with the expected relationships of the critical exponents of invasion
problems. For example, when correlations are significant, the critical exponents of bursts and
backward avalanches obtained in our model no longer sum to 3, while that of forward avalanches is
no longer required to be precisely 2.

Surprisingly, very little correlation is required to modify the scaling laws of invasion percolation.
We found a crossover between two sets of the critical exponents that characterize the burst size
distribution (Fig. 6), and the distributions of backward (Fig. 7) and forward (Fig. 9) avalanches.
Our geometry is constructed around an autocorrelation function a = exp(−χ/ζ ), for two points
separated by a distance χ . Here mean-field behavior was recovered only for events spanning an
equivalent size of χ � 5ζ , over which distance correlations will be virtually unmeasurable. For
flows in real systems, such local correlations in material properties can be introduced in many ways:
for example, by the roughness typical of a fracture surface [38,39], or by a soil containing grains
with a mixture of wettabilities [8,40], or by pore-scale correlations that are present in even relatively
uniform sedimentary rock like Berea sandstone [37]. One may expect, therefore, that the types of
effects discussed here will apply to just as wide a range of situations. They also highlight the danger
of coarse-graining, or continuum approximations, made without taking into account disorder, and
fine-scale structure, in relation to percolation phenomena.
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