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Fingering instability transition in radially tapered Hele-Shaw cells:
Insights at the onset of nonlinear effects
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We investigate the effect of the capillary number Ca on the interfacial viscous fingering
instability in radially tapered Hele-Shaw cells. By employing a perturbative weakly
nonlinear approach, we manage to identify a fingering instability transition in the system
at the onset of nonlinearities. We find that for low Ca the interface in tapered situations
is stabilized (destabilized) in converging (diverging) cells, with respect to the equivalent
behavior occurring in a parallel-plate (uniform) Hele-Shaw cell. However, for large Ca,
we observe that the relative stability behavior changes, so that converging cells destabilize
the interface in comparison to uniform cells, while diverging cells lead to relatively more
stable interfaces. Moreover, we verify that finger tip-splitting is favored for large Ca, and
restrained in the low-Ca regime. Our weakly nonlinear results are qualitatively consistent
with recent intensive numerical simulations in the literature in which such an instability
transition was examined at fully nonlinear stages of the flow.
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I. INTRODUCTION

The viscous fingering instability has received a great deal of attention since the seminal work
of Saffman and Taylor [1], and has become a well-known paradigm of interfacial pattern formation
[2,3]. This hydrodynamic instability occurs when a fluid displaces another of larger viscosity in
the narrow gap separating two parallel glass plates of a Hele-Shaw cell [4]. Ordinarily, the fluids
are Newtonian and immiscible. Under such conditions, the fluid-fluid interface is unstable and
develops into a variety of pattern-forming structures. In rectangular (rectilinear channel-shaped)
Hele-Shaw cells [5–8] the resulting fingers are usually steady state, long and smooth. In contrast, in
radial (circular) Hele-Shaw flows [9–12] highly ramified morphologies are observed during multiple
stages of instability, where the evolving fingers tend to split at their tips, leading to the emergence
of characteristic finger-tip-splitting phenomena. In the framework of the classic Saffman-Taylor
problem, there is no instability when a more viscous fluid displaces a less viscous one, constituting
a stable, reverse flow displacement. In this situation, the two-fluid boundary remains flat for
rectangular flows and grows axisymmetrically as a perfect circle in radial Hele-Shaw cells.

Over the past several decades researchers have analyzed the effects of a number of variations of
the traditional Saffman-Taylor setup. Among many other interesting modifications, studies include
the incorporation of non-Newtonian [13–15], miscible [16–18], and reactive [19–21] fluids, the
presence of magnetic fields acting on magnetic liquids (ferrofluids) [22–24], the influence of
centrifugal and Coriolis forces on rotating Hele-Shaw cells [25–28], the impact of fluid inertia
[29–31] and wetting effects [32–34], as well as the consideration of fluid displacements in curved
(cylindrical, spherical, Gaussian profile shaped, etc.) Hele-Shaw cells [35–37]. Among all these
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different possibilities, there has been a growing interest in a particular alteration of the conventional
viscous fingering problem that considers the situation in which the Hele-Shaw cell plates are no
longer parallel. This specific modification was introduced some time ago by Zhao et al. [38] who
added a small gradient in the gap of an originally parallel-plate rectangular Hele-Shaw cell. Their
main goal was to understand the effect of such variable gap thickness both on the stability and shape
of the produced interfacial fingers. In this tapered Hele-Shaw geometry, the small gap gradient can
be either positive (slowly diverging plates) or negative (gently converging plates).

By performing laboratory experiments and linear stability analysis, Zhao et al. [38] focused on
the high-capillary-number regime, where the capillary number Ca measures the relative strength of
viscous to surface tension forces. Their linear stability results indicate that the small gap gradient has
a negligible effect on the early stage pattern formation. However, their experimental findings reveal
just the opposite, showing that the sign of the gap gradient strongly affects the finger-tip behavior:
a positive gradient produces wide fingers which become susceptible to the tip-splitting instability,
and negative gradients result in narrower fingers that are more stable than their parallel-plate cell
counterparts. Later Dias and Miranda [39] succeeded to predict the experimental results observed
in Ref. [38] for the case of high capillary numbers by carrying out an analytical weakly nonlinear
analysis of the tapered rectangular flow problem.

In contrast to what has been done in Refs. [38,39], Al-Housseiny et al. [40] concentrated their
attention on the low-capillary-number regime, and used linear stability analysis and experiments
to unveil a new facet of the small-gap-gradient problem in rectangular Hele-Shaw cell geometry
[41,42]. The investigations performed in Ref. [40] have demonstrated that the introduction of the
small gap gradient can indeed be utilized to control the development of the viscous fingering
instability. In other words, the gap gradient can either cause the entire suppression of the usual
viscous fingering instability, or it can trigger the instability even under traditionally stable reverse
flow circumstances.

In fact, the theoretical and experimental studies presented in Refs. [38–40] established that a
small gap gradient may profoundly impact the behavior of the fluid-fluid interface in rectangular
Hele-Shaw flows: in the high-Ca regime the gap gradient can determine the shape of the finger
tip (wider or narrower than the conventional parallel-plate behavior), while in the low-Ca regime
the gap gradient can be used to tune the occurrence of the Saffman-Taylor instability (either by
restraining its emergence, or by stimulating its appearance under usually stable conditions).

Unlike the case of rectangular Hele-Shaw flows, for which the role of a small gap gradient
was investigated using both theory (linear and weakly nonlinear analyses) and experiments, the
corresponding scenario for flows in radially tapered Hele-Shaw cells is a bit different. The existing
tapered radial flow studies are mostly restricted to theoretical explorations, i.e., the study of the
onset of the viscous fingering instability through analytical linear stability analysis [43], or the
examination of the fully nonlinear stages of interfacial evolution via intensive numerical simulations
[44]. The linear stability analysis executed in Ref. [43] finds that at early linear stages of the
flow in radially diverging cells the fluid-fluid interface is initially slowed down but eventually
destabilizes as time progresses. Additionally, they have verified that for converging Hele-Shaw
cells, the development of viscous fingering can be completely suppressed. As reported in Ref. [43],
experiments considering the action of a small gap gradient in radial Hele-Shaw cells have been
performed by Maxworthy [45]. Nevertheless, and unfortunately, only a brief description of initial
experimental results is presented in Ref. [45]: essentially, it has been found that the net effect of the
small gap gradient in a diverging cell is to destabilize the interface. This is in line with the analytical
linear stability results obtained in Ref. [43]. Regrettably, to the best of our knowledge, a more
comprehensive account of Maxworthy’s experiments in diverging radially tapered Hele-Shaw cells
has never been published. Only very recently, Bongrand and Tsai [46] have performed experiments
in converging radially tapered Hele-Shaw cells, and presented results demonstrating the stabilization
effects of a negative gap gradient. Also recently, Pihler-Puzović et al. [47,48] studied experimentally
the radial displacement of a viscous oil by a gas injected in an elastic-walled Hele-Shaw cell, where
the rigid upper cell plate has been replaced by a flexible membrane. It has been found that the
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elastic membrane provides a radially tapered converging flow passage that can indeed stabilize
radial viscous fingering.

On the theoretical side, a recent investigation performed by Jackson et al. [44] analyzed fully
nonlinear, late-time stages of the flow in radially tapered Hele-Shaw cells through sophisticated
numerical simulations. As opposed to previous studies [40,43], instead of targeting the control
of the fingering instabilities, Ref. [44] focuses on a different but also appealing aspect of fluid
displacements in small gap gradient radial Hele-Shaw cells. Motivated by the dissimilar interfacial
behaviors at low and high capillary numbers in tapered rectangular Hele-Shaw cells [38–40]
(e.g., in converging cells finger tips are smooth and wide at low Ca, and sharp at high Ca), they
investigated the possibility of a viscous fingering instability transition in tapered radial Hele-Shaw
geometry. Therefore, rather than aim attention at a specific capillary number regime (either low
or high, as done in the rectangular cell cases studied in Refs. [38–40]), the authors in Ref. [44]
used their powerful numerical techniques to systematically scrutinize the transition in fingering
behavior in radial tapered cells by varying the capillary number at fully nonlinear time stages
of the flow. Their central results can be summarized as follows: in converging (diverging) radial
cells the effects change from stabilizing (destabilizing) at low Ca, to destabilizing (stabilizing) at
high Ca.

As stressed in Ref. [44], in their work (and also in our current paper) the stabilizing or
destabilizing concepts refer to the behavior of the radially tapered situations as compared with
the corresponding interface response in the parallel-plate (or, uniform) radial Hele-Shaw cell case.
For example, in the low-Ca regime mentioned above, when one says that the tapered interface
is stabilized, what one really means is that the tapered situation is stabilized with respect to the
equivalent situation observed in the uniform cell case. Nevertheless, such a tapered-cell relatively
stabilized interface can still be unstable, in the sense that it can still be deformed (i.e., noncircular),
and present sizable fingering structures. So, in the end, we deal with the concept of a “relative
stability” (or, equivalently a “relative instability”) in which a tapered interface is always compared
with a corresponding interface that emerges in a uniform Hele-Shaw cell.

Regarding the relative changes in the morphology and size of the resulting fingering structures, it
has been found [44] that for a fixed gap-gradient value, the width of the fingers tend to get wider, and
flatten at their tips as Ca is increased, leading to the occurrence of finger-tip-splitting phenomena at
larger values of Ca. These fully nonlinear interface responses to changes in Ca are clearly illustrated
in Fig. 6 of Ref. [44]. Moreover, if Ca is kept fixed, and the sign of the gap gradient is reversed,
one can observe fingering patterns of different sizes. It has been verified that linear stability analysis
does not accurately predict the point (i.e., the critical value of the capillary number) at which the
relative stability transitions. This critical capillary number (Cacrit) indicates the situation at which a
relatively stable interface becomes relatively unstable, in comparison to the equivalent interface in a
uniform cell. It has also been shown that the linear stability theory prediction for Cacrit overestimates
its magnitude in comparison to the more robust prediction based on their fully nonlinear simulations.
This discrepancy has been attributed to the neglect by the linear stability calculation of the important
nonlinear effects naturally incorporated by late-time numerical computations.

From what we have discussed in the previous paragraphs, it is clear that the studies carried out so
far on viscous fingering pattern formation in radially tapered Hele-Shaw cells mainly focus either
on the analytical linear stability analysis [43] of the problem, or rely heavily on laborious numerical
simulations [44]. These analytical and numerical investigations provide a good understanding of
the pattern-formation process in the initial (purely linear), and final (fully nonlinear) time regime.
Nonetheless, a study of the dynamics that bridges these two extremes in tapered radial Hele-Shaw
cells is still lacking. Our main purpose in this work is to carry out the weakly nonlinear analysis
for the intermediate stages of interface evolution in radially tapered cells, focusing on the onset
of nonlinear effects. We concentrate our attention on trying to get useful insights into the most
important ingredients of the fingering instability transition numerically studied in Ref. [44], at just
the lowest nonlinear order, and through predominantly analytical means. Our aim is to use the
simplest extension of perturbation theory beyond linear stability (i.e., a second-order mode-coupling
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FIG. 1. Illustrative sketch of the side view of the injection-driven fluid displacements in three kinds of radial
Hele-Shaw cells: (a) converging (α < 0), (b) uniform (α = 0), and (c) diverging (α > 0), where α = db(r )/dr

denotes the small gap gradient, b(r ) is the variable gap thickness, r is the radial coordinate, and b0 = b(r = 0).
The time-dependent unperturbed interface radius is represented by R(t ). Moreover, Q denotes the volumetric
injection flow rate, η is the outer (displaced) fluid viscosity, while the inner (displacing) fluid (in gray) has
negligible viscosity.

theory) and still be able to extract valuable information about some of the most relevant nonlinear
aspects of the problem.

The remainder of this paper is organized as follows. Section II presents a derivation of a mode-
coupling equation that describes the time evolution of the interfacial perturbation amplitudes for
the radially tapered Hele-Shaw cell problem. In Sec. III we discuss the influence of the capillary
number on the relative instability transition at early nonlinear stages of the flow. We concentrate our
attention on trying to comprehend how the length and overall shape of the fingers (special attention
is given to the emblematic tip-splitting events) are impacted by Ca, and by the sign of the small gap
gradient. Our final conclusions are compiled in Sec. IV.

II. MODE-COUPLING DIFFERENTIAL EQUATION FOR THE PERTURBATION AMPLITUDES

In this work, we follow previous studies in tapered Hele-Shaw flows [38–40], and consider a
situation which has also been largely explored both theoretically and experimentally in parallel-
plate, radial, and rectangular Hele-Shaw cells [1,4,6–11]. We focus on the limit of infinite viscosity
ratio β = ηouter/ηinner, where the viscosity of the inner fluid is negligible compared with the viscosity
η of the outer fluid. The limit of infinite viscosity ratio is expected to agree well with situations in
which a very viscous oil is displaced by a gas, where 104 � β � 105 [4,46–48]. Note that this is not
exactly similar to the situations studied numerically in Ref. [44] that considered two-phase flows
in small gap gradient radial Hele-Shaw cells under low (β = 10) and high (β = 1250), but finite,
viscosity ratios.

Consider the geometry of a radially tapered Hele-Shaw cell in which an outer fluid of viscosity
η is displaced by the radial injection of an inner fluid with negligible viscosity. The fluids are
immiscible and incompressible, and there exists a nonzero surface tension σ between them. The
inner fluid is injected at a constant volumetric injection rate Q through an inlet located at the center
of the upper cell plate. In contrast to the conventional parallel-plate setup, the upper plate has a
constant small depth gradient α (|α| � 1) in the radial direction. Depending on the sign of α, we
can have three types of radial Hele-Shaw cells (see Fig. 1): (a) converging (α < 0), (b) uniform
(α = 0), and (c) diverging (α > 0). The coordinate system is defined in such a way that its origin
is located at the center of the cell, and r denotes the radial coordinate. In this framing, the cell
gap varies linearly with the radial distance r such that it can be written as b(r ) = b0 + αr , where
b0 = b(r = 0) is the cell spacing at its center.

During the injection process, the initially unperturbed, circular interface can become unstable,
and deform, due to the interplay of viscous and capillary forces. Therefore, we express the perturbed
interface as R = R(θ, t ) = R(t ) + ζ (θ, t ), where R = R(t ) is the time-dependent unperturbed
radius of the interface, and θ denotes the azimuthal angle in the r − θ plane. The net interface
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disturbance is represented as a Fourier series,

ζ (θ, t ) =
+∞∑

n=−∞
ζn(t ) exp(inθ ), (1)

where ζn(t ) denotes the complex Fourier amplitudes, with integer wave numbers n, and |ζ | � R.
Note that for R to be real, the complex conjugate function ζ ∗

n must satisfy the condition ζ ∗
n = ζ−n.

The inclusion of the mode n = 0 is done to keep the volume of the perturbed shape independent of
the perturbation ζ in radially tapered cells. In this way, we conveniently rewrite the variable cell gap
in terms of R(t ) as

b(r, t ) = bi (t ) + α[r − R(t )], (2)

where the cell spacing at r = R(t ) is given by

bi = bi (t ) = b0 + αR(t ). (3)

Since we are interested in the small depth gradient |α| � 1 limit, we consider that

|α|R
bi

� 1, (4)

which implies that |α(r − R)| = |αζ | � bi . It should be emphasized that throughout this work our
perturbative weakly nonlinear approach keeps terms up to second order in ζ , and up to first order in
the rescaled slope αR/bi .

Conservation of volume

Qt + πb0R
2
0 + 2α

3
πR3

0 =
∫ 2π

0

(
b0R2

2
+ αR3

3

)
dθ (5)

imposes that up to second order in ζ the zeroth mode is written in terms of the other modes as

ζ0 = − 1

2R

[
1 + αR

bi

] ∞∑
n=1

[|ζn(t )|2 + |ζ−n(t )|2]. (6)

By using Eq. (5) and considering the situation in which the fluid-fluid interface is unperturbed
[R = R(t )], one obtains an useful relation that expresses as R(t ) evolves in time

πb0
[
R2(t ) − R2

0

] + 2α

3
π

[
R3(t ) − R3

0

] = Qt, (7)

where R0 = R(t = 0) is the unperturbed interface radius at t = 0. Notice that by taking the time
derivative of Eq. (7) one obtains that Q = 2πRṘbi , where dR/dt = Ṙ.

The basic hydrodynamic equation of the problem is Darcy’s law [4]

v = −b2(r, t )

12η
∇P, (8)

where v = v(r, θ ), P = P (r, θ ) are the gap-averaged velocity, and pressure, respectively. The
incompressibility condition for the smoothly varying gap situation is given by [38,39,49]

∇ · [b(r, t )v] = 0. (9)

Substituting Eq. (8) into Eq. (9), and using Eq. (4), we obtain a partial differential equation for
the pressure

∇2P + 3α

bi

∂P

∂r
= 0. (10)
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The most general solution of Eq. (10) can be written as [39,49]

P (r, θ ) = f (r ) +
∑
n�=0

gn(r )einθ . (11)

Substituting Eq. (11) into Eq. (10), we have

1

r

d

dr

(
r
df

dr

)
+ 3α

bi

df

dr
= 0 (12)

and

1

r

d

dr

(
r
dgn

dr

)
+ 3α

bi

dgn

dr
− n2

r2
gn = 0. (13)

Note that Eq. (11) separates two different contributions in the pressure field: f (r ) which comes from
a propagating circular interface, and gn(r ) that is due to the harmonic disturbance of the interface.
In this context, df/dr is the pressure gradient for an unperturbed interface growing with velocity
vr = Ṙ, that satisfies Darcy’s law (8)

df

dr

∣∣∣∣
r=R

= −12ηṘ

b2
i

. (14)

In order to solve Eq. (12), we define a new variable ψ (r ) ≡ rf ′(r ). Then we rewrite Eq. (12) in
terms of ψ , and integrate to obtain

df

dr
= ψ (R)

r
exp

[
−3α

bi

(r − R)

]
, (15)

where ψ (R) can be determined using the condition (14). Integrating Eq. (15), the solution for f (r )
can be written as

f (r ) = ψ (R)
∫

1

r
exp

[
−3α

bi

(r − R)

]
dr + C, (16)

where C is a constant of integration.
On the other hand, by applying the Frobenius method [50] to solve Eq. (13), and using the

condition limr→∞ gn(r ) = 0 for the situation in which α = 0, we have (for n �= 0)

gn(r ) =
∞∑

k=0

P
(n)
k

(
r

R

)k−|n|
, (17)

where the coefficients P
(n)
k are related to one another by the recurrence relation (for k > 0)

P
(n)
k = −3α

bi

[
(k − |n| − 1)

k(k − 2|n|)
]
P

(n)
k−1. (18)

Finally, by using the solutions (16) and (17), as well as the recurrence relation (18), the pressure
[Eq. (11)] can be written as

P (r, θ ) = ψ (R)
∫

1

r
exp

[
−3α

bi

(r − R)

]
dr

+
∑
n�=0

P (n)(t )

{(
r

R

)−|n|
+ 3αR

bi

[ |n|
1 − 2|n|

](
r

R

)1−|n|}
exp (inθ ) + C. (19)

As we assume the rescaled slope |α|R/bi � 1 [Eq. (4)] in the solution of gn(r ), we keep terms up
to first order in αR/bi .
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At this point, we have all the elements needed to perform a weakly nonlinear analysis of the
system. To find a relation between P (n)(t ) in Eq. (19) and the perturbation amplitudes ζn(t ) in
Eq. (1), we consider the kinematic boundary condition which states that the normal components of
fluid velocity at the interface equals the velocity of the interface itself [4]

∂R
∂t

=
(

vr − 1

r

∂ζ

∂θ
vθ

)∣∣∣∣
r=R

, (20)

where vr and vθ are the radial and azimuthal components of the depth-averaged velocity v,
respectively. We keep terms up to second order in ζ , and then Fourier transform. Solving for P (n)(t )
consistently yields

P (n)(t ) = ζ̇n

K (n)
+ 1

K (n)

Ṙ

R

[
1 + αR

bi

]
ζn − 1

K (n)

Ṙ

R2

[
1 + αR

bi

] ∑
n′ �=0

ζn′ζn−n′

+ b2
i

12η

Ṙ

R

∑
n′ �=0

1

K (n)K (n′)

{
M (n, n′) + 3αR

bi

[
N (n, n′) − 2|n′|

3R2
+ 1

3
M (n, n′)

]}
ζn′ζn−n′

+ b2
i

12η

∑
n′ �=0

1

K (n)K (n′)

{
M (n, n′) + 3αR

bi

[
N (n, n′) − 2|n′|

3R2

]}
ζ̇n′ζn−n′ . (21)

Here the functions K (n), M (n, n′), and N (n, n′) stand for

K (n) = b2
i

12ηR

[
|n| − 3αR

bi

|n|(1 − |n|)
1 − 2|n|

]
, (22)

M (n, n′) = n′(n − n′) + |n′|(|n′| + 1)

R2
, (23)

and

N (n, n′) = n′|n′|(n − n′) − n′2(1 − |n′|)
(1 − 2|n′|)R2

. (24)

The other important boundary condition is the pressure jump at the interface, which is given by
the Young-Laplace equation [1,4]

P (r = R, θ ) = −
[
π

4
σκ + 2σ cos φ

b(r, t )

]∣∣∣∣
r=R

. (25)

In Eq. (25), κ denotes the interface curvature in the plane of the cell and can be written, up to second
order in the perturbation ζ , as

κ = R2 + 2
(

∂R
∂θ

)2 − R ∂2R
∂θ2[

R2 + (
∂R
∂θ

)2]3/2

= 1

R
− 1

R2

(
ζ + ∂2ζ

∂θ2

)
+ 1

R3

[
ζ 2 + 1

2

(
∂ζ

∂θ

)2

+ 2ζ
∂2ζ

∂θ2

]
+ O(ζ 3/R4). (26)

On the other hand, the term proportional to 1/b(r, t ) is associated with the curvature for the direction
across the gap, and φ is the static contact angle measured between the plates and the curved fluid
meniscus. As in Refs. [40,43,44], we focus on the φ = 0 situation, when the viscous fluid is perfectly
wetting. Note the presence of the factor π/4 in front of κ in Eq. (25), as it is appropriate for the
wetting case φ = 0 [32–34].
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To obtain the equation of motion for the perturbation amplitude ζn(t ), first we substitute Eq. (21)
into Eq. (19) evaluated at the interface. Then, we insert the resulting expression into the Young-
Laplace condition (25). Keeping terms up to the second order in ζ and first order in αR/bi , and
Fourier transforming, we obtain a dimensionless equation of motion for the perturbation amplitudes
(for n �= 0)

ζ̇n =
[
λ(n) + αR

bi

�(n)

]
ζn +

∑
n′ �=0

[
F (n, n′)ζ lin

n′ ζ lin
n−n′ + G(n, n′)ζ̇ lin

n′ ζ lin
n−n′

]

+ αR

bi

∑
n′ �=0

[
F (n, n′)ζ lin

n′ ζ lin
n−n′ + G(n, n′)ζ̇ lin

n′ ζ lin
n−n′

]
, (27)

where lengths and time are rescaled by R0, and R2
0b0/Q, respectively.

To correctly contemplate the implications of second-order mode coupling, in Eq. (27) we follow
Miranda and Widom [11] [see their Eqs. (30)–(32)], and obtain the appropriate segregation between
orders in ζ by substituting the purely linear solution of the mode-coupling differential equation

ζ̇ lin
n =

[
λ(n) + αR

bi

�(n)

]
ζ lin
n (28)

into the second-order terms appearing on the right-hand side of Eq. (27). The functions associated
with the linear growth rate [λ(n) + (αR/bi )�(n)] are

λ(n) = Ṙ

R
(|n| − 1) − π

4

q2b2
i

CaR3
|n|(n2 − 1) (29)

and

�(n) = Ṙ

R

( |n| + 1

2|n| − 1

)
+ 2q2bi

CaR2
|n| − π

4

q2b2
i

CaR3

|n|(n2 − 1)

2|n| − 1
, (30)

where

Ca = 12ηQR0

σb3
0

(31)

is the global capillary number [34,44] which expresses a relative measure of viscous to surface
tension forces, while q = R0/b0 is the initial aspect ratio. The global capillary number Ca is
an important control parameter of the radially tapered Hele-Shaw cell system and should be
distinguished from the local (or instantaneous) capillary number Ca = ηṘ/σ which can be orders
of magnitude smaller. Typical values of the local capillary number used in tapered Hele-Shaw cell
experiments vary within a wide spread range 4.0 × 10−4 � Ca � 2.5 × 102 [38,40,46,48].

The mode-coupling terms are given by

F (n, n′) = |n|
R

{
Ṙ

R

[
1

2
− sgn(nn′)

]
− π

4

q2b2
i

CaR3

[
1 − n′

2
(3n′ + n)

]}
, (32)

G(n, n′) = |n|
R

[
1 − sgn(nn′) − 1

|n|
]
, (33)

F (n, n′) = |n|
R

{
Ṙ

R

[
2 − |n|

2|n| − 1
+ 2sgn(nn′)

2 − |n′|
2|n′| − 1

− 1

|n|
]

− π

4

q2b2
i

CaR3

3

2|n| − 1

[
1 − n′

2
(3n′ + n)

]}
, (34)
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and

G(n, n′) = 3|n|
R

[
1

2|n| − 1
+ sgn(nn′)

2|n′| − 1
− 1

3|n|
]
, (35)

where the sgn function equals ±1 according to the sign of its argument.
While dealing with Eq. (27) one must be careful and avoid possible spurious higher-order depen-

dences on αR/bi . Therefore, in accordance with what has been assumed since the very beginning of
our calculation, one must neglect any contributions having higher order than O(αR/bi ). Motivated
by this important remark, it is convenient to define a new notation ζ lin

n = ζ lin(0)
n + ζ lin(1)

n , where ζ lin(k)
n

is the correction at kth order in αR/bi to the linear perturbation amplitude. Consequently, Eq. (28)
can be rewritten as

ζ̇ lin
n = λ(n)ζ lin

n + αR

bi

�(n)ζ lin(0)
n , (36)

whose solution can be readily written as

ζ lin
n (t ) = ζ lin(0)

n (t ) + ζ lin(1)
n (t ) = ζ lin(0)

n (t )

[
1 +

∫ t

0

αR

bi

�(n)dt ′
]
. (37)

Here ζ lin(0)
n (t ) = ζ lin(0)

n (0) exp[
∫ t

0 λ(n)dt ′] is the solution of equation ζ̇ lin(0)
n = λ(n)ζ lin(0)

n . Substitut-
ing Eq. (37) into Eq. (27) and neglecting any higher-order contributions than O(αR/bi ), we obtain

ζ̇n = λ(n)ζn + αR

bi

�(n)ζ (0)
n

+
∑
n′ �=0

[F (n, n′) + λ(n′)G(n, n′)]
[
ζ

lin(0)
n′ ζ

lin(0)
n−n′ + ζ

lin(0)
n′ ζ

lin(1)
n−n′ + ζ

lin(1)
n′ ζ

lin(0)
n−n′

]

+ αR

bi

∑
n′ �=0

[F (n, n′) + λ(n′)G(n, n′) + �(n′)G(n, n′)]ζ lin(0)
n′ ζ

lin(0)
n−n′ , (38)

where ζ (0)
n is given by

ζ̇ (0)
n = λ(n)ζ (0)

n +
∑
n′ �=0

[F (n, n′) + λ(n′)G(n, n′)]ζ lin(0)
n′ ζ

lin(0)
n−n′ . (39)

Equation (38) is the mode-coupling equation of the Saffman-Taylor problem for radially tapered
Hele-Shaw cells, conveniently written in terms of the three relevant dimensionless parameters of
the problem: α, q, and Ca. In fact, Eq. (38) is a central result of this work. After appropriate
reintroduction of dimensions, it can be shown that Eq. (38) reduces to the considerably simpler
expression obtained in Ref. [11] in the zero-gap-gradient limit (α = 0). While the linear growth
rate [λ(n) + (αR/bi )�(n)] composed by Eqs. (29) and (30) provides information about the linear
stability of the interface, the nonlinear terms given by Eqs. (32)–(35) offer key insights into the
relative instability transition, as well as into the basic morphology of the emerging patterns in the
weakly nonlinear regime. We point out that the values we take for our dimensionless parameters
throughout this work are consistent with typical physical quantities used in previous experimental,
analytical, and numerical investigations in tapered Hele-Shaw cells [38–40,43,44,46–48].

III. FINGERING INSTABILITY TRANSITION IN THE WEAKLY NONLINEAR REGIME

To examine the role played by the capillary number Ca on the viscous fingering instability
transition in radially tapered Hele-Shaw cells, we need to describe the time evolution of the
perturbed interface R for converging (α < 0) and diverging (α > 0) cells, and then compare the
resulting interface shapes with the corresponding interface obtained in a uniform cell (α = 0).
Furthermore, we want to do this by capturing important weakly nonlinear effects, via a perturbative
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mode-coupling scheme that keeps terms up to second order in ζ and up to first order in αR/bi . This
approach is able to bring to light some fundamental aspects of the relative stability behavior and of
the morphology of the resulting interfacial patterns. In this context, it is essential to figure out how
Ca influences the shape of the emerging fingers, in particular with respect to the development of the
finger-tip-widening, -splitting, and -sharpening phenomena.

Within the scope of our mode-coupling theory, it has been shown that finger-tip widening,
splitting, and sharpening are behaviors related to the influence of a fundamental mode n on the
growth of its harmonic mode 2n [11]. In other words, it has been demonstrated that these basic
pattern-forming phenomena can be predicted, captured and properly described already at second
order in the perturbation amplitudes, and by considering the nonlinear coupling between just two
Fourier modes, namely, n and 2n. Therefore, to tackle finger-tip morphology and relative stability
issues at the weakly nonlinear level in radially tapered geometry, it is convenient to rewrite the net
interface perturbation ζ (θ, t ) [Eq. (1)] in terms of these two specific Fourier modes

ζ (θ, t ) = ζ0(t ) + an(t ) cos(nθ ) + a2n(t ) cos(2nθ ), (40)

where for a given mode an(t ) = [ζn(t ) + ζ−n(t )] denotes the real-valued cosine amplitudes. Without
loss of generality, as in Ref. [11] we choose the phase of the fundamental mode so that an > 0.
Notice that the term ζ0 in Eq. (40) expresses an intrinsically nonlinear concern [i.e., it consists of a
second-order correction in ζ , as shown in Eq. (6)], so that in the purely linear regime one can simply
set ζ0 = 0. We direct the interested readers to Refs. [8,11,51–54] for a detailed discussion about the
mode-coupling strategy, its description and proposed interpretation of the typical pattern-forming
mechanisms occurring in both rectangular and radial Hele-Shaw flows.

It is apparent from Eq. (40) that to describe the time evolution of the perturbed interface R(θ, t ),
one needs to know how the cosine amplitudes an(t ) and a2n(t ) evolve in time. To do that, we rewrite
the mode-coupling equation (38) in terms of cosine modes, considering the interplay of modes n

and 2n, to obtain the following forced linear differential equations:

ȧn = λ(n)an + αR

bi

�(n)a(0)
n + 1

2

{
[F (n,−n) + F (n, 2n) + λ(n)G(n,−n) + λ(2n)G(n, 2n)]

× [
alin(0)

n a
lin(0)
2n + alin(0)

n a
lin(1)
2n + alin(1)

n a
lin(0)
2n

]
+ αR

bi

[F (n,−n) + F (n, 2n) + λ(n)G(n,−n) + λ(2n)G(n, 2n)

+�(n)G(n,−n) + �(2n)G(n, 2n)]alin(0)
n a

lin(0)
2n

}
, (41)

ȧ2n = λ(2n)a2n + αR

bi

�(2n)a(0)
2n + 1

2

{
[F (2n, n) + λ(n)G(2n, n)]

× [
alin(0)

n alin(0)
n + alin(0)

n alin(1)
n + alin(1)

n alin(0)
n

]
+ αR

bi

[F (2n, n) + λ(n)G(2n, n) + �(n)G(2n, n)]alin(0)
n alin(0)

n

}
. (42)

The analytical solution for this type of differential equation has been examined in Ref. [11] [see
their Eq. (28), plus their Eqs. (30)–(32)]. Of course, the time evolution of the amplitudes an(t ) and
a2n(t ) can also be readily obtained by numerically solving Eqs. (41)–(42).

To characterize the overall shape of the patterns at the onset of nonlinear effects for each value of
the gap gradient (α < 0, α = 0, and α > 0) and also to quantify their relative instability behavior,
we use a quantity defined by the inner and outer radial envelopes of the pattern as (see Fig. 2)

�R = Rmax − Rmin. (43)
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FIG. 2. Characteristic lengths defining the finger length function �R as defined in Eq. (43): Rmax is the
maximum value of the radial coordinate of the deformed interface (located at a finger tip), and Rmin is the
corresponding minimum radius (located at a finger valley).

The quantity �R can be viewed as a typical finger length scale which describes the finger
perturbation amplitude in terms of two lengths: (1) the maximum value of the perturbed interface
radius (Rmax) which in Fig. 2 is illustrated by the dashed outer circle that encloses the entire pattern,
being tangent to the finger tips, and (2) the minimum value of the perturbed interface radius (Rmin)
depicted by the dashed inner circle in Fig. 2 which is tangential to the finger valleys. Bischofberger
et al. [12] adopted a similar approach to successfully quantify the large-scale structure, emergent
global features, and the nonlinear growth of fingering patterns in uniform (parallel-plate) radial
Hele-Shaw cells. Equations (40)–(43) will be utilized to gain insight into the relative instability
transition in radially tapered Hele-Shaw geometry. Note that one can calculate the quantity �R
analytically by considering the interaction of modes n and 2n as expressed in Eq. (40). By evaluating
∂R/∂θ = 0, we find the positions for the maximum and minimum values of the perturbed interface
radius R, yielding

cos(nθ ) = ±1 (44)

and

cos(nθ ) = − an

4a2n

. (45)

For the situation in which |an| > 4|a2n|, the fingers do not split at their tips, and we have only
Eq. (44) to express possible solutions, implying that �R = 2an. Nonetheless, if |an| < 4|a2n| the
fingers tend to split at their tips (as in the situation illustrated in Fig. 2), and we have also to consider
Eq. (45) as a valid solution. In this case, �R = an − a2

n/8a2n − 2a2n.
Before we proceed to our weakly nonlinear analysis of the radially tapered Hele-Shaw cell sys-

tem, we make some necessary remarks on the results that will be presented in the remainder of this
work. First, one should realize that our perturbative weakly nonlinear approach holds at the onset of
nonlinearities, where the interfacial disturbances ζ are considerably smaller than the corresponding
unperturbed interface radius R. Additionally, for the sake of simplicity and to better understand the
mechanisms behind the pattern-formation process, our weakly nonlinear description considers the
coupling of a small number of relevant Fourier modes [8,11]. Consequently, the readers should not
expect that our weakly nonlinear interfacial patterns, and other related predictions will quantitatively
reproduce the fully nonlinear features obtained in the intensive numerical simulations of the radially
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FIG. 3. Snapshot of the weakly nonlinear interfaces at time t = tf = 13 (top panels), illustrating typical
fingering patterns for injection-driven radial flow in diverging (α = 10−3), uniform (α = 0), and converging
(α = −10−3) Hele-Shaw cells. The following values of the capillary number are analyzed: (a) Ca = 1200,
(b) Ca = 1637, (c) Ca = 1905, and (d) Ca = 3000. The interfaces are obtained by considering the nonlinear
coupling between modes n and 2n, where n = 5. The corresponding time evolution of the finger length �R(t )
for 0 � t � tf is shown in the bottom panels.

tapered Hele-Shaw cell problem performed in Ref. [44]. Their simulations focus on the late-time
nonlinear stages of pattern evolution, where the finger sizes are large and the finger shapes are
generally more complex than the ones we present in our current study. So, we have no intention
to exactly recreate the specific late-time results obtained in Ref. [44]. Instead, we seek to extract
as much information as possible about some of the most fundamental features of the instability
transition in tapered cells by employing a relatively simple theoretical tool.

Regardless of the limitations discussed above, our mode-coupling model still provides valuable
information about the role of nonlinear effects at early stages of the dynamics. Most importantly, it
furnishes key indications about the morphology of the fingering structures (e.g., finger broadening,
finger narrowing, and finger-tip splitting). It is worthwhile to note that this is something that cannot
be accomplished by purely linear stability analysis. At the linear level, the Fourier modes decouple,
and the basic mode-coupling ingredients responsible for providing a reliable mimic of the interface
shape are completely absent. Therefore, while linear stability analysis does offer access to the linear
absolute stability of the interface by essentially taking into consideration the action of a single mode,
our weakly nonlinear scheme gives useful clues about the ultimate shape of the emerging patterns.
This is done already at lowest nonlinear (second-order) level, and considering the coupling of the
minimum possible number of interacting Fourier modes (just two). The accessibility to more details
about the actual interface shape via the weakly nonlinear formulation will be instrumental to provide
guidance for determining the particular value of the capillary number (Cacrit) at which the relative
stability makes a transition in small gap gradient radial Hele-Shaw flows.

We begin our discussion by analyzing Fig. 3, which investigates relative instability issues in
radially tapered cells when the capillary number is increased: (a) 1200, (b) 1637, (c) 1905, and
(d) 3000. The choice of these specific values of Ca will be better understood during our discussion
of Fig. 3. In the top panels of Fig. 3, for each value of Ca, we depict the resulting weakly nonlinear
interfaces for three representative values of the gap gradient, namely α = 10−3 (diverging cell),
α = 0 (uniform cell), and α = −10−3 (converging cell), at a time t = tf = 13. The determination
of the final time tf at which all interfaces are plotted will be discussed below. It should be noted
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that the values of α we use throughout this work (−103 � α � 103) are precisely the typical values
utilized in existing experimental and theoretical studies in tapered Hele-Shaw cells [38–46]. In
addition, as in Ref. [44], during the course of our investigation we consider a characteristic initial
aspect ratio for the system given by q = 100. Moreover, recall that all through this study we focus
on the infinite viscosity ratio limit β → ∞.

The interfacial patterns displayed in Fig. 3 and in other figures in this paper consider the
interaction of two cosine modes n, and 2n, where in Fig. 3 we take n = 5. The choice of n = 5
in Fig. 3 as the fundamental mode is made without loss of generality: it turns out that n = 5
is an unstable mode at t = 0 [ζ̇5(0) > 0]. If one chooses other unstable Fourier mode as being
the fundamental mode at t = 0, the basic physical results are similar to the ones obtained for
n = 5 (another value of n will be examined in Fig. 6). In the bottom panels of Fig. 3, we plot
the corresponding time evolution of the finger length �R [Eq. (43)] for the same three values
of α considered in the top panels. All patterns shown in Fig. 3 have the same initial amplitudes,
an(0) = 10−2 and a2n(0) = 0.

Throughout this work, the initial amplitude of the first harmonic mode 2n is set to zero to ensure
that the initial growth of this mode is driven solely by nonlinear effects. However, by inspecting
Eq. (42) one observes that for subsequent times a2n is nonzero, and the linear terms start to act. As
time advances, the growth of mode 2n is essentially determined by a dominant linear contribution,
assisted by a relatively smaller nonlinear term proportional to a2

n, forcing the growth of a2n < 0. So,
within the scope of our weakly nonlinear approach, when the magnitude of a2n increases further, its
growth is mostly due to the effect of the linear terms in the equation of motion (42), but properly
adjusted by a smaller nonlinear contribution. Nevertheless, the contribution of the first harmonic
will induce important changes in the shape of the evolving fingers [11]. The important point here is
that the weakly nonlinear coupling dictates the sign of the harmonic mode, whose amplitude goes
negative although its initial value was zero. With this particular phase of mode 2n forced by the
dynamics, the n fingers of the fundamental mode n tend, first to spread, and later, to split. Similar
behavior for the fundamental and harmonic modes was found in numerical studies of solidification
[55]. Of course, due to the initial condition a2n(0) = 0, the harmonic mode 2n would not grow if
the dynamics were solely restricted to purely linear contributions, and finger widening and splitting
would not occur. In this case, only purely sinusoidal shaped fingers would emerge. By applying the
initial conditions an(0) = 10−2 and a2n(0) = 0 we guarantee that the phenomena of finger widening
and splitting are spontaneously induced by the weakly nonlinear terms in Eqs. (41) and (42). Notice
that, different sets of parameters, involving other values of n, an(0), tf , and Ca will also be explored
and discussed in this section.

Before we advance, we take a moment to explain how we determine the final time tf . The
interfaces shown in Fig. 3 for various Ca and α have been obtained after time has evolved in the
interval 0 � t � tf . It should be stressed that the values of the final time tf used in Fig. 3, and
in other parts of this work are not arbitrary. To determine tf , we follow an approach originally
proposed by Gingras and Rácz [56] for the linear regime, and extend its range of applicability to the
weakly nonlinear stage of evolution. While plotting the interfaces depicted in this paper, we stop the
time evolution of the patterns as soon as the base of the fingers starts to move inwards, which would
make successive interfaces cross one another. This criterion for determining tf is justified by the fact
that the crossing of successive time evolving interfaces (i.e., the occurrence of backward interface
motion) is detected neither in experiments [4,9,10] nor in numerical simulations [57–61] of radial
Hele-Shaw flows in which β → ∞. Therefore, we adopt t = tf as the upper bound time for the
validity of our perturbative approach. In this framework, and within the scope of our mode-coupling
theory, tf is set by the condition[

dR
dt

]
t=tf

= [Ṙ(t ) + ζ̇ (θ, t )]t=tf = 0, (46)

where Eq. (46) is evaluated by using our weakly nonlinear mode-coupling equation (38).

124004-13



ANJOS, DIAS, AND MIRANDA

FIG. 4. Snapshots of the evolving interface for the most unstable situation examined in Fig. 3 [i.e., the
case for Ca = 3000, and α = −10−3 illustrated in Fig. 3(d)], plotted at equal time intervals (�t = 1) when
(a) 0 � t � tf , and (b) 0 � t � tf + 5, where tf = 13. Interface self-intersections are evident in panel (b).
Since these self-intersections are not observed in radial Hele-Shaw cell systems in which β → ∞, we use
t = tf as the upper bound time for the validity of our weakly nonlinear perturbative approach.

When several values of Ca and α are considered (e.g, as in Fig. 3), we take the final time
tf associated with the most unstable situation (i.e., the case of largest Ca, and for the α < 0 of
largest magnitude). For example, in Fig. 3 the final time tf has been determined by considering the
situation in which Ca = 3000 and α = −10−3 [Fig. 3(d)]. Of course, if interface self-intersections
are avoided in the most unstable case, they will not occur in the other (less unstable) situations
analyzed in Fig. 3. The importance of properly determining tf is clearly illustrated Fig. 4: Fig. 4(a)
depicts the time evolution for 0 � t � tf where tf = 13, that leads to the most unstable interface
displayed in Fig. 3(d). On the other hand, Fig. 4(b) shows the same interface evolution, but now
up to a time t = tf + 5 = 18. Notice that some interfaces do cross one another Fig. 4(b) indicating
that for such a large time our perturbative approach is no longer properly describing the interface
evolution. Once again, we point out that the weakly nonlinear analysis does not necessarily remain
quantitatively accurate all the way to t = tf . After all, in this work and in Ref. [56] it is argued only
that the analysis cannot be valid past tf , and not rigorously shown that it must be valid for all t � tf .
Consequently, it should be clear that, rigorously speaking, our predictions for Cacrit, and for the time
at which finger-tip-splitting events occur can a priori only be expected to be approximations. A
more precise account of the quantitative accuracy of the weakly nonlinear expansion for the radially
tapered Hele-Shaw flows could be checked by fully nonlinear simulations, like the ones employed
in Ref. [44].

After presenting the relevant parameters of the system, and after clarifying the way we determine
the final time tf , now we turn to the discussion of Fig. 3. By examining the top panel in Fig. 3(a), one
immediately verifies that for such a capillary number value (Ca = 1200), the converging interface
(α = −10−3) is not very much distorted from a perfectly circular shape, in the sense that just
modestly deformed fingers having small perturbation amplitudes are formed. It is also clear that
the converging interface is less deformed than the uniform interface (α = 0). This indicates that the
converging geometry has a stabilizing effect relative to the equivalent behavior observed under
parallel-plate circumstances. On the other hand, the diverging case interface (α = 10−3) looks
similar to the parallel-plate one, perhaps being just a bit more deformed. Moreover, no finger-tip-
splitting events are observed. These findings are qualitatively consistent with the numerical results
of Ref. [44] for lower values of Ca, where no finger-tip-splitting phenomenon was found. It should
be noted that we have verified that, if lower values of Ca are utilized, all the resulting weakly
nonlinear interfaces look even more stable (almost circular in shape).
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FIG. 5. Determination of the critical values of the capillary number at which the relative instability
transitions. This is done by plotting the variation of finger length evaluated at final time t = tf , �R(tf ) as Ca
is increased for α = −10−3, α = 0, and α = 10−3. The critical capillary number Caα>0

crit (Caα<0
crit ) is determined

by the point at which the curves for α = 0 and α > 0 (α < 0) cross one another, as indicated by the vertical
dashed lines. Here all physical parameters and initial conditions are identical to those utilized in (a) Fig. 3
[n = 5, an(0) = 10−2, and tf = 13], and (b) Fig. 6 [n = 4, an(0) = 2.5 × 10−2, and tf = 12].

The visually based conclusions on the interface behavior discussed in the previous paragraph
are fully substantiated by the more quantitative results presented in the bottom panel of Fig. 3(a)
which plots the time evolution of the finger length �R for the three values of α considered in
the top panel. It is found that the �R curve for α = −10−3 (α = 10−3) is indeed located below
(above) the corresponding �R curve for α = 0. Since the quantity �R is a measure of the finger
perturbation amplitude, this means that the α < 0 (α > 0) interface is indeed relatively more stable
(unstable) than the α = 0 interface. As our theory is based on a first-order expansion in the rescaled
slope αR/bi , at first glance one could expect that the distance between the �R curve for α > 0 and
α = 0 should be the same as the distance between the result for α < 0 and α = 0. However, this is
not true since both bi [see Eq. (3)] and R [see Eq. (5)] depend on α, such that higher-order effects
on α come into play, introducing an asymmetry in the �R curves plotted in the bottom panel of
Fig. 3(a). This remark is also valid for the curves appearing in Figs. 3(b)–3(d), as well as in Fig. 6.

If one increases the value of Ca as illustrated in Fig. 3 and inspects the responses of the emerging
interfaces, one detects that the strong stabilization provided by the converging cell in Fig. 3(a)
becomes less and less effective. On the other hand, the more unstable diverging cell interfaces
observed for lower Ca tend to become more and more stable (as compared with the parallel-plane
ones) as the value of Ca is raised. Therefore, as Ca is increased, one eventually reaches a critical
value of Ca [situation depicted in Fig. 3(b) where Ca = Cacrit = Caα>0

crit = 1637] beyond which the
relative stability behavior of the α > 0 (diverging) interface with respect to the α = 0 interface
changes. In other words, if Ca > Caα>0

crit the diverging interface will now be more stable than its
uniform interface counterpart. These issues can be verified in Fig. 3(b), particularly in the bottom
panel, where one can see that the �R curves for α = 0 and α > 0 are nearly overlapping, and touch
one another at t = tf . Complementary information about this transitional behavior for diverging
cells is given in Fig. 5(a), which describes how the finger length evaluated at time t = tf = 13
[�R(tf )] varies as Ca is increased. It is apparent from Fig. 5(a) that the curves for α = 0 and
α > 0 cross each other at Ca = Caα>0

crit = 1637 [as indicated by the dashed vertical line on the left
in Fig. 5(a)], in such a way that if Ca < Caα>0

crit the diverging cell interface is more unstable than the
uniform interface. In contrast, if Ca > Caα>0

crit the diverging cell interface becomes more stable than
the uniform interface. So at Ca = Caα>0

crit = 1637 there is in fact a transition in fingering stability
behavior of the system for diverging cells.
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It is worth noting that despite the transition behavior for diverging Hele-Shaw cells described
above, and illustrated in Fig. 3(b) and in Fig. 5(a), the converging interface appearing in Fig. 3(b)
is still more stable than the uniform one, as was the case in Fig. 3(a). This can be confirmed by
inspecting the bottom panel of Fig. 3(b), where the �R curve for α < 0 is still standing below
the �R curve for α = 0. Therefore, the occurrence of an instability transition for the interface
behavior in diverging cells does not imply the development of a simultaneous change for flow in
converging Hele-Shaw cells. Notice that by increasing Ca from Figs. 3(a) to 3(b) one sees that
the �R curves for α > 0 and α < 0 get closer to the �R curve for α = 0, indicating that the
destabilization (stabilization) provided by the diverging (converging) cell becomes less intense.
Another interesting aspect revealed in Fig. 3(b) is the observation that, irrespective of the value
and sign of α, the finger tips in Fig. 3(b) are a bit wider and flatter than the finger tips observed in
the interfaces depicted in Fig. 3(a). So, one concludes that by increasing Ca one notices a tendency
toward finger-tip broadening and flattening (α = 0 and α > 0 curves), and even the very onset of a
tip-splitting process (α < 0 curve). These weakly nonlinear results about the shape of the patterns
are also in line with the related findings (i.e., production of patterns having flattened finger tips)
obtained in Ref. [44] for a similar range of values of Ca.

It turns out that, if one continues to increase the magnitude of the capillary number, one discovers
another relative instability transition, now involving the interface behaviors in converging and
uniform cells. As already pointed out in the previous paragraph, as Ca increases, the converging
interface becomes increasingly more unstable as compared to the correponding uniform interface
situation. In this scenario, one ultimately reaches another critical value for the capillary number
[see Fig. 3(c) for which Ca = Cacrit = Caα<0

crit = 1905], beyond which the converging interface
will be more unstable than the equivalent parallel-plate cell interface. This situation can be easily
identified in the bottom panel of Fig. 3(c) where the �R curves for α = 0 and α < 0 are almost
indistinguishable. The determination of this second critical value for the capillary number is
illustrated in Fig. 5(a) corresponding to the point at which the �R(tf ) curves for α = 0 and α < 0
intersect one another [as identified by the dashed vertical line on the right in Fig. 5(a)]. This higher
Ca behavior is visualized in the top panel of Fig. 3(c), where the converging interface reveals a
pattern displaying mild finger-tip-splitting events. Once again, this weakly nonlinear prediction is
in qualitative accordance with the patterns simulated in Ref. [44] for the high-Ca regime, in which
finger-tip splitting is proliferating.

If one increases Ca beyond the value of the critical capillary for the transition involving the
converging and the uniform interfaces [i.e., if Ca > Caα<0

crit = 1905 as in Fig. 3(d) for which Ca =
3000], the destabilizing role of the converging cell keeps increasing, and more intense tip splitting
phenomena are detected for the α < 0 situation. Equivalently, one finds that for such large values
of Ca the stabilizing role of the diverging cell is reinforced. This can be seen in the bottom panel of
Fig. 3(d), where the �R curve for α > 0 (α < 0) is now below (above) the �R curve for α = 0,
notably for larger values of time. We have also investigated how the critical values of the capillary
number obtained in the analysis of Figs. 3 and 5(a) are modified, if the values of n and tf are kept
fixed, and if the initial perturbation amplitude an(0) is varied. Regarding this specific point, we have
found that if an(0) is decreased (increased) the value of Cacrit is raised (lowered). For example, in
case of Fig. 3 our tests indicate that a 2% change in an(0) [note that the variation in an(0) cannot be
very large, since here we want to hold tf unchanged] leads to an averaged change of about 10% (5%)
in Caα<0

crit (Caα>0
crit ). However, we have also verified that the general trend of the fingering instability

transition unveiled in Fig. 3 is robust with such changes in an(0). We stress that these findings are
also true for the data connected to Fig. 6, where the development of the instability transition will be
examined in another set of values of n, an(0), tf , and Ca.

From the analysis of Fig. 3 one can infer that our mode-coupling approach is able to capture
the most prominent pattern-forming behaviors that arise when the capillary number is varied in
radially tapered Hele-Shaw cells: while in converging geometry the interface response changes from
stabilizing at low Ca to destabilizing at high Ca, in diverging geometry the interface varies from
more unstable at low Ca to more stable in the high Ca regime. Even though this is reassuring, in
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FIG. 6. Snapshot of the weakly nonlinear interfaces at time t = tf = 12 (top panels), displaying charac-
teristic fingering patterns for flow in diverging (α = 10−3), uniform (α = 0), and converging (α = −10−3)
Hele-Shaw cells. The following values of the capillary number are examined: (a) Ca = 1200, (b) Ca = 1687,
(c) Ca = 1925, and (d) Ca = 4000. The interfaces are produced by taking into consideration the nonlinear
coupling between modes n and 2n, where n = 4. The corresponding time evolution of the finger length �R(t )
for 0 � t � tf is depicted in the bottom panels.

order to strengthen the relevance of our weakly nonlinear results we revisit the situations examined
in Fig. 3 by using a wider range of relevant parameters. Specifically, in Fig. 6 we investigate how
the general trend uncovered in Fig. 3 regarding the instability transition is changed, if we consider
different values for (1) the wave number n, (2) the initial amplitude an(0), and (3) the final time
tf . While in Fig. 3 we analyzed the cases in which n = 5, an(0) = 10−2, and tf = 13, in Fig. 6 we
examine the situation in which n = 4, an(0) = 2.5 × 10−2, and tf = 12. By inspecting Figs. 3 and
6, comparing the interface responses to changes in Ca and the the related time evolution curves for
finger length scale �R(t ), one verifies that despite the different values of n, an(0), and tf utilized
in these plots, the general trend of the instability transition is detected. In addition to the situations
studied in Figs. 3 and 6, we have also investigated two additional cases (figures not shown), for
two more sets of parameters: (1) n = 6, an(0) = 5.0 × 10−3, and tf = 11, and (2) n = 3, an(0) =
5.5 × 10−2, and tf = 15. We stress that, also for these last two cases, we have encountered the same
trends already found in Figs. 3 and 6.

Supplementary information about the transitional behaviors observed in Fig. 6 is given in
Fig. 5(b). Of course, the values of the critical capillary numbers at which the relative instability
behavior changes (Cacrit) are not the same in Fig. 3 [Caα>0

crit = 1637, Caα<0
crit = 1905] and Fig. 6

[Caα>0
crit = 1687, Caα<0

crit = 1925]. Likewise, other values of Cacrit are found for the two additional
sets of parameters mentioned in the previous paragraph, where in (1) we have Caα>0

crit = 1294 and
Caα<0

crit = 1928, and in (2) we have Caα>0
crit = 2097 and Caα<0

crit = 2317. All this data indicate that
the specific values for Cacrit do depend on the parameters n, an(0), and tf . On the other hand, the
dispersion in these values is not overly significant, pointing to the usefulness of our theoretical
approach in describing the general features of the relative instability transition as n, an(0), and
tf are modified. However, it should be clear that we are not claiming that the values of Cacrit

calculated for the situations illustrated in Figs. 3, 5, 6 and in the additional cases (1) and (2) are
universal. Nevertheless, we can still say that the weakly nonlinear description is able to detect, and
consistently mimic, the general trend of the fingering instability transition, and of the associated
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finger morphological changes (finger-tip widening, flattening, and splitting) that emerge in radially
tapered Hele-Shaw cell flows [44].

Various explanations for the stabilizing and destabilizing effects that emerge during fluid
displacement in tapered Hele-Shaw cells have already been given in the literature [38–48]. In any
case, at this point we present a brief discussion about the physical mechanisms responsible for
changing the relative instability when the capillary number Ca is raised, as analyzed in the situations
illustrated in Figs. 3 and 6. We begin with the converging geometry case, which involves the
action of two stabilizing effects: the first one comes from the reduction of the transverse curvature
[∼1/b(r )]. As the interface advances, b(r ) decreases in the direction of the flow, and the interface
finds a region of higher transverse curvature that slows down the fingertips in comparison with parts
of the interface which are further back in the cell plane. A second stabilizing effect is due to a
decrease in the fluid mobility [b(r )]2/12η at the front of the interface. In opposition to these two
stabilizing mechanisms, one has an increase in the viscous pressure gradient that tends to destabilize
the interface. The competition among these three effects determines the relative instability discussed
in Figs. 3 and 6. Under such circumstances, when lower Ca values are considered, the fluid mobility
reduction and the increase of the transversal curvature dominate over the increase of the viscous
effect. In this framing, the converging cell situation tends to be more stable than the parallel-plate
case. On the other hand, as one increases Ca, the viscous pressure gradient overcomes the stabilizing
contributions, and, thus, the converging gap leads to an increase in the formation of viscous fingers
in comparison with the uniform Hele-Shaw cell case. Under the action of such stabilizing and
destabilizing mechanisms, the interface responses are exactly reversed in the diverging geometry
situation.

Earlier in this work, we have commented that, in general, one should not expect quantitative
agreement between weakly nonlinear interface shapes and late-time pattern-forming structures
obtained by intensive numerical simulations. We conclude our discussion in this section by
addressing a closely related matter. More specifically, we justify why we have not provided a direct
comparison between our weakly nonlinear interfaces, and the fully nonlinear ones obtained by the
simulations performed in Ref. [44] for radially tapered Hele-Shaw cells. After all, one could wonder
why we simply have not used the exact same set of parameters utilized in Ref. [44] and then tried
to replicate their interface evolutions at least partially. This sounds quite reasonable and logical. In
principle, to perform such a comparison, one could concentrate on situations presented in Ref. [44]
in which the resulting interfaces are not excessively deformed, like the converging and uniform cell
interfaces plotted in Fig. 6(a) of their paper.

Unfortunately, we have not succeeded in trying to reproduce some of the pattern-forming
scenarios examined in Ref. [44]. Following Ref. [44], we used the parameters of their Fig. 6(a)
[i.e., β = 1250, Ca = 500, q = 100, α = 0,±10−3, an(0) = 5.0 × 10−2, n = 8, and time t = 24]
to examine the time evolution of the equivalent weakly nonlinear shapes. It should be pointed
out that the weakly nonlinear interfaces we generated were produced using all these parameters,
with the exception of β. Since our theoretical model considers the infinite viscosity ratio limit
(β → ∞), we cannot take β = 1250 as in Ref. [44]. Regrettably, when we do all this and
simulate the weakly nonlinear interfaces, we observed that the weakly nonlinear solutions “blow
up” already at times considerably shorter than t = 24 (time used in Ref. [44] to plot their fully
nonlinear interfaces). The resulting weakly nonlinear patterns presented very large amplitudes,
revealing weird-looking interface shapes that show multiple self-intersections. The reason for this
abnormal weakly nonlinear portrayal is the fact that, within the scope of our β → ∞ model, both
the initial amplitude an(0) and the time (t = 24) utilized in Ref. [44] are so large, that under
such circumstances the weakly nonlinear description is no longer valid. Of course, an important
contributing factor for the disagreement between fully and weakly nonlinear interfaces is the fact
that our β → ∞ situation is even more unstable than the equivalent case studied in Ref. [44], in
which β is large, but finite.

In closing, it should be clear that with the parameter choice made in Ref. [44], it is not plausible
to directly contrast our modestly perturbed interfaces with their more complex, late-time structures.
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Consequently, we could not make a direct comparison between the fully nonlinear interfaces
obtained in Ref. [44], and the equivalent weakly nonlinear shapes produced by our perturbative
mode-coupling scheme. By the way, this is the reason why, while plotting the various representative
interfaces shown throughout this work, we had to consider sets of parameters distinct from that
studied in Ref. [44]. In particular, for our β → ∞ model, we had to use smaller values for the
final times t = tf . Moreover, in order to better illustrate the instability transition issues, and the
related pattern-forming changes, we had to select proper values for the wave numbers n to ensure
the validity of our weakly nonlinear perturbative approach.

IV. CONCLUSION

Our mode-coupling, weakly nonlinear results reveal that by increasing the value of the capillary
number for viscous flows in radially tapered (slightly converging, or smoothly diverging) Hele-
Shaw cells, one induces changes in the interface instability behavior relative to the corresponding
interface response in a uniform (parallel-plate) Hele-Shaw cell. We have perceived that at lower
Ca the converging cell interface is stabilized in comparison to the uniform cell interface, while at
higher Ca the converging interface is relatively destabilized. Interestingly, these effects are exactly
reversed in the diverging cell cases, where one finds more unstable interfaces in the low-Ca regime,
and more stable interfacial feedback in the high-Ca regime. We have also been able to investigate
how the overall shape of the emerging fingers is modified as Ca is increased: for both converging
and diverging cell situations we observed that the finger tips are initially rounded for lower Ca, then
get flattened at intermediate values of Ca, and finally tend to split at higher Ca.

It should be pointed out that our theoretical findings are qualitatively consistent with similar
types of results obtained in Ref. [44] through intensive numerical simulations. This substantiates
the usefulness and validity of our lowest nonlinear-order, perturbative mode-coupling approach in
getting useful insights into the late-time pattern formation dynamics.

To conclude, it is worthwhile to note that a detailed experimental exploration of such a rich
radially tapered Hele-Shaw cell system still needs to be developed in order to shed further light on
the impact of the capillary number on the relative stability, and finger shape transitions theoretically
scrutinized in this work and in Ref. [44].
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