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We investigate the effect of hydrodynamic dispersion on convection in porous media
by performing direct numerical simulations (DNS) in a two-dimensional Rayleigh-Darcy
domain. Scaling analysis of the governing equations shows that the dynamics of this
system are not only controlled by the classical Rayleigh-Darcy number based on molecular
diffusion, Ram, and the domain aspect ratio, but also controlled by two other dimensionless
parameters: the dispersive Rayleigh number Rad = H/αt and the dispersivity ratio r =
αl/αt , where H is the domain height and αt and αl are the transverse and longitudinal
dispersivities, respectively. For � = Rad/Ram > O(1), the influence from the mechanical
dispersion is minor; for � � 0.02, however, the flow pattern is determined by Rad while
the convective flux is F ∼ c(Rad )Ram for large Ram. Our DNS results also show that
the increase of mechanical dispersion, i.e., decreasing Rad , will coarsen the convective
pattern by increasing the plume spacing. Moreover, the inherent anisotropy of mechanical
dispersion breaks the columnar structure of the megaplumes at large Ram, if Rad < 5000.
This results in a fan-flow geometry that reduces the convective flux.
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I. INTRODUCTION

Convection in porous media controls mass and energy transfer in many natural and engineered
applications [1–4]. This subject has received renewed interest because of its potential impact on
geological carbon dioxide (CO2) storage, which allows large reductions of CO2 emissions from
fossil-fuel-based electricity generation [5–7]. After the CO2 is injected into the deep saline aquifers,
it dissolves into the brine and increases the brine density. The dissolution of CO2 eventually forms
a stable stratification and ensures secure long-term storage [8,9].

The rate of CO2 dissolution is limited by mass transfer of dissolved CO2 away from the CO2-
brine interface. Diffusive mass transport may take millions of years to saturate the brine [10–12].
However, once the diffusive boundary layer of dissolved CO2 in brine has grown thick enough, it
might become unstable and subsequently convection sets in and forms descending CO2-rich plumes.
This process greatly increases the CO2 dissolution rate and significantly reduces the leakage risk of
buoyant CO2 into potable aquifers or into the atmosphere [13].

Dynamics of porous media convection can be studied in either a one-sided system where
convection is driven by a source of buoyancy on only one boundary, e.g., the solutal convection
system [14–20], or a two-sided system where both of top and bottom boundaries actively drive
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the convection, e.g., the thermal convection system [17,21–25]. These two systems share many
common characteristics in convective pattern and transport properties, although dynamics in the
former generally evolve over time while there exists a statistically steady state in the latter
[12,17,19,23,26,27]. In this study, we focus on the two-sided convective system (Rayleigh-Darcy
convection) to perform long-time direct numerical simulations (DNS) for reliable averaged results.

In the absence of mechanical dispersion, the flow pattern and transport flux of convection in
porous media are generally thought to be controlled by the molecular Rayleigh number,

Ram = k�ρgH

μφDm

, (1)

where k is the medium permeability, �ρ is the density change between the fresh and the saturated
water, g is the acceleration of gravity, H is the domain height, μ is the dynamic viscosity of the fluid,
φ is the porosity, and Dm is the molecular diffusion coefficient. At large Ram, convection appears
in the form of columnar plumes fed continually with a series of protoplumes generated from the
diffusive boundary layer [23,25]. As Ram is increased, the interplume spacing δ and the flux F in
the quasisteady convective regime follow specific power-law scalings of Ram, i.e., δ ∼ Ra−α

m with
the positive exponent α � 0.5 [17,23–26,28,29], and F ≈ cRam [19,22,23,25–27,29–34], where
c ≈ 0.0068 for the two-sided system and c ≈ 0.017 for the one-sided system with fixed CO2-water
contact at the top boundary [19,23,26,29,30,35].

Nevertheless, recent bench-top experiments on solutal convection in porous media show that Ram

does not control the convective pattern in typical granular media, because mechanical dispersion
is the dominant dissipative mechanism [36]. Mechanical dispersion in porous media is due to
nonuniformities in the flow that cause mixing of the solute [37–39]. The mathematical description
of hydrodynamic dispersion on the Darcy scale is a subject of active investigation [40–42]; however,
here we consider the commonly used Fickian dispersion tensor [43–50]. In an isotropic and
homogeneous porous medium, this tensor is described by two parameters: the longitudinal and
transverse dispersivities αl and αt , respectively. Therefore, the hydrodynamic dispersion tensor in
the fixed Cartesian reference frame can be expressed as

D∗ = DmI + (αl − αt )
u∗u∗

|u∗| + αt |u∗|I, (2)

where I denotes the identity tensor and the mechanical dispersion scales linearly with the interstitial
fluid velocity u∗. As long as |u∗| � Dm/αl , D∗ ≈ DmI, so that molecular diffusion dominates
over hydrodynamic dispersion; when |u∗| � Dm/αl , however, the mechanical dispersion starts to
dominate.

Recent studies [36,46–54] indicate that hydrodynamic dispersion significantly affects the flow
pattern and mass transport of convection in porous media under certain conditions. Numerical
simulations [47,48] show that hydrodynamic dispersion enhances the convective mixing and greatly
reduces the onset time for convection; however, recent laboratory experiments reveal that the
mechanical dispersion coarsens the convective pattern and reduces the increase of convective flux
with increasing permeability k [36,51]. Particularly, systematic experiments [36] illustrate that
adjusting Ram via changing the density difference �ρ or the medium permeability k may result
in distinct convective characteristics due to hydrodynamic dispersion. For fixed �ρ, increasing k

(via choosing a larger glass bead diameter d as k ∼ d2) raises Ram but enlarges the interplume
spacing δ; for fixed k, however, δ is nearly fixed for increasing �ρ. Second, for fixed �ρ, the
dissolution flux F does not increase linearly with k and is lower than expected at high k; for fixed
k, in contrast, F ∼ c(k)Ram with decreasing prefactor c as k is increased. Despite this decrease in
flux, the vertical velocity, as measured by the speed of the fastest descending fingertip, increases
approximately linearly with both �ρ and k. Some of the above findings contradict the classical
predictions made in the absence of mechanical dispersion.
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To understand the effect of dispersion on convection, we perform DNS in a two-dimensional
(2D), rectangular, homogeneous, and isotropic Rayleigh-Darcy domain. We aim to identify the
dimensionless parameters governing convection in porous media with hydrodynamic dispersion,
determine the scaling law for the quasisteady convective flux, and quantify the contribution of
molecular diffusion and mechanical dispersion to the hydrodynamic dissipation. As mentioned
earlier, we focus on a two-sided convective system for long-time averaged results of individual
simulations, but the results can be qualitatively applied to the one-sided case due to many common
features in convection shared by these two systems [12,17,23,26,27].

The remainder of this paper is organized as follows. In the next section, we nondimensionalize
the system in a specific way so that the parameters controlling the pattern and the flux, respectively,
are decoupled, and describe the numerical method to solve the dimensionless equations. In Sec. III,
we present the DNS results in terms of different control parameters, including both the diffusion-
dominant and dispersion-dominant limits. In Sec. IV, we analyze how hydrodynamic dispersion
affects the convective pattern and flux, apply our results to recent laboratory experiments of
solutal convection in bead packs, compare our results with previous numerical investigations in
Refs. [47,48], and discuss the limitations of the Fickian dispersion model. Our conclusions are
given in Sec. V.

II. PROBLEM FORMATION AND COMPUTATIONAL METHODOLOGY

In previous studies, the dispersivity, αl or αt , and the molecular diffusivity Dm are combined to
define the characteristic length and timescales or the Rayleigh number [47,48]. In this work, how-
ever, we rescale the system using the domain height H , the buoyancy velocity U = k�ρg/(μφ),
and the convective timescale Tc = H/U . As will be discussed in Sec. IV C, different scales for
nondimensionalization may lead to opposite conclusions. However, it will be shown below that the
scales chosen in this study allow us to decouple the parameters controlling the flow pattern and the
flux which simplifies the discussion. Based on these scales, we obtain the dimensionless equations

∂C

∂t
+ u · ∇C = ∇ · (D∇C), (3a)

u = −∇p − Cez, (3b)

∇ · u = 0, (3c)

where C, u = (u,w), and p are the dimensionless forms of concentration, velocity, and pressure,
respectively, and ez is a unit vector in z (upward) direction. The dimensionless hydrodynamic
dispersion tensor is then given by

D = Ra−1
m I + Ra−1

d

[
(r − 1)

uu
|u| + |u|I

]
(4)

and characterized by the molecular Rayleigh number Ram = UH/Dm defined in Eq. (1) and two
additional parameters,

Rad = UH

Dt

= UH

αtU
= H

αt

(5a)

and

r = αl

αt

, (5b)

which are referred to as dispersive Rayleigh number and dispersivity ratio, respectively. Here,
Dt = αtU is the transverse dispersion coefficient, and the definition of the dispersive Rayleigh
number is analogous to the definition of Ram or the Peclét number based on the longitudinal or
transverse dispersion coefficient [55]. Moreover, from the definition, the dissipation by mechanical
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dispersion increases with decreasing Rad . This allows us to easily recover the case without
mechanical dispersion and to study the limit of high-Ram convection.

It is worth noting that the dimensionless hydrodynamic dispersion tensor can also be written as

D = 1

Rah

{
I

1 + 1/�
+ 1

1 + �

[
(r − 1)

uu
|u| + |u|I

]}
(6)

or

D = 1

Ram

{
I + 1

�

[
(r − 1)

uu
|u| + |u|I

]}
, (7)

where

Rah = UH

Dm + Dt

= 1
1

Ram
+ 1

Rad

(8a)

and

� = Dm

Dt

= Rad

Ram

(8b)

represent the effective Rayleigh number based on hydrodynamic dispersion and the ratio of
molecular diffusion to mechanical dispersion, respectively. In addition, 1/� = Uαt/Dm can also
be interpreted as a microlevel Peclét number based on a pore-scale length, i.e., the dispersivity αt ∼
d/r . Therefore, diffusion is the dominant dissipative mechanism for � � 1, so that Rah ≈ Ram;
similarly, mechanical dispersion is the dominant dissipative mechanism for � � 1 and Rah ≈ Rad .

The flow is assumed to be periodic laterally with a impermeable top and bottom boundaries.
Solute concentration along the top and bottom boundaries is unity and null, respectively. Hence, the
boundary conditions at the top and the bottom are given by

C|z=1 = 1 and w|z=1 = 0; C|z=0 = w|z=0 = 0. (9)

Note that the problem posed by (3) and (9) is formally identical to the two-sided thermal convection
problem in which the domain is heated from below and cooled from above. Here, (3) and (9) are
solved numerically using a Fourier-Chebyshev-tau pseudospectral solver developed in Refs. [25,29],
the temporal discretization is achieved using a three-step semi-implicit Runge-Kutta scheme [56],
and the numerical scheme is parallelized using the message passing interface (MPI). In order to
obtain reliable averaged results, the DNS are performed up to O(103) convective time units. The
dispersivity ratio r can vary from 1 to 30 in various field sites [57], and laboratory experiments
and numerical simulations reveal that the transverse dispersivity is usually an order of magnitude
less than the longitudinal dispersivity in advection dominated systems [58–62]. Thus, we set r = 10
in most simulations, but also explore how r affects both the convective pattern and the flux when
mechanical dispersion dominates the hydrodynamic dispersion at Rad = 1000.

To quantify the flow, we measure the convective flux F at the top wall,

F =
〈

∂C

∂z
+ Ram

Rad

|u|∂C

∂z

〉∣∣∣∣∣
z=1

= Fm + Fd, (10)

where the angle bracket and the overbar denote the long-time and the horizontal averages,
respectively, the first term on the right side of (10) represents the flux at the boundary via pure
molecular diffusion Fm, and the second term represents the flux via mechanical dispersion Fd . We
also measure the interplume spacing δ by time averaging the dominant Fourier mode number in the
interior, the mean horizontal velocity at the top wall, ũ = 〈|u|〉|z=1, the mean vertical velocity in the

123801-4



RAYLEIGH-DARCY CONVECTION WITH HYDRODYNAMIC …

interior, w̃ = 〈|w|〉|z= 1
2
, and the magnitude of the time-averaged w extremum value in the interior,

wm = 〈max(|w|z= 1
2
)〉. In our study, these averaged results are all from individual simulations.

III. RESULTS

To explore the effect of hydrodynamic dispersion on convection, numerical simulations and
laboratory experiments can be conducted in different combinations of parameters, e.g., Rah and
�, or density difference �ρ and grain size d. In this study, we perform DNS in terms of fixed (Ram,
r), (Rad , r), and (Ram, Rad ), respectively. It will be shown below for fixed r , the parameters Ram

and Rad predominantly control the flux and the pattern, respectively, in the dispersion-dominated
regime. However, in experiments it is difficult to change Rad with fixed Ram by varying �ρ and d,
since the variation of grain size changes both Ram and Rad simultaneously.

A. Fixed Ram and r

Figures 1 and 2 show the variation of the convective flow pattern and the corresponding averaged
DNS results as a function of Rad for Ram = 20 000 and r = 10. When the smallest diffusive
length scale 1/Ram is much larger than the pore scale of the medium d/H , i.e., Rad � rRam as
αt ≈ d/r [38,63], the molecular diffusion dominates the hydrodynamics dispersion [19,23,36]. Our
DNS results reveal that only for � ≡ Rad/Ram � 105, the convection with mechanical dispersion
converges to the classical columnar flow [Figs. 1(f) and 2].

When O(1) < � < 105, the relatively weak mechanical dispersion slightly increases the plume
width and enhances the convective transport, but the flow still retains the columnar structure
[Figs. 1(e), 2(a), and 2(b)]. For � < O(1), however, the mechanical dispersion starts to apparently
affect the convective pattern and flux: the convection transitions to a fan flow with laterally
expanding megaplumes along the vertical flow direction [Figs. 1(b)–1(d)], and the convective flux
is reduced to approximately 50% of the high-Rad value at � = 0.05 [Fig. 2(a)].

Increasing dispersion thickens the diffusive boundary layer [Fig. 1(a)], smoothes the small-
scale plumes near the walls, and stabilizes the flow [Figs. 1(b)–1(f)]. Eventually, the convection
becomes steady at Rad = 100 [Fig. 1(b)] and the flux is again increased for � � 0.05 due to the
large magnitude of the effective diffusion coefficient, (Ram/Rad )|u|, induced by the mechanical
dispersion [Fig. 2(a)]. Moreover, it is also seen from Figs. 2(b) and 2(c) that hydrodynamic
dispersion coarsens the flow pattern, given by δ, and the mean buoyancy velocities at the top and in
the interior, ũ, w̃, and wm, roughly follow the same trend as the convective flux. It should be noted
that the w extremum value, wm, becomes nearly constant for 0.025 � � � 0.25 [Fig. 2(c)].

B. Fixed Rad and r

Figures 3 and 4 show the convective pattern and the corresponding averaged DNS results as a
function of Ram for Rad = 1000 and r = 10. The convection basically remains a fan-flow structure
at Rad = 1000 as Ram → ∞ [Figs. 3(b)–3(f)]. In particular, the interplume spacing δ is nearly
invariant when � � 0.2 [Fig. 4(b)]; the mean velocities ũ and w̃ are roughly unchanged after � �
0.05 [Fig. 4(c)]; and the time-averaged horizontal-mean concentration profile 〈C〉 becomes almost
fixed for � � 0.02 [Fig. 3(a)], so that at the top and the bottom, the flux due to molecular diffusion
(i.e., Fm) levels off [Fig. 4(a)]. In short, at sufficiently large Ram, the flow pattern and the averaged
system quantities (i.e., 〈C〉, δ, ũ, w̃, and wm) are independent of Ram.

Actually, as Ram → ∞, the hydrodynamic dispersion tensor (4) reduces to

D → Ra−1
d

[
(r − 1)

uu
|u| + |u|I

]
, (11)
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FIG. 1. Time-averaged horizontal-mean concentration profile 〈C〉 and snapshots of the concentration field
C from DNS at Ram = 20 000 and r = 10 for different Rad . The domain aspect ratio is L = 5. In panel (a),
only half of 〈C〉 is shown due to its antisymmetry about the midplane, and the z values on the horizontal axis are
nonuniformly spaced to clearly show the structure near the wall. Increasing mechanical disperison (decreasing
Rad ) thickens the diffusive boundary layer, coarsens the flow pattern, and stabilizes the flow. Moreover, the
convection transitions to a fan-flow structure at Rad < 5000.

so that Rad becomes the only parameter controlling the dynamics of the system for fixed r . Thus,
at large Ram the concentration field C and the buoyancy velocity u are determined solely by the
dispersive Rayleigh number Rad , as confirmed by our DNS data. Once C and u become invariant in
the limit of Ram → ∞, Fm ∼ c1, and Fd ∼ c2Ram with the constants c1 and c2 determined by Rad ,
as shown in Fig. 4(a).
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FIG. 2. Averaged DNS results of convection at Ram = 20 000 and r = 10 for different Rad . The domain
aspect ratio is L = 5. The dashed lines denote the results in the absence of mechanical dispersion and the
dash-dotted line separates the fan-flow and the columnar-flow regions. Relatively weak mechanical dispersion
slightly enhances the convective transport. However, as convection transitions to a fan-flow structure, the
transport flux is significantly reduced. Nevertheless, in the strong-dispersion limit, the flow is stabilized and
the flux is increased again due to the large magnitude of the effective diffusion coefficient.

C. Fixed Ram and Rad

In this section, we explore how the dispersivity ratio affects the convective pattern and flux at
Ram = 20 000 and Rad = 1000, corresponding to � ∼ 0.05 where the reduction of the flux by
dispersion is strongest [Fig. 2(a)]. In the fixed domain, constant Rad implies invariant transverse
dispersivity, so increasing the dispersivity ratio r only strengthens the longitudinal dispersivity.

As in Fig. 3(a), where Rad is also fixed, when mechanical dispersion is the dominant dissipative
mechanism varying Ram or r only slightly changes the boundary-layer thickness [Fig. 5(a)], which
is predominantly controlled by the strength of transverse dispersivity (see detailed analysis in
Sec. IV A). At r = 1, the hydrodynamic dispersion tensor D is heterogeneous but isotropic, the
high-Ram convection remains a columnar structure [Fig. 5(b)], and the convective flux is increased
compared with that in the absence of mechanical dispersion [Fig. 6(a)]. After adding isotropic
velocity-dependent mechanical dispersion, the diffusion boundary layer is thickened so that more
saturated water is advected downward and upward by columnar flows from the upper and lower
layers. For r > 1, however, D is both heterogeneous and anisotropic, and the convection transitions
to a fan-flow structure [Figs. 5(c)–5(e)]. Increasing r monotonically enlarges the interplume spacing
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FIG. 3. Time-averaged horizontal-mean concentration profile 〈C〉 and snapshots of the concentration field
C from DNS at Rad = 1000 and r = 10 for different Ram. For Ram � 20 000, the domain aspect ratio is L = 5,
while for Ram > 20 000, DNS are performed in a small unit L = 0.5 where there only exists a single rising and
descending megaplume but the turbulent convection still sustains itself. In panel (a), only half of 〈C〉 is shown
due to its antisymmetry about the midplane, and the z values on the horizontal axis are nonuniformly spaced
to clearly show the structure near the wall. For fixed Rad = 1000 and r = 10, the averaged and instantaneous
concentration fields become nearly invariant at Ram � 50 000 (i.e., � � 0.02).

δ [Fig. 6(b)] and decreases the convective flux and buoyancy velocity [Figs. 6(a) and 6(c)]. Finally,
for r � 10 the dynamics of the system become nearly invariant. Similar results have been observed
in the one-sided convection problem [36].

D. Pattern formation and transport flux in the (Ram, Rad ) parameter space

In advection-dominated systems, the dispersivity ratio, r ∼ O(10), is generally fixed [58–62].
A natural question concerns how the mechanical dispersion affects convection in the (Ram, Rad )
parameter space at r = 10. For � > O(1), the influence from the mechanical dispersion is minor, so
that both the convective pattern and flux are mostly controlled by Ram. For 0.02 � � < O(1), both
the molecular diffusion and the mechanical dispersion are important to convection, e.g., they equally
affect the flux at � ≈ 0.05. For � < 0.02, the mechanical dispersion dominates the hydrodynamic
dispersion: The flow pattern is determined by Rad , e.g., C = C(Rad ), δ = δ(Rad ), and u = u(Rad ),
while the flux is predominantly controlled by Ram, i.e., F = Fm + Fd ∼ c1(Rad ) + c2(Rad )Ram ∼
c2(Rad )Ram. Since � represents the ratio of molecular diffusion coefficient to transverse dispersion
coefficient, in this study it is used to characterize when the mechanical dispersion becomes the
dominant dissipative mechanism at given Ram or Rad . However, the parameter � couples both the
media and fluid properties and determines neither the flow pattern nor the convective flux in the
macro level. Our DNS results and analysis indicate that in a dispersion-dominated regime (i.e., � <

0.02), Rad and Ram are more effective parameters controlling the pattern and the flux, respectively,
throughout the domain.

Determination of the functions c1(Rad ) and c2(Rad ) requires extensive numerical simulations at
Ram > 100Rad , where mechanical dispersion dominates the dissipation (� � 1). Here we only
show the variations of c1 and c2 as a function of Rad for Rad � 1000 due to the expensive
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FIG. 4. Averaged DNS results of convection at Rad = 1000 and r = 10 for different Ram. L is as in
Fig. 3. For fixed Rad and r , the concentration field C, the interplume spacing δ and the buoyancy flow
velocity u become invariant at sufficiently large Ram. Hence, as Ram → ∞, the flux by molecular diffusion,
Fm = 〈∂zC〉|z=1, becomes constant, while the flux by mechanical dispersion, Fd = 〈Ram/Rad |u|∂zC〉|z=1,
increases linearly with Ram.

computations (Fig. 7). Our study above shows that the pattern of convection is determined by
Rad for � � 1. Increasing dispersion (i.e., decreasing Rad ) thickens the diffusive boundary layer
and decreases the concentration gradient at the wall, thereby monotonically decreasing c1, i.e.,
c1 ∼ Ra0.74

d , as shown in Fig. 7(a). Moreover, for Rad � 1000 the prefactor c2 increases with
decreasing Rad due to the large magnitude of the effective diffusion coefficient (Ram/Rad )|u|, i.e.,
c2 ∼ Ra−0.51

d , as shown in Fig. 7(b). We note that these scalings may not hold at large Rad , where the
determination of c1(Rad ) and c2(Rad ) requires more systematic numerical simulations at extremely
high Ram (to ensure � � 1).

IV. DISCUSSION

A. Effects of dispersion on convective pattern and flux: Mechanisms

Our DNS results and analysis above reveal that at sufficiently large Ram, the convective pattern
is determined by the dispersive Rayleigh number Rad : The convection appears in the form of
columnar flow at Rad � 5000 and then transitions to a fan flow at Rad < 5000. This fan-flow
structure here is due to the inherent anisotropy of mechanical dispersion. As shown in Fig. 8, near
the top and the bottom walls the flow between the neighboring plumes is dominantly horizontal, so
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FIG. 5. Time-averaged horizontal-mean concentration profile 〈C〉 and snapshots of the concentration field
C from DNS at Ram = 20 000 and Rad = 1000 for different r . The domain aspect ratio is L = 5. In panel
(a), only half of 〈C〉 is shown due to its antisymmetry about the midplane, and the z values on the horizontal
axis are nonuniformly spaced to clearly show the structure near the wall. When mechanical dispersion is the
dominant dissipative mechanism at Rad = 1000, i.e., � � 1, the high-Ram convection in porous media remains
a columnar structure at r = 1, but transitions to a fan-flow structure at r > 1.

the interplume spacing is set by the lateral dispersion due to horizontal flow, D∗
xx,w ≈ Dm + αlu

∗
w,

and the thickness of the diffusive boundary layer is significantly affected by the vertical dispersion
due to horizontal flow, D∗

xz,w ≈ Dm + αtu
∗
w, where u∗

w is the horizontal velocity at the top and/or
bottom wall and all the variables with superscript ∗ are in dimensional form. At the roots of
the plumes, however, the flow is dominantly vertical, so the plume width is controlled by the
lateral dispersion due to vertical flow, D∗

zx,r ≈ Dm + αtw
∗
r , where w∗

r is the vertical velocity at
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FIG. 6. Averaged DNS results of convection at Ram = 20 000 and Rad = 1000 for different r . The domain
aspect ratio is L = 5. In the absence of mechanical dispersion, the flux F ≈ 138 at Ram = 20 000, so the mass
transport is enhanced after adding isotropic, velocity-dependent dispersion (r = 1). Increasing r enlarges the
interplume spacing and decreases the convective flux and buoyancy velocity. For r � 10, the averaged results
become nearly invariant.

the plume roots. The mass conservation of the incompressible flow requires u∗
w ≈ w∗

r near the wall.
Hence, in advection-dominated systems, the inherent anisotropy of the mechanical dispersion, i.e.,
αl � αt or r � 1, leads to D∗

xx,w � D∗
zx,r , and therefore the interplume spacing increases faster

with dispersion than the plume width. This asymmetry results in the fan-flow structure and reduces
the transport efficiency.

Below we show how the hydrodynamic dispersion affects the boundary-layer thickness and the
convective flux using scaling analysis. In the absence of mechanical dispersion, the balance between
advection and diffusion across the near-wall region yields the dimensional boundary-layer thickness

ε∗ ≈ Dm

w∗ = U

w∗
Dm

U
= 1

w

H

Ram

∼ H

Ram

, (12)

since the dimensionless vertical buoyancy velocity w converges to a constant value at sufficiently
large Ram [23]. And the dimensional convective flux transported through the upper and lower
boundary layers is

F ∗ ≈ Dm

�C

ε∗ ≈ w∗�C, (13)
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FIG. 7. Variations of the prefactors (a) c1 and (b) c2 as a function of Rad in the limit of Ram → ∞ at r = 10.
The solid lines denote the best power-law fit to the DNS data (circles). For each Rad , DNS are performed up to
Ram ∼ 1000Rad to determine c1 and c2.

where �C is the concentration difference between the fresh water and the saturated water. As the
flux by pure molecular diffusion is F ∗

m ≈ Dm�C/H , the dimensionless convective flux (i.e., the
ratio of the transport in the presence of convective motion to the diffusive transport in the absence
of fluid motion) can be written as

F = F ∗

F ∗
m

≈ w∗H
Dm

= w∗

U

UH

Dm

= wRam ∼ Ram, (14)

which has been verified by many numerical studies mentioned in the introduction section.
After adding mechanical dispersion, we can replace the molecular diffusivity Dm with the

effective hydrodynamic dispersivity D∗
xz,w ≈ Dm + αtu

∗
w and rewrite Eq. (12) as

ε∗ ≈ D∗
xz,w

w∗ ≈ 1

w

H

Ram

+ αt = 1

w

H

Ram

+ H

Rad

. (15)

(a) (b)

FIG. 8. Schematics showing the distribution of the hydrodynamic dispersion tensor in the form of ellipses.
(a) Columnar flow in the absence of mechanical dispersion; (b) fan flow with mechanical dispersion. The arrows
denote flow direction. In panel (a), D∗ = DmI is homogeneous and isotropic; in panel (b), the anisotropy of the
hydrodynamic dispersion leads to an asymmetry between the rising and the descending megaplumes near the
walls.
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FIG. 9. Variations of control parameters Ram and Rad as a function of (a) grain size d and (b) density
difference �ρ in laboratory experiments. In panel (a), �ρ = 9.3 kg/m3; in panel (b), d = 3 mm. The dash-
dotted lines separate different regimes and the dots denote the experiments in Ref. [36] in terms of Ram and
Rad . In regime I, � � 10, Rah ∼ Ram, and molecular diffusion dominates the dissipation; in regime II, 0.02 <

� < 10; and in regime III, � � 0.02, Rah ∼ Rad , and mechanical dispersion dominates the dissipation. In
experiments, varying d changes both Ram and Rad , while varying �ρ only changes Ram. Moreover, most of
the experiments in Ref. [36] are in the dispersion-dominant regime.

Eq. (12) is recovered as long as the molecular diffusion dominates the dissipation (e.g., Rad �
Ram). Nevertheless, when the dispersion becomes dominant, the dimensionless boundary-layer
thickness

ε = ε∗

H
≈ 1

Rad

. (16)

Therefore, increasing dispersivity thickens the diffusive boundary layer. However, the form of the
convective flux in Eq. (13) is not changed, because the reduction of flux due to the increment
of boundary-layer thickness is made up by the simultaneous increment of effective diffusion
coefficient. Since the buoyancy velocity is only determined by Rad as Ram → ∞ [Figs. 2(c) and
4(c)], Eq. (14) becomes

F ≈ wRam ∼ c(Rad )Ram. (17)

Namely, the convective flux is predominantly controlled by Ram, but the prefactor is determined by
Rad .

B. Application for recent laboratory experiments of solutal convection in bead packs

As described in the introduction section, the laboratory experiments on (one-sided) solutal
convection in porous media [36] indicate that adjusting Ram via changing the density difference �ρ

or the grain size d may result in distinct convective characteristics due to hydrodynamic dispersion.
In this section, we apply above DNS results and analysis to those experiments. Although our DNS
are performed in the two-sided system, they may provide qualitative predictions for the one-sided
case due to many common features in convection shared by these two systems [12,17,23,26,27].

In granular media, the mechanical dispersion is proportional to grain size, αl ∼ d, so that the
appropriate dispersive Rayleigh number is Rad ≈ rH/d [38,63]. In experiments [36], increasing d

from 0.8 to 4 mm simultaneously increases Ram from 1.4 × 104 to 5.0 × 105 (�ρ = 9.3 kg/m3)
but decreases Rad from 3750 to 750 (H = 30 cm and assuming r = 10), thereby reducing � from
0.3 to 1.5 × 10−3 [Fig. 9(a)]. As shown in Fig. 9, most of the experiments in Ref. [36] are in the
dispersion-dominant regime, so that the convective pattern is determined by the dispersive Rayleigh
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TABLE I. Range of parameters for numerical simulations in Ref. [48].

R̃a S̃ α̃ Ram Rad r �

1000 0.5 0.5 2000 4000 2 2
500 0 0.2 500 ∞ 5 ∞

0.35 769 7143 9.3
0.7 1667 3571 2.1

500 0.7 0.1 1667 7143 10 4.3
0.2 3571 5 2.1
0.5 1429 2 0.86
1 714 1 0.43

number, i.e., C = C(Rad ), δ = δ(Rad ), and u = u(Rad ). Therefore, increasing the grain size d at
fixed �ρ intensifies the mechanical dispersion and monotonically coarsens the convective pattern,
even if Ram increases as well. On the other hand, varying �ρ at fixed d (or k) only changes Ram

and does not affect the flow pattern set by Rad [Fig. 9(b)].
Moreover, for fixed d, the prefactor c2(Rad ) is constant so that the convective flux, F ∼ c2Ram,

increases linearly with �ρ; while for fixed �ρ, F is lower than expected at higher d since the
flow pattern transitions from columnar flow to fan flow as Rad declines [Fig. 2(a)]. However, this
reduction in F is accompanied only by a slight reduction in wm [Fig. 2(c)], which is consistent with
the experimental observation that the speed of the fastest fingers increases approximately linearly
with both �ρ and k [36,51].

C. Comparison with previous numerical simulations

As mentioned in the introduction section, previous investigations [47,48], utilizing the same
Fickian dispersion model, reveal that hydrodynamic dispersion greatly reduces the onset time
for convection and enhances the convective mixing. This seems to contradict our numerical
simulation results, which indicate that the hydrodynamic dispersion may change the flow pattern
and significantly reduce the convective flux (Figs. 1 and 2). Below we show that this discrepancy
is mainly due to different nondimensionalizations and their interpretation. It should be noted that in
those studies the dispersivity and buoyancy velocity are defined differently by scaling the porosity.

In Ref. [47], the longitudinal dispersivity αl is introduced to characterize the timescale T̃ =
(Dm + αlU )/U 2. For stronger dispersion, i.e., increasing αl , the timescale T̃ is simultaneously
increased, thereby resulting in a smaller dimensionless time t̃ = t∗/T̃ (where t∗ is the dimensional
time). Thus, as the dispersion is increased, the onset time, evaluated using t̃ , can be significantly
reduced at fixed molecular Rayleigh number Ram and dispersivity ratio r , due to the increase
of T̃ . How hydrodynamic dispersion affects the onset of convection is beyond the scope of this
contribution, but it is necessary to use the same characterize scales for comparison.

In Ref. [48], the molecular diffusivity Dm and the longitudinal dispersivity αl are combined to
define the dimensionless parameters, namely,

R̃a = UH

Dm + αlU
, S̃ = αlU

Dm + αlU
, α̃ = αt

αl

, (18)

where R̃a, S̃ and α̃ are, respectively, the effective Rayleigh number, the dispersion strength and the
dispersivity ratio. Hence, these parameters are related to our work via

Ram = R̃a

1 − S̃
, Rad = R̃a

α̃S̃
, r = 1

α̃
. (19)

The range of parameters for numerical simulations in Ref. [48] is shown in Table I. For most of those
simulations, the ratio of molecular diffusion to mechanical dispersion � > 1, so that the mechanical
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dispersion is relatively weak. The simulation results in Ref. [48] reveal that with increasing S̃ from
0 to 0.7 at R̃a = 500 and α̃ = 0.2, the dispersion enhances the mixing and reduces the onset of
convection (see in particular their Figs. 5–10).

Although we have shown that the relatively weak mechanical dispersion slightly enhances the
convective transport [Fig. 2(a)], in Ref. [48] the increment of flux and the reduction of onset time
are because the corresponding molecular Rayleigh number Ram, which controls the convective flux,
increases simultaneously with S̃ from 500 to 1667 (Table I). Moreover, based on their simulation
results at S̃ = 0.7 and R̃a = 500 for α̃ = 0.1, 0.2, 0.5, and 1, it is concluded in Ref. [48] that the
dispersivity ratio has a very weak impact on the convective pattern and flux (see in particular their
Figs. 11–13), which contradicts our DNS results in Sec. III C.

This discrepancy is actually due to different ranges of parameters: The numerical simulations
in Ref. [48] generally focus on the moderate-Ram and weak-dispersion regime, while our DNS
results indicate that at high Ram and for strong mechanical dispersion (e.g., Ram = 20 000 and
Rad = 1000), the dispersivity ratio significantly affects both the flow pattern and the convective
flux.

D. Non-Fickian dispersion

The DNS and analysis presented here are performed in the framework of the classical Fickian
dispersion model. This relatively simple model can treat homogeneous porous media under certain
conditions and is therefore used in many studies of porous media convection [46–49]. In this case,
mechanical dispersion can be described by the standard dispersion tensor, given by (4). This model
ignores non-Fickian anomalous behavior, such as the scale dependence and solute tailing, which is
commonly observed in solute transport experiments and field observations [40].

However, mathematical formulations that capture such anomalous behavior are typically particle
based and hence not amendable to the DNS approach employed in most convection studies. We are
not aware of any attempts to model convection in porous media with anomalous dispersion; in fact,
to date most numerical studies ignore dispersion entirely. Therefore, even the effect of the Fickian
model on the dynamics of convection in porous media is poorly understood.

Hence, this study explores the first-order effect of hydrodynamic dispersion on the convective
transport in porous media. Above we have argued that simulations based on the standard model of
mechanical dispersion give results that are consistent with experiments performed in homogeneous
bead packs [15,36]. It appears that the key characteristics of mechanical dispersion required to
explain these experimental data are its velocity and grain size dependence. Anomalous behavior is
not evident in these experimental observations, which may be due to the relative homogeneity of the
bead packs, the constant geometry of the experiments, and the quasisteady convective dynamics.

V. CONCLUSIONS

We study the effect of dispersion on convective mixing in the 2D Rayleigh-Darcy scenario,
where a statistical steady state can be obtained. Our DNS results and analysis reveal that the
dynamics of this system in a sufficiently wide domain are controlled by three parameters: The
molecular Rayleigh number, Ram, the dispersive Rayleigh number, Rad , and the dispersivity ratio,
r . If mechanical dispersion is the dominant dissipative mechanism, for fixed r the dimensionless
convective flux is predominantly controlled by Ram, while the convective pattern is determined by
Rad . This implies that convective flux and pattern are decoupled during porous media convection
with dispersion. Moreover, when mechanical dispersion dominates the hydrodynamic dispersion,
for fixed (Ram, Rad ) both the flow pattern and the flux are significantly affected by r: The high-Ram

convection remains a columnar structure at r = 1 but transitions to a fan-flow structure at r � 1,
which reduces the convective flux.

Here we confirm that the linear flux scaling, F ∼ Ram, also holds in the presence of hydrody-
namic dispersion. However, this is only true if Rad remains constant (e.g., same media property),
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since Rad determines the prefactor of the scaling law. In practice, Ram and Rad commonly change
together, because changes in grain size affect both permeability and dispersivity. This makes it
difficult to observe the linear flux scaling in bead packs, where the flux does not increase linearly
with permeability.

More specifically, our simulations in advection-dominated systems (r = 10) show the following:
(1) For � = Rad/Ram > O(1), molecular diffusion dominates the hydrodynamic dispersion,

although relatively weak mechanical dispersion slightly enhances the convective transport.
(2) For 0.02 � � < O(1), both the molecular diffusion and the mechanical dispersion signifi-

cantly affect the convective pattern and flux.
(3) For � < 0.02, mechanical dispersion dominates the hydrodynamic dispersion: The flow

pattern is determined by Rad , e.g., C = C(Rad ), δ = δ(Rad ), and u = u(Rad ), while the flux is
predominantly controlled by Ram, e.g., F ∼ c(Rad )Ram.

(4) In the limit of Ram → ∞, the flow still exhibits the columnar structure for Rad > 5000;
however, for Rad < 5000 the convection transitions to the fan-flow structure, due to the inherent
anisotropy of mechanical dispersion, which reduces the convective flux.

We note that the above criterions may vary quantitatively in other (e.g., the one-sided) convective
systems, and many characteristics shown here are unlikely to be observed in the Hele-Shaw
experiments, due to the absence of transverse mechanical dispersion [64].
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