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A permanent magnetohydrodynamics (MHD) channel flow past a stationnary sphere is
investigated, with a static magnetic field transversally applied and no-slip conditions taken
into account. The sphere is subject to laminar flow conditions with the Reynolds number
ranging from the Stokes regime up to values corresponding to the inertial regime (Rep =
130 at most for the particle Reynolds number). The maximum value of the Hartmann
number is Ha = 200. After a brief review of the existing literature of three-dimensional
(3-D) MHD flows past an obstacle, a 3-D numerical approach is developed, which is
systematically compared to asymptotic predictions (Ha = 0, Ha → ∞). Atypical flow
patterns are made evident, especially characterized by the gradual emergence of Hunt’s
wake for a sufficiently large particle Stuart number Np . Some original correlations are
put forward for the wake length and the drag coefficient. Finally, an original scaling law
highlighting the significant influence of the outer magnetic field on the transition between
different MHD flow regimes is drawn up.
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I. INTRODUCTION

A. Context, objectives, and methodology proposed

The emergence of many industrial issues related to heterogeneous electroconductive flows has
brought magnetohydrodynamics (MHD) flows in the presence of an obstacle or a dispersed phase
to center stage. For instance, the use of a mechanical obstacle, the use of an electrical obstacle, or a
combination thereof may turn out to be a means of heat transfer enhancement [1]. When use is made
of MHD in microfluidic devices for the purpose of performing (immuno)magnetic cell separation
or magnetic-activated cell sorting [2], the conducting fluid often contains insulating inclusions or
bubbles. In metallurgical processes, molten metal may be heated and stirred by induction, with
additional stirring performed through gas bubbling [3]. In a long-term view, the use of liquid
metals for cooling magnetically confined fusion reactors offers many potential advantages, such as
higher heat transfer performance, higher boiling temperature than conventional liquids, and tritium
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breeding in the coolant if lithium-lead alloys are used [4]. However, the interplay between the liquid
metal motion and the strong magnetic fields generated by the magnetic confinement leads to a MHD
flow inside liquid Li/Pb. As often mentioned in the literature [5], depending on the direction of the
magnetic field relative to the normal unit vector at the cooling walls, convective heat transfers can be
severely affected. Heat transfer enhancement strategies are currently developed in order to comply
with the two-dimensional (2-D) tendency of MHD flows, based on electrically driven vortices [6]
or the insertion of obstacles [7], for instance. An alternative strategy based on the generation of
(small) gas bubbles in the blanket has been proposed, either by boiling [8] or bubbling [9]. For the
latter strategy, the purpose consists of lowering the MHD pressure drop by reducing the apparent
electrical conductivity of the fluid.1

As a consequence of the previous considerations, the behavior of gas bubbles or spherical
inclusions suspended in electroconductive fluids that are subjected to external magnetic fields stands
as an issue of prime interest. It should be noted that although insulating inclusions such as gas
bubbles do not experience a magnetic force directly, they can be submitted to a MHD-induced
buoyancy force. The scientific literature on this topic covers a wide range of dispersed MHD
flow layouts, ranging from “collective” configurations to single bubble dynamics. The former class
involves bubble plumes subjected to dc magnetic fields either transverse to the main flow direction
[11] or streamwise [12,13]. With respect to gas bubble or spherical inclusions in MHD flows, the
available literature becomes more scarce, focusing on paths, wakes, and even shapes of bubbles
under the influence of aligned or transverse dc fields. The reader is free to refer to direct numerical
simulations [14–17] or to ultrasonic Doppler velocimetry measurements of terminal velocities and
wake structures [18]. Surprisingly enough, despite the fundamental features of the MHD flow past
a sphere or a bubble, it seems to the best of our knowledge that the available literature still remains
incomplete. As shown hereafter in Sec. I C 3, the rare available studies do not really take the
influence of confinement into account, especially when the magnetic field is transversally applied
with respect to the main flow. This approach could be justified in the case of purely hydrodynamic
flows, provided that the boundaries are far enough from the inclusion. However, in the presence
of a transverse magnetic field, due to the importance of the electric circuit and the outstanding
properties of the Hartmann layers, the role of the side walls turns out to be decisive whatever the
typical size of the system under consideration. Besides, the few existing works to be considered
correspond to asymptotic conditions of a MHD flow past a cylindrical obstacle, i.e., where the
outer magnetic field is sufficiently strong for the quasi-two-dimensional approximation to be valid
(known as the Sommeria and Moreau [SM82] approximation [1,19]). When use is made of the SM82
approximation, the obstacle must extend all along the magnetic field direction with no symmetry
breakup [20,21]. As a consequence, it seems that most of the obstacles considered in the literature
never resemble a sphere, with the notable exception of the reference analytical article by Hunt and
Ludford [22], whose most salient features are introduced in Sec. I C 3, and hereafter referred to as
the HL68 model.

Concerning the meaningful case of the MHD duct flow past a sphere beyond the SM82
approximation, it seems that the works of Haverkort and Peeters [3,23] are the only investigations
available. However, as shown hereafter, the previous authors implement free-slip conditions at
boundaries. Despite the induced simplifications in term of numerical resources, this results in a
major difference with respect to the more realistic no-slip boundary conditions. Indeed, Hartmann
layers cannot be generated without velocity gradients in the vicinity of duct walls whose orientation
is orthogonal to the outer field. Consequently, even the works of Haverkort and Peeters do not
address the critical issue linked to the role played by duct walls. Given the outstanding role played

1Obviously, even if the generation of bubbly MHD flows inside the blanket could contribute to a better
convective heat transfer, the injection of a gaseous phase degrades the conductive part of heat removal by
reducing the apparent thermal conductivity. A tradeoff must be found between the latter phenomena, with the
ultimate aim to enhance the Nusselt number [10].

123701-2



DRAG UPON A SPHERE SUSPENDED IN A LOW MAGNETIC-REYNOLDS …

by these Hartmann layers and their strong impact on MHD flow whatever the distance to the obstacle
[22,24], it appears (to the best of our knowledge) that there remains a deficit in the literature.

The first goal of this paper is therefore to extend the work of Haverkort and Peeters to the
insightful case of a rigid (insulating) sphere suspended into a MHD flow, confined within electrically
insulated motionless walls, with special emphasis on the role played by the Hartmann layers.

Moreover, as exposed hereafter in Sec. I C, most of related analytical studies focus on asymptotic
regimes of the MHD sphere problem, assuming that the governing dimensionless numbers (Re, Ha,
N, and their particulate counterparts, indexed p, all defined below) are either asymptotically small or
asymptotically large. Note also that the numerical results of Haverkort and Peeters are restricted to
(Rep � 100, Hap � 20). Consequently, beyond the purpose of highlighting the physical mechanisms
and original flow patterns linked to the sphere MHD problem, another goal is to extrapolate the
existing asymptotic results to unknown parameter regimes. In this study, we consider the ranges
0.6 � Rep � 129, 0 � Ha � 200, and 0 � N � 1.67 × 104. The maximum value for the Reynolds
number corresponds to the threshold of hydrodynamic instabilities (not included here), while the
maximum value for the Hartmann number ensures the proper meshing of the Hartmann layers
without prohibitive computing time costs.

The following methodology is proposed. First of all, a physical modeling of the sphere MHD
problem is proposed, including geometry, additional assumptions, governing equations, and bound-
ary conditions. In the present paper, the implementation of a 3-D numerical approach is favored,
which is justified by the symmetry breakup in the physical layout (see Fig. 8) as well as by the
necessity to describe nonasymptotic regimes. Classically, the finite-element method (FEM) is used
to discretize Maxwell equations in electromagnetism. However, this is not always the case in fluid
mechanics, as, contrary to the finite-volume method (FVM), the discrete approximation is a priori
not conservative. Consequently, if the FEM is chosen to tackle a MHD problem, as we do, particular
care is required to ensure a conservative solution. Therefore, numerical modeling is systematically
benchmarked with the reference results exposed in Sec. I C, first in the purely hydrodynamic case
(Ha = 0). Then, once this benchmarking case secured, the outer magnetic field is added, and
the numerical results are benchmarked with either Hunt and Ludford’s (HL68) model (Ha, N �
1) or with Haverkort and Peeter’s results (Rep � 100, Hap � 20). Eventually, these results are
extrapolated to unknown MHD flow regimes, and the most salient flow patterns are discussed. New
correlations for the flow coefficients are also proposed, along with a scaling law emphasizing the
influence of the outer magnetic field on the transition between different flow regimes.

Thus, the laminar permanent MHD duct flow past an insulating sphere is systematically investi-
gated in this paper, taking confinement effects into account, for all magnitudes of the magnetic and
velocity fields, up to (but not including) the threshold of hydrodynamic-hydromagnetic instabilities.
The SM82 approximation is not considered so that the flow is considered fully three dimensionnal
(3-D).

Prior to any investigation of our own, the flow coefficients characterizing a (mag-
neto)hydrodynamic flow past an obstacle are defined. Then, the main physical issues related to the
MHD flow past a sphere are highlighted, allowing us to clarify the typical flow configuration under
consideration. The state of the art is carefully reviewed, given the fundamental aspect of underlying
issues. Eventually, this detailed review allows us to define properly the scope of this paper. Finally,
the 3-D calculations presented herein are also applicable for a levitating (non-neutrally-buoyant)
sphere located on the axis of a channel with a square cross section. Although the sphere considered
is fixed with respect to the channel walls, the present study is a first step, typical of the literature of
two-phase flows with no consideration for the sliding velocity (flotation processes, flowmeters with
float).

B. Notations and flow coefficients

The system under consideration consists of an immersed spherical body whose typical size is d,
suspended in an electroconductive fluid flow, as displayed Fig. 1. The flow is confined between duct
walls, whose typical transverse length is L, and the control volume under consideration includes
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FIG. 1. Overall layout of the MHD sphere problem.

the obstacle, with an inlet and an outlet boundary condition. The flow can be subjected to an
outer magnetic field �B0, directed along the transverse direction with respect to the main flow (see
Appendix A for further discussion about the latter choice).

First of all, a set of flow coefficients is classically defined in order to characterize the hydrody-
namic flow past an immersed body, beginning with the dimensionless number governing the flow
patterns in the vicinity of the inclusion, i.e. the particle Reynolds number Rep. It classically governs
the interplay between inertial and viscous effects and can be defined as follows:

Rep = ρV d

η
, (1)

where ρ and η are density and dynamic viscosity of the surrounding fluid, d is the typical size of
the body, and V is a typical flow velocity (often defined as the typical relative velocity between
the body and the surrounding fluid). If the suspending flow is confined within duct walls, a (bulk)
Reynolds number can also be introduced:

Re = ρV L

η
. (2)

The body is subjected to a force �F , exerted by the surrounding flow, due to both pressure (denoted
p) and viscous forces, the latter being linked to fluid viscosity (η) and velocity (denoted �v) gradients.
The streamwise projection of this hydrodynamic force is called the drag force, while the transverse
projection is called the lift force. In this paper, the lift force is neglected for symmetry reasons. If
the fluid far from the obstacle flows along the �ex direction, the drag force is generally defined as

�Fd = ( �F · �ex )�ex =
(∫∫

S

(
T · �er

) · �ex

)
dS �ex, (3)

where T is the mechanical stress tensor, S is the surface of the sphere, and �er is the outer normal to
this surface (see Fig. 2). For instance, in the case of an axisymmetric flow past a spherical inclusion,
Eq. (3) is

�Fd = Fd �ex =
∫ π

0
2πR2 sin(θ )Trx (R, θ )dθ �ex, (4)

r and θ are the spherical coordinates attached to the sphere, R = d/2 is the sphere radius, and Trx

is the projection of the mechanical stress tensor defined as

Trx = Trθ cos(θ ) + Trr sin(θ ), (5)

Trr = −p + 2η
∂vr

∂r
, Trθ = η

(
r
∂
(

vθ

r

)
∂r

+ 1

r

∂vr

∂θ

)
. (6)
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FIG. 2. Projection of the mechanical stress tensor leading to the definition of the drag force.

In practice, the dimensionless group related to the drag force is preferentially used. This dimension-
less coefficient is called the drag coefficient, and is defined as follows:

Cd = |Fd |
1
2ρV 2πR2

. (7)

The drag coefficient is particularly used to benchmark the numerical calculations performed in
Sec. III (see also Appendix B).

An additional flow coefficient can be defined for characterizing flow recirculation areas at higher
Rep values. This parameter is the length of the steady recirculation area, denoted Lw, measured
between the rear point of the obstacle and the tail of the recirculation region. Typically, the change
of sign of the velocity along the center line behind the sphere (in the main flow direction, or
streamwise) gives access to this length. Note that the influence of confinement due to the presence
of duct walls is discussed in Sec. I C 1.

When an outer dc field is added, eddy currents are induced in the electroconductive fluid in
motion. These currents interact with the external field to generate the Lorentz force, which may
compete with other hydrodynamic phenomena. Two dimensionless numbers can be defined to
describe this interplay. In the case of a confined (i.e., duct) flow, at duct scale L, they are called
the (bulk) Hartmann number Ha and the Stuart number N :

Ha = B0L

√
σ

η
, N = Ha2

Re
= σB2

0L

ρV
, (8)

where B0 is the typical intensity of the outer magnetic field and σ is the electrical conductivity of
the surrounding fluid. Ha governs the balance between electromagnetic and viscous effects, while N

governs the balance between electromagnetic and inertial effects [5]. At particle scale d, the particle
Hartmann number Hap and Stuart number Np can be defined as

Hap = B0d

√
σ

η
, Np = Ha2

p

Rep
= σB2

0d

ρV
. (9)

The qualitative definition of the other flow coefficients previously introduced (wake length and
drag coefficient) remains unchanged, though the outer magnetic field actually affects their values
(Sec. I C 3). Subsequently, both particle [Eqs. (1) and (9)] and bulk [Eqs. (2) and (8)] dimensionless
numbers are used in this paper.

123701-5



JULES DELACROIX AND LAURENT DAVOUST

C. State of the art

The focus is first set upon the typical patterns linked to the hydrodynamic flow past a rigid
sphere, in the case where no outer magnetic field is present. Some insightful MHD features are then
introduced, emphasizing the influence of the Hartmann layers on the flow topology. For the readers
familiar with MHD or multiphase flows concepts, some of the following ingredients can be easily
skipped.

1. Hydrodynamic flow regimes (B0 = 0)

Depending on the value of the particle Reynolds number, a first distinction can be made between
two flow regimes. On the one hand, when Rep is low (typically Rep < 1), the creeping flow regime
can be considered. On the other hand, for intermediate values (1 < Rep < 130), the steady wake
regime gradually intensifies, with the generation of recirculation regions at the rear of the obstacle.
In the latter case, inertial effects must be taken into account, leading to the flow separation and to
the appearance of two steady recirculation regions, valid up to Rep,max = 130 (see, e.g., Clift et al.
[25]). Flow patterns are investigated through the flow coefficients previously introduced.

The generation of new flow patterns with Rep can be divided into two steps. The first interval
1 < Rep < 20 corresponds to an unseparated flow regime. The flow still sticks to the whole sphere
surface, and no separation is visible. Asymmetry becomes more marked. At the onset value Rep =
20, flow separation occurs at the rear stagnation point and vortical patterns arise. Finally, as Rep

increases beyond 20, the recirculation regions appear. These regions are symmetric with respect to
the wake centerline; they develop at the rear of the sphere and are found to lengthen downstream.

The extent of the steady recirculation area can be described by means of the parameter Lw.
When focusing on the data for which Rep < 130, the following correlation can be derived from data
collected in Ref. [25]:

Lw,sphere

d
= c1(Rep) = 2747

5000
ln(Rep) − 8347

5000
for Rep � 100. (10)

Now, with respect to the drag coefficient, the following piecewise correlation is proposed [25],
which encompasses a large set of experimental data:

Cd,Clift,s = c2(Rep) =
{

24
Rep

(
1 + 263

2000 Rep
41
50 − 1

20 log10 (Rep)) if Rep � 20,

24
Rep

(
1 + 387

2000 Rep
1261
2000

)
if Rep ∈ ]20, 130].

(11)

2. Impact of flow confinement (Bo = 0)

Up to now, the flow domain has been considered unbounded, so that the typical velocity of the
flow far from the inclusion has been considered uniform. In nonacademic situations, the flow domain
is bounded by walls, separated by a 2L distance. Now, depending on the value of the blockage ratio,
λ = d

2L
, the confinement may alter the flow patterns past the spherical inclusion.

Let us consider a self-established channel flow. At the inlet, the hydrodynamic velocity profile
is imposed according to a parabolic Poiseuille velocity profile. The typical velocity V corresponds
now to the maximum velocity reached at the inlet, i.e., at the channel centerline. Moreover, the flow
between the sphere and the duct walls is locally accelerated, in link with mass conservation. Finally,
the walls can also interfere with the wake released by the obstacle. From a quantitative point of
view, the joint presence of the side walls and the sphere generates an additional pressure gradient
along the transverse direction and viscous dissipation enhancement at the duct walls. Even if they
leave the transitional Rep value between the two flow regimes quite unchanged (for moderate λ

values, typically up to λ = 0.2), these two combined effects are suspected to impact the values
of the two other flow coefficients, beginning with the length of the recirculation area Lw, for the
steady wake regime. An increase of λ causes a shortening of the steady recirculation region, and
thus a decrease of Lw, at a given Rep. For instance, for λ = 0.125, Lw differs within 5–10% from
its value for the λ = 0 (unbounded) case [26].
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Now, with respect to the drag coefficient, the difference with the unbounded configuration can
be more significant. Indeed, for λ = 0.125, Cd can reach values up to 35% higher than in the
unbounded case, as shown by Wham et al. [27]. These authors propose a new correlation for drag
as a function of both Rep and λ, valid for Rep < 130, λ ∈ [0.08, 0.7]:

Cd,Wham = c3(Rep) =
[
1 + 927

25000

(Rep

2

) 757
500 − 127

1250 ln(
Rep

2 )
](

1 − 12901
17007λ5

)
1 − 1657

2500λ − 729
500e− 1127

20000

(Rep

2

) + 4173
2000λ3 − 4267

2500λ5 + 72603
100000λ6

24

Rep
. (12)

3. Impact of a transverse magnetic field: A brief review

The influence of an outer transverse dc field upon electroconductive flows past obstacles of
various shapes is briefly reviewed, including obstacles such as gaseous (nonrigid) bubbles. The
literature about MHD flows past obstacles is indeed reduced, and only scarce information could be
given if focus is put only on spherical bodies.

The addition of an external dc magnetic field can significantly alter the core flow topology,
regardless of the presence of the body. In the case of an electroconductive channel flow with
insulating walls normal to a transverse dc field, the Hartmann layers exert an active control over
the core flow, leading to a typical velocity V proportional to O(1/Ha) in the core region. The active
control is associated to the fact that the order of magnitude of the core-flow velocity is directly
controlled by the electric current density closing within the Hartmann layers [5]. The presence of
an obstacle is also expected to alter deeply the topology of the MHD core flow, because Hartmann
layers may develop along the surface of the inclusion, causing a complete alteration of the electric
circuit. Conversely, because the surrounding electroconductive liquid is affected by Lorentz forces,
immersed insulating objects can experience noticeable MHD effects by way of the drag coefficient.
Thus, the interplay between the immersed body and bulk dynamics is likely to generate particularly
original flow patterns.

In the literature, there are few existing theoretical works describing the MHD of an electrocon-
ductive flow past a rigid sphere subjected to an outer transverse dc field, essentially because of
the complexity of the mathematical model, even at low magnetic Reynolds number Rm = μσV L,
where μ is the magnetic permeability of the medium under consideration. Nonetheless, there is a
certain amount of numerical and experimental data, for both streamwise and transverse magnetic
fields. As already explained (see, e.g., Appendix A), the streamwise orientation of the outer field
is left aside from the analysis (see Refs. [12,15,18,28] for a nonexhaustive list of references). The
most significant achievements concerning the transverse layout are now highlighted, beginning with
the few existing analytical results for asymptotic values of Re (Rep), Ha (Hap), and N (Np).

Among the rare papers investigating MHD channel flows past an obstacle, the pioneering one
by Hunt and Ludford [22] is entirely based on matched asymptotic calculations. Its most insightful
results are clarified later in MHD textbooks (see, e.g., Ref. [5]). The 3-D MHD flow past an obstacle
of arbitrary shape2 is considered by HL68 in the asymptotic case: N � 1, Ha � 1. The obstacle
is suspended in an electroconductive flow, confined within duct walls with typical extent L along
�ey (corresponding to half the height of the duct), and unbounded along �ex and �ez. The flow reaches
a typical (maximum) velocity V far from the obstacle and is subjected to an external dc magnetic
field �B0 = B0�ey . The typical geometry is displayed in Fig. 3.

Within the assumption N, Ha � 1 (which only implies Ha2 � Re, Re being potentially large),
some original features appear. The flow is indeed structured into two main regions, where the
velocity and the electric current density gradients are weak: a column C, whose axis is aligned with
�B0, circumscribing the sphere, and the region E external to this column. The gradients of �v and �j are
actually located in thin layers: the Hartmann layer between the obstacle and the column C, denoted
HS, the (classical) Hartmann layers located near the duct walls, called HW , and an intermediate

2Here, we shall restrict our attention to a spherical body.
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FIG. 3. Different regions of the MHD flow (not to scale) around a sphere when Ha, N � 1, according to
the (matched asymptotic) HL68 model.

region SL constituting a Shercliff layer between C and E. The Hartmann layers exhibit a typical
thickness δ


H = 1/Ha, while the Shercliff layer is δ

SL = 1/

√
Ha thick. As highlighted in Fig. 3,

the areas C and E constitute the internal and external core-flow regions, respectively. They are
deeply influenced by the different boundary layers and are of primary interest in view of analyzing
the impact of the spherical obstacle on the bulk MHD flow. In these areas, viscosity effects are
negligible. Performing a matched asymptotic expansion based on Ha, Re � 1, the authors prove
that the flow in the region E is curl free (because of the Hartmann layers HW ), while the column C

remains motionless, and current free. Henceforth, the latter is referred to as Hunt’s wake, adopting
recent terminology [24,29].

An overview of the most significant results is proposed in Fig. 4. As shown in Fig. 4(a), the
velocity field in the external core region E is analogous to the electric field in vacuum around
a perfectly conducting cylinder. The streamlines penetrate into the column perpendicularly to its
boundary but circulate around the internal core C to concentrate in the shear layer, where a large
azimuthal component v


ζ = O(δ

SL) appears [Fig. 4(b)]. In this layer, the electric current streamlines

(a) (b)

FIG. 4. Typical flow patterns past a spherical obstacle when Ha, N � 1 [22]. (a) Streamlines and current
lines for flow over a nonconducting sphere; (b) flow in the shear layer: current streamlines and graph of v


ζ at
constant values of y
.
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close themselves up; these O(1) currents cannot be extracted either by the outer [j
(E) = O(1/Ha)]
or inner (j
(C) = 0) core regions, nor by the HW layers, which carry an electric current in agreement
with the flow ad infinitum [5].

The emergence of Hunt’s wake leads to a considerable increase of the drag coefficient. The
progressive formation of a ghost cylinder at rest encapsulating the sphere leads to very strong
velocity gradients with the outer core region. These gradients are smoothed over the δ


SL-thin shear
layer, leading to an intensifying tangential stress with increasing Ha. The overall drag coefficient
can be then defined as

Cd = Cd,hydro + Cd,em, (13)

where Cd,hydro corresponds to the purely hydrodynamic drag coefficient, described, e.g., by corre-
lation (12), and Cd,em is the electromagnetic drag coefficient. Note that for the sake of consistency
with the pure hydrodynamic case, where Cd is given with respect to the particle Reynolds number,
the electromagnetic drag coefficient, so introduced here, is also expressed with respect to particle
numbers, in the light of the HL68 model [30]:

Cd,em,Hunt = 8
Hap

Rep
= 8

(
Np

Rep

)0.5

for Hap � Rep, Hap � 1. (14)

In the literature, other analytical works allow us to complete the HL68 model especially when
considering the drag coefficient. For instance, the case Np � 1, Rep � 1 has been solved [31],
leading to

Cd,em,Reitz = 3
10 Np for Np � 1, Rep � 1. (15)

Let us now turn to the most significant numerical results available, which extrapolate analytical
predictions to other values of (Re, Ha, N ).

In every numerical simulation of MHD flows, one challenging issue is connected to the modeling
of the Hartmann layers. The fact that the typical thickness of these layers is O(1/Ha) means that
they can become very thin relative to the typical size of the numerical layout. However, as it has
been previously enhanced, Hartmann layers exert an active control over the bulk flow. Despite their

FIG. 5. Hunt’s wake past a truncated cylinder [24,29], at Ha = 200, for different Rew = ρV w/η (flow
from left to right, d = w, color scale: higher magnitude from blue to red). (a) Streamwise velocity magnitude,
Rew = 1; (b) streamwise velocity magnitude, Rew = 50.
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FIG. 6. Original MHD flow patterns past obstacles of various shapes. (a) Electric current density stream-
lines of the MHD flow past a truncated cylinder [24,29], Rew = ρV w/η = 100, Ha = 100. (1) Upstream of
the obstacle, (2) across the obstacle. Out-of-plane flow from back to front; (b) current density vectors (arrows)
and magnitude (grayscale) in the vicinity of an insulating sphere [23]: Rep = 10, Hap = 2.

thinness, it is of importance to mesh them properly, so that the essential physics of MHD core
flow is captured. An alternative approach is to use wall functions [21,32]. Provided this issue is
correctly addressed, the numerical simulations allow us to extrapolate the results obtained in the
latter asymptotic theory for different N values.

In a rather different context, Dousset and coworkers [24,29] have numerically confirmed the
progressive emergence of Hunt’s wake. In this case, the obstacle consists of a truncated square
cylinder, and the body Reynolds number Rew is based on the width w of the cylinder. Depending on
the Rew value, a blocked liquid column arises, standing above the cylinder, from the upper face up to
the top Hartmann wall [see Fig. 5(a)]. Outside this region, the flow is found to be quasi-2-D. When
Rew is increased for a given outer magnetic field, Hunt’s wake is gradually pushed downstream
by the free stream [see Fig. 5(b)]. The flow may thus switch from a vertical (electromagnetic) to
a horizontal (hydrodynamic) steady wake. To our knowledge, this is the only numerical evidence
of Hunt’s wake available in the literature. An experimental counterpart to this study is proposed by
Andreev et al. [34] for small Ha values (up to 14). In addition to the velocity profiles, the typical
distribution of electric current densities and Lorentz force past an obstacle can be determined, as
shown in Fig. 6. The results of Dousset et al. [24,29] show the electric current streamlines in different
cross sections of the duct, located upstream, across, and downstream (not shown) of the obstacle,
for moderate Ha values. Upstream of the cylinder [Fig. 6(a)1], the characteristic flow patterns of the
Shercliff flow [33] are observed. Similarly, downstream of the cylinder, the perturbations induced
by the obstacle gradually dissipates, and the Shercliff flow patterns are gradually recovered (not
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(a) (b)

FIG. 7. Drag coefficients of spheres placed in a MHD flow: numerical and experimental results. (a) Drag
coefficient: numerical simulations [23]; (b) drag coefficient: experimental data [5,35].

shown). With respect to the section across the cylinder [Fig. 6(a)2], the electric current streamlines
accumulate in the region above the cylinder tip, which explains the flow braking observed with the
emergence of Hunt’s wake. Finally, at the trailing edge of the cylinder upper face, the flow washes
down into the rear of the cylinder. Dousset and Pothérat [29] and Andreev et al. [34] showed that
a small amount of inertia was enough to destroy Hunt’s wake, but that the structure of the wake
was still strongly determined by electromagnetic effects. The question of high-Ha regimes was left
open.

In parallel, two numerical studies have been recently issued by Haverkort and Peeters, about
magnetohydrodynamic flows past insulating spheres at low-to-moderate Hap values (Hap < 20)
[3,23]. To the best of our knowledge, these papers constitute the only numerical studies focusing on a
physical layout fairly close to the sphere MHD problem. There is a major difference, though, which
is the implementation of free-slip boundary conditions at the domain boundaries (see Sec. I A).
Their main results show that the distribution of electric currents past the sphere [Fig. 6(b)] is
responsible for an increase of the drag coefficient with increasing Ha, due to velocity gradients
along the azimuthal direction. The evolution of the drag coefficient with respect to Np is shown in
Fig. 7(a). The drag coefficients calculated from Eqs. (14) and (15) are also indicated as asymptotic
references, and the agreement between the numerical modeling and the theoretical predictions seems
quite satisfying. As expected, for a given Rep, the electromagnetic drag coefficient increases with
Np, and this evolution is satisfyingly fitted with a power function of the parameter Np:

Cd,em = f (Rep)Np
n.

Let us now end this review with some significant experimental results. The most challenging
issue faced by MHD experiments is the opaque nature of the liquid metals involved, as soon
as high Ha values are used. Access to the velocity field is nevertheless possible, but it requires
more sophisticated methods, such as ultrasound Doppler velocimetry [18] (UDV), electric potential
velocimetry [36] (EPV), or x-ray radioscopy [37]. In the case of the drag on spheres immersed in
a liquid metal, in the presence of a strong transverse magnetic field, a reference study carried out
by Branover et al. [35] has given rise to the following empirical law for the global drag coefficient,
valid for a wide range of (Rep, Hap, Np) values in most practical cases:

Cd,Br = c4(Rep, Np) = Cd,hydro(Rep)(1 + 0.7
√

Np), ∀ (Rep, Hap, Np). (16)

The experimental results found by Branover et al. [35], along with the correlation (16), are displayed
in Fig. 7(b). For the sake of comparison, the two curves corresponding to the drag coefficient
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calculated from Eq. (14) at Rep = 17.6 and Rep = 23.3 are also shown. The agreement is found
excellent between experimental results and theoretical predictions.

The previous review has allowed us to sum up the state of the art of the most salient physical
features related to (magneto)hydrodynamic flows around past obstacles. Let us now turn to the
physical modeling of the suspending sphere MHD problem.

II. PHYSICAL MODELING

A. Notations and assumptions

The MHD flow under consideration is supposed to be a permanent, incompressible viscous
Newtonian flow given a homogeneous and constant temperature T , so that its physical properties
ρ, η, and σ are assumed to be constant. A typical working fluid is galinstan (Table I), so that the
classical quasistatic and low-Rm approximations are verified, allowing us to disregard displacement
currents and to write the electromotive current and Lorentz force terms with respect to the outer
magnetic field �B0 only [38].

The steady quantities of interest are expressed in the Cartesian system of coordinates: First, the
velocity field �v = vx (�x)�ex + vy (�x)�ey + vz(�x)�ez, then, the pressure p = p(x, y, z), and at length,
the electric current densities �j = jx (�x)�ex + jy (�x)�ey + jz(�x)�ez, the latter being deduced from the
electric potential φ = φ(x, y, z).

All the bulk physical quantities are scaled with a typical duct length L, which turns out to be more
convenient to discuss bulk flow patterns (e.g., influence of the Hartmann layers on the core-flow),
while d is more convenient for describing phenomena acting in the vicinity of the sphere (e.g., drag
coefficient). The latter observation explains why a mixed terminology between bulk and particle
dimensionless numbers is adopted in the present article.

The dimensionless quantities of interest, superscripted 
, are defined as follows:
(1) the Cartesian system of coordinates: −5d/L � x
 = x/L � 15d/L, −1 � y
 = y/L � 1

and −1 � z
 = z/L � 1;
(2) velocity �v
 = �v/V , where V corresponds to the maximum value of the inlet velocity;
(3) pressure p
 = p/ρV 2;
(4) vorticity �ω
 = �ωL/V ;
(5) electric potential φ
 = φ/LB0V ; and finally
(6) electric current densities: �j
 = �j/σV B0.

B. Geometry

The typical geometrical layout is given in Fig. 8, along with the electromagnetic and hydro-
dynamic boundary conditions (BCs). The sphere with diameter d = 10−2m is placed in the duct,

TABLE I. Physical properties of galinstan [39,40].

Property Galinstan

Boiling point (◦C) >1300
Melting point (◦C) −19
Vapor pressure (Pa) <10−6 (at 500 ◦C)
Water compatibility Insoluble
Density (kg m−3) 6360 (room temperature)
Dynamic viscosity (Pa s) 2.14 × 10−3 (RT)
Electrical conductivity (S m−1) 3.29 × 106 (RT)
Magnetic permeability (H m−1) 4π × 10−7

Surface tension (N m−1) 5.35 × 10−1 (RT)

123701-12



DRAG UPON A SPHERE SUSPENDED IN A LOW MAGNETIC-REYNOLDS …

FIG. 8. Geometry (not to scale), boundary conditions, and cutting planes for post-treatment.

whose typical length L = 4d is the half-height of the square cross section. The flow, far enough
from the sphere, is directed along the �ex direction, while the outer magnetic field is oriented along
the �ez direction. The blockage ratio is λ = d/2L = 1/8. The origin of the Cartesian system of
coordinates (O, �ex, �ey, �ez) is located at the center of the spherical inclusion. The latter is axially
offset upstream by a distance 5d relative to the center of the duct, whose length is Lduct = 20d.
As such, the inlet is located a distance 5d upstream the sphere, and the outlet is located a distance
15d downstream, so that the development of the wake at the rear of the sphere is undisturbed by
the outlet boundary condition [41] (see also a sensitivity analysis to the distance downstream in
Appendix C). The following cutting planes are defined for data postprocessing, as shown in Fig. 8:
(xz), (xy), and (yz) are planes passing through the origin, respectively. Other cutting planes may
be defined in the analysis: The planes parallel to (xz) and located at a given coordinate y
 = y0 are
denoted (xz)y0 , and the same notation holds for (xy)z0 (with z
 = z0) and (yz)x0 (with x
 = x0).

C. Mathematical model

A potential formulation based on the electric potential φ is chosen. All the electromagnetic
quantities can actually be derived from φ. The basic dimensionless MHD equations are written
[5,38]

�
φ
 = div
(�v
 × �ez), (17)

(�v
 · −−→
grad
)�v
 = −−−→

grad
p
 + 1

Re
��
�v
 + Ha2

Re
�j
 × �ez. (18)

These equations are completed by the Ohm’s law for the electric current densities,

�j
 = −−−→
grad(φ
) + �v
 × �ez, (19)

and by the conservation equations,

div
(�v
) = 0, div
( �j
) = 0. (20)

The duct walls and the sphere are considered electrically insulated, so that the following
condition is applied at the boundaries (�n being the outward normal unit vector):

�j
 · �n = 0. (21)

The electromagnetic boundary condition at the inlet of the duct section must be consistent with the
fully established Shercliff flow [33]:

�j
|inlet = �j

Sh. (22)
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In practice, preliminary 3-D computations of the duct flow without the immersed body are
performed at a prescribed initial Rep value, until the fully established state is reached. The resulting
current density profiles in the duct cross section are then extracted, benchmarked with the Shercliff
profiles, and applied safely as the inlet boundary condition for the current density. Finally, at the
outlet, it is usual to implement the following BC for �j :

�j
 · �n|outlet = 0. (23)

As specified in the literature dedicated to MHD flows around obstacles (see, e.g., Refs. [21,24]),
this BC is formally exact only when averaged across the outlet. However, we apply it locally, which
results in neglecting the currents normal to the outlet. These currents are of order 1/Ha, so this
approximation remains relevant as long as Ha � 1, whatever the distance between the obstacle
and the outlet cross section is. For small Ha values, a “buffer” region can be introduced, where
the perturbations induced by the presence of the obstacle may freely expand, until they are totally
damped. In the latter case, the Shercliff flow is physically representative of the flow patterns at the
outlet, and Eq. (23) can be implemented as the outlet electromagnetic BC. In the present paper, a
15d-long buffer region at the rear of the sphere has been found long enough to apply locally this
condition with no loss of generality.

As far as BCs are concerned, a no-slip condition is applied at the duct walls and along the surface
of the sphere:

�v
 = �0. (24)

As previously enhanced for current densities, the inlet velocity must be consistent with the
fully established Shercliff flow. The inlet velocity profiles are recovered from the preliminary
computations previously mentioned. When the fully established regime is obtained, the final V

and Rep values are known, and the benchmarked velocity profiles are applied as the inlet BC for the
velocity:

�v
|inlet = �v

Sh. (25)

The outlet boundary condition is chosen so that the convection of flow structures through the outlet
of the pipe section is eased, without causing artificial flow distortions. To this end, a zero-pressure,
no-viscous-stress boundary condition is implemented at the outlet:

p

outlet = 0,

(=⇒
grad
�v
 + =⇒

grad
��v


) · �n∣∣
outlet = 0. (26)

D. Numerical implementation

The numerical approach developed here is mostly inspired from the one described in another
paper [42]. As the finite-element method (FEM) is chosen, the discretization of previous equations
bears on the determination of associated weak forms. The discretization of Eqs. (17) (in fact, a
Poisson equation for the electric potential) and (20) (continuity) are classical study cases in FEM-
based formulations. The discretization of Eq. (18) (Navier-Stokes equations) is performed through
a pressure-correction scheme deriving from the semi-implicit method for pressure linked equations
(SIMPLE) [43], suitable for laminar flows.

The nonlinear physical problem is linearized by using the Newton-Raphson method. A seg-
regated solver is used, which treats the equations sequentially. One advantage is that a lower
CPU cost is required, the main drawback being the induction of an artificial numerical damping
between the flow equations, which is addressed by means of optimization algorithms deriving
from Levenberg-Marquardt algorithm [44]. There are two segregated steps to solve the linearized
problem, the first of which involves the hydrodynamic variables, �v
 and p
. It is based on an iterative
linear system solver referred to as general minimum residual (GMRES) solver [45]. The second
segregated step involves the electric potential φ
 alone, and given the quite basic weak form of
the Poisson induction equation, a direct linear system solver is used. The latter is based on the the

123701-14



DRAG UPON A SPHERE SUSPENDED IN A LOW MAGNETIC-REYNOLDS …

(a) (b)

FIG. 9. Mesh used for the 3-D numerical computation (∼9 × 105 elements). (a) Global view; (b) mesh
size and close-up view of the boundary layers in (xz). Color scale: mesh density from blue (extrafine) to red
(coarse). d stands for the sphere diameter.

multifrontal massively parallel sparse direct solver (MUMPS), using lower-upper (LU) factorization
[46].

An overall view of the implemented mesh is displayed in Fig. 9(a). It consists of approximately
9 × 105 elements, mainly tetrahedral, with specific mesh refinement at strategic locations. Thus,
a provided hexahedral or prismatic boundary layer mesh is set up at the boundaries of the fluid
domain, i.e., near the duct walls, and near the surface of the sphere. Typically, the relative thickness
of the first layer is set so as to be much lower than the reciprocal of the maximum Hartmann and
Reynolds numbers, which both monitor the thickness of the physical boundary layers in asymptotic
conditions (Ha � 1, Ha → 0). Finally, the state of the art in the previous section leads us to expect
different flow regimes, switching from a hydrodynamic horizontal wake to an electromagnetic
vertical wake, creating a “ghost” [24,29] cylinder on both sides of the obstacle. The emergence
of such atypical flow patterns has been taken into account in our meshing strategy: an “internal
cylinder” area is designed, extending from the bottom wall to the top wall, where the mesh density
is set finer [see Fig. 9(b)]. This cylinder is off-centred relative to the sphere, to allow for the
lengthening of the steady hydrodynamic wake at the rear of the sphere. Let us finally point out
that the numerical precision of the code has been assessed by performing mesh convergence tests.

III. RESULTS AND INTERPRETATION

In this section, the evolution of the most salient flow patterns and of the flow coefficient
values with respect to (Rep, Ha) are highlighted. The following numerical developments are
initially benchmarked in the purely hydrodynamical case which corresponds to the asymptotic case,
Ha = 0 (see Appendix B).

A. Flow patterns for Np � 1

The addition of an outer magnetic field such as Np � 1 clearly alters the hydrodynamic flow
patterns. As shown in Figs. 10(a) and 10(b), for a given Rep value, increasing Ha (and thus Np)
contributes to the emergence of a ghost obstacle. The latter consists of a blocked area circumscribing
the sphere and tending to span along the height of the duct for a larger Np [see Fig. 13(a) for
Np � 1]. In contrast, for a given Np value, increasing Rep leads to the gradual advection of this
obstacle by the main stream, and for Np � 1 the hydrodynamic flow patterns discussed in Fig. 18
are recovered. Besides, for some values of the triplet (Rep, Ha, Np), typically when Np is small and
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(a) (b)

(c) (d)

FIG. 10. Magnetohydrodynamic flow patterns around the sphere for Np � 1. (a) Norm (color scale) of the
velocity field �v
 in (xz), for (Rep, Ha, Np) = (113.2, 15, 0.12); (b) norm (color scale) of the velocity field
�v
 in (xz), for (Rep, Ha, Np) = (113.2, 90, 4.47); (c) �v
 streamlines, for (Rep, Ha, Np) = (113.2, 15, 0.12):
recirculation region in (xz) (red) and (xy ) (blue); (d) ω


z = 10 (resp. −10) isosurfaces in red (resp. blue), for
(Rep, Ha, Np) = (113.2, 15, 0.12).

Rep is large, flow separation and electromagnetically altered recirculating areas can be noticed at the
rear of the sphere, as shown in Fig. 10(c). However, for moderate values of Np (Np � 1), the shape
of the lateral free shear layers (given by isosurfaces of z vorticity, ω


z) is not significantly different
from the purely hydrodynamic case (“wing” pattern), as displayed in Fig. 10(d).

The emergence of the ghost obstacle makes the flow switch from horizontal to vertical sphere
wake configuration. The transition regime can also be emphasized by focusing on the velocity
contours at the rear of the sphere, in different planes, as in Fig. 11. There is a noticeable asymmetry
between cutting planes (xy) [Fig. 11(a)] and (xz) [Fig. 11(b)]. The spreading of velocity contours
along the outer field direction �ez is observed, a phenomenon also highlighted by Haverkort et al.
[23], for similar (Ha, Rep) values.

With respect to electromagnetic quantities, the current densities in different cutting planes are
shown in Fig. 12. First, in the plane (xy) perpendicular to �B0 [Fig. 12(a)], the electric currents are
found to be oriented mainly along the �ey direction, and at quite a large distance from the sphere. This
electric current generates a z-Lorentz force f 


L,x which tends to accelerate the fluid on both sides of
the sphere. Now, in the plane (yz) parallel to the outer magnetic field, it is shown in Fig. 12(b) that
the electric currents are positive along �ey only in the top and bottom Hartmann layers, while they
become negative a little further away. Thus, an electromagnetic braking due to the Lorentz force is
induced in areas that are far from the sphere, favoring the wake expansion previously highlighted.
These observations are in agreement with Haverkort et al. [23] [Fig. 6(b)]. They testify from the
gradual emergence of the ghost obstacle, which is enhanced in the following section by investigating
high-Np regimes.
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(a) (b)

FIG. 11. Slight asymmetry of the sphere wake for Np � 1, preferentially oriented along the field lines.
(a) �v
 contours: sphere wake in (xy ), (Rep, Ha, Np) = (8, 7, 0.38); (b) �v
 contours: sphere wake in (xz),
(Rep, Ha, Np) = (8, 7, 0.38).

B. Flow patterns for Np � 1

Let us further increase the value of the outer magnetic field, so that the particle Stuart number
Np fulfills the condition Np � 1. The MHD flow patterns linked to this flow regime are displayed
in Fig. 13. In this asymptotic regime, the validity of numerical simulations is benchmarked with
Hunt and Ludford’s study (see Sec. I C 3). As shown in Fig. 13(a), Hunt’s (vertical) wake is actually
observed for (Rep, Ha, Np) = (2.2, 200, 1136.4), leading to the formation of a “ghost” cylinder
circumscribing the sphere. The emergence of this cylinder spanning over the height of the duct,
now well established compared to the intermediate flow regime of Fig. 10, constitutes a much more
consequent flow obstacle than the original sphere. Apart from the work of Dousset and coworkers
[24,29] in the case of truncated cylinders (see Fig. 5), there seems to be no numerical evidence of this
wake in the literature. As seen in Fig. 13(b), mass conservation implies that the flow is accelerated
between the ghost cylinder and the side walls of the channel; besides, typical Shercliff flow patterns
are recovered downstream, far from the sphere.

In this Np � 1 flow regime, no separated flow can be observed: The recirculating areas are indeed
electromagnetically damped, and the well-known MHD tendency toward two-dimensionality tends

(a) (b)

FIG. 12. Current density patterns for Np � 1. (a) �j
 norm (grayscale), contours and scaled arrows in (xy )
for (Rep, Ha, Np) = (8, 7, 0.38); (b) �j
 norm (grayscale), contours and scaled arrows in (xz) in (yz) for
(Rep, Ha, Np) = (8, 7, 0.38).

123701-17



JULES DELACROIX AND LAURENT DAVOUST

(a) (b)

(c) (d)

FIG. 13. Magnetohydrodynamic flow patterns around the sphere for Np � 1. (a) Hunt’s wake (color
scale) seen in (xz), for (Rep, Ha, Np) = (2.2, 200, 1136.4); (b) Hunt’s wake in (yz) and Shercliff flow
in (yz)2.5 (slice view), (Rep, Ha, Np) = (2.2, 200, 1136.4); (c) �v
 streamlines: (xz) (red) and (xy ) (blue),
for (Rep, Ha, Np) = (2.2, 200, 1136.4); (d) ω


z = 10 (resp. −10) isosurfaces in red (resp. blue), for
(Rep, Ha, Np) = (2.2, 200, 1136.4).

to favor the stretching of vortices aligned with the direction of the outer magnetic field, i.e., the �ez

axis. Consequently, the other components of vorticity being damped, the recirculating flow at the
rear of the sphere vanishes at high Np values, as shown in Fig. 13(c), where the presence of the
ghost obstacle distorts the velocity streamlines in (xz) significantly further away from the sphere
than in (xy). Moreover, this 2-D tendency changes the shape of the lateral free shear layers. As
shown in Fig. 13(d), the iso-ω


z pattern is stretching according to a saddle shape, in contrast with the
wing shape of Fig. 10(d). This leads to the emergence of Shercliff (parallel) layers [22] (see Figs. 3
and 4), which contribute to the gradual generation of the ghost cylinder and prevents the fluid from
penetrating the blocked column.

Now, concerning current density patterns, the emergence of the shear parallel layer is made
evident in Fig. 14(a). As expected, the electric currents flow through the Hartmann layers near
the top and the bottom duct walls, in the positive �ey direction. In the vicinity of the sphere, two
distinct layers can be noticed. The Hartmann layers, near the top and the bottom of the sphere,
carry an azimuthal electric current. The development of the shear layer is noticeable in the inset,
circumscribing the sphere and the ghost cylinder. In this layer, the currents are mainly oriented
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(a) (b)

(c)

FIG. 14. Current density flow patterns for N � 1. (a) Electric current density patterns (magnitude,
streamlines, and arrows): emergence of the shear parallel layer, in (yz), for (Rep, Ha, Np) = (2.2, 200, 1136.4).
Inset: close-up view of the Hartmann layer near the sphere surface; (b) electric current streamlines in (yz)1:
Shercliff flow patterns, (Rep, Ha, Np) = (11.2, 100, 55.8); (c) electric current densities along the surface of the
sphere (y
 > 0 view), (Rep, Ha, Np) = (11.2, 100, 55.8).

(positive and negative) along the outer magnetic field direction. In agreement with the HL68 model,
the electric current streamlines are clearly rejected from the inner core region [similar to Dousset’s
results; see Fig. 6(a)]. Along with the previous remarks concerning velocity patterns, the present
analysis of current density patterns constitutes, to our knowledge, the first numerical evidence of
the shear layer development.

Note that in the equatorial (xy) plane of the sphere, the arising of a boundary-layer singularity
could be suspected, owing to the fact that the wall becomes locally aligned with the magnetic field.
As indicated in the inset of Fig. 14(a), such a singularity, made evident for the first time by Roberts
[47] in the case of an insulating circular duct, here remains to be demonstrated. A decisive proof of
its existence would essentially rely on the possibility to consider sufficiently large particle Hartmann
numbers (singularity thickness ∼Ha−2/3

p ).
Finally, electric current streamlines typical of Shercliff flow topology are recovered downstream,

far from the obstacle, as seen in Fig. 14(b), which is another benchmark for the present results.
At the surface of the sphere, the current densities are oriented along the positive �ey direction [see
Fig. 14(c)], in accordance with the currents carried by the Hartmann layers.
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FIG. 15. (Horizontal) wake length with respect to various (Ha, Rep) values. Color scale: parametrized sur-
face; red symbols: numerical simulations. ftrans.(Rep, Ha) represents the transition curve between simulations
showing no recirculating areas and those immediately following and showing such recirculating flow patterns.

C. Flow coefficients

Wake length. The addition of an outer electromagnetic field tends to turn the horizontal sphere
wake into a vertical Hunt’s wake. The sphere wake length thus decreases with increasing Ha values,
at given Rep. Let us try to establish a correlation for Lw(Rep, Ha), which is an original result
regarding the literature.

The results are displayed in Fig. 15. In this figure, the symbols (�) stand for the set of numerical
simulations where flow separation occurs and recirculating areas exist, while the colored area
represents the parametrized surface Lw/d = cLw

(Rep, Ha) fitted on the data points. The solid
line ftrans.(Rep, Ha) represents the transition curve between simulations showing no recirculating
areas and those immediately following and showing such recirculating flow patterns. A bicubic
interpolation gives the following expression for the correlation cLw

, with a mean error smaller than
2%, for Rep ∈ [30..130], Ha ∈ [0..30]:

cLw
(Rep, Ha) =

∑
i, j=0..3
i + j � 3

α(i,j )Rep
iHaj , (27)

where the α(i,j ) coefficients are given in Table II. Obviously, this correlation should be benchmarked
by other numerical results for the same typical geometry.

Drag coefficient. The emergence of a ghost obstacle leads to the increase of Cd with Ha or Np,
at given Rep, the contribution of the electromagnetic part of the drag coefficient, Cd,em, becoming
gradually preponderant. In this section, we shall try to establish one correlation for Cd (Rep, Np)
rather than Cd (Rep, Ha), because the existing literature consistently focuses on (Rep, Np) pairs
concerning the MHD drag coefficient (see Sec. I C).

First, let us draw the evolution of the drag coefficient with respect to Np for given Rep values, as
shown in Fig. 16. On the one hand, a reasonable agreement with the results of Haverkort et al.
[23] can be found, when compared with Fig. 7(a). On the other hand, three distinct areas can
be clearly distinguished, depending on the value of Np. For Np � 1, the electromagnetic drag
coefficient approaches the potential theory limit linked with correlation (15), with a typical scaling
Cd,em ∼ Np. For Np � 1, the scaling Cd,em ∼ √

Np derived from Hunt and Ludford’s theory [see
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TABLE II. Coefficients for correlations (27) and (28).

Wake length Drag coefficient

(i, j ) pair α(i,j ) (i ) β (i )

(0,0) − 32
125 (1) 169189

45612

(0,1) 577
50000 (2) 21704

52751

(1,0) 1211
100000 (3) 1

(0,2) − 1333
100000 (4) −1

(2,0) 95
14726399 (5) − 496888

6537

(0,3) 496
10808455 (6) 21548

80261

(3,0) − 24
122324159 (7) − 7164

384065

(1,1) − 723
2072227 (8) 12219

21319

(1,2) − 89
11825671 (9) 3643

10089

(2,1) 38
18313253 (10) −1

correlation (14)] is recovered. The scaling change between these two asymptotic regimes occurs at
moderate Np values. Typically, Cd,em ∼ Np

0.65 in this transitional area testifying from the gradual
switch from horizontal hydrodynamic wake to vertical Hunt’s wake. This also partially confirms the
Cd,em = f (Rep)Np

n correlation proposed by Haverkort.
Now, let us determine one correlation Cd,em = cCd,em (Rep, Np) for the electromagnetic drag

coefficient. We first tried to interpolate a function of the kind f (Rep)Np
n, as suggested by Haverkort,

and then the correlation of Branover et al. [see Eq. (16)]. In both cases, the discrepancy with our
results was too high (especially for small Np values). We then tried to interpolate a function of
the kind f (Rep, Np)Np

n(Np ), and we obtained better results. We propose the following expression
for the correlation cCd,em , whose mean error with respect to our numerical results is 7.9%, for

FIG. 16. Electromagnetic drag coefficient with respect to (Rep, Np) (see Fig. 7(a) for a comparison with
the results of Haverkort et al. [23]).
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FIG. 17. Electromagnetic drag coefficient with respect to (Rep, Np), and the three resulting flow regimes:
I, mainly hydrodynamic flow patterns, horizontal wake, recirculating areas; II, mainly hydrodynamic flow
patterns, horizontal wake, no recirculating areas; III, mainly MHD flow patterns, Hunt’s (vertical) wake, no
recirculating areas. Color scale: gray, surface parametrized according to correlation (28); blue: asymptotic
theoretical limit for Np � 1 [see (15)]; green: asymptotic theoretical limit for Np � 1 [see (14)]. Green
symbols: numerical simulations in area I; red symbols: other simulations.

Rep ∈ [0.6 . . . 130] and Np ∈ [10−2 . . . 4 × 103]:

cCd,em (Rep, Np) =
{

β (1)

Rep
β (2) [β (3) + β (4) exp(β (5)Np)] + β (6) exp(β (7)Np)

}
Np

β (8)+β (9) exp(β (10)Np ),

(28)

where the β (i) coefficients are given in Table II. Let us extract the asymptotic limits of correlation
(28) for Np � 1 and Np � 1, which yields

lim
Np→0

cCd,em = 0.27Np
0.93, lim

Np→+∞
cCd,em = 3.71

Np
0.57

Rep
0.41 . (29)

These limits are in satisfying agreement with the theoretical asymptotic cases (14) (Np � 1) and
(15) (Np � 1), for which Cd,em = 8Np

0.5/Rep
0.5 and Cd,em = 0.3Np, respectively.

The results are displayed in Fig. 17. In this figure, the gray surface represents correlation (28),
and the (red and green) symbols stand for the set of numerical simulations used for fitting. Here, the
range of Np values is intentionally extended to Np ∈ [10−2 . . . 4 × 103], so that a comparison can
be made with the asymptotic theoretical limits for Np � 1 [see (15)], represented by the blue plane,
and for Np � 1 [see (14)], represented by the green plane. A most insightful feature is related to the
different flow regimes with respect to (Rep, Np) values. A scaling law is established, which permits
to distinguish three flow areas.

Area I (green symbols) mainly involves hydrodynamic flow patterns, with horizontal wake due to
the presence of a counterclockwise vortex pair for instance. In this area, where Np < 1, the amount
of inertia remains high enough to prevent the development of a Hunt’s wake, and the isovorticity
pattern around the sphere is wing shaped as previously shown. However, the structure of the wake is
strongly influenced by the presence of the magnetic field, as small as it can be. Indeed, the value of
the electromagnetic drag coefficient becomes gradually comparable with the purely hydrodynamic
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one as Np increases (see Appendix B for further details about purely hydrodynamic benchmarking
results). Besides, as it has been noticed in Fig. 15, the wake length is diminishing as Ha (and thus
Np) increases, the vortex pair in the recirculating region is gradually vanishing. If we extrapolate
correlation (28) to lower Np regions, the matching with the potential theory limit (blue plane) seems
quite satisfying. As previously highlighted, in this area, a scaling law relates Cd,em with Np

l , l

approaching unity in the limit Np � 1.
Area II (red symbols around Np = 1, between the upper edge of the blue plane and the lower

edge of the green plane) still mainly involves hydrodynamic flow patterns, with horizontal wake,
but no more recirculating areas. In this area, where Np ∼ 1, electromagnetic effects compete with
inertial effects. Typically, the magnetic extinction of the twin vortices at the rear of the sphere is well
explained by the presence of two induced electric current loops in the (yz) plane. The decisive role of
the Stuart number Np is consistently made evident by considering that the Joule timescale, τJoule =
ρ/σB2

0 , becomes smaller than the vortex turnover timescale, τturn = d/V , when the magnetic field
becomes large enough. As previously highlighted, the profile of the wake becomes asymmetric,
with a preferential orientation along the outer field direction. In this case, flow separation is not
observed anymore; the structure of the wake shows thus a distinct difference with the one noticed in
area I. In this transitional area, a change in the Cd,em slope is observed, a scaling law relating Cd,em

and f (1/Rep
m)Np

n is found, with m approaching 0.4 [according (28)] and n approaching 0.65 (as
shown in Fig. 16).

Finally, area III mainly involves MHD flow patterns, with the gradual emergence of the Hunt’s
(vertical) wake, and no recirculating areas. In this area, where Np > 1, the development of the
ghost column deeply alters flow topology, and the isovorticity pattern around the sphere is now
saddled-shaped owing to MHD-induced tendency toward two dimensionality. The value of the
electromagnetic drag coefficient now clearly overcomes the purely hydrodynamic one. If we
extrapolate correlation (28) to higher Np regions, the matching with Hunt and Ludford’s theory
limit (green plane) is highly satisfactory. As previously highlighted, in this area, a scaling law relates
Cd,em with Np

p/Rep
q , and both p and q approach 0.5 in the limit Np � 1.

Obviously, correlation (28) should be benchmarked (and refined) by other numerical or experi-
mental results for the same typical geometry. The part of area III for which Rep, Np � 1 is expected
to be particularly challenging: For instance, for Rep = 130, the Hartmann number Ha should reach
a value of several thousands, rising such numerical issues as proper meshing of the Hartmann layers
at the surface of the sphere and at duct walls. Meanwhile, correlation (28) is a first step toward a
generalized scaling law for confined MHD flows around spheres.

IV. CONCLUSIONS AND OUTLOOK

A permanent MHD channel flow past a sphere has been successfully investigated, based on a
3-D numerical approach, taking properly confinement effects into account, when the magnetic field
is transversally applied. A fair agreement is found with existing literature allowing for asymptotic
benchmark (Ha → 0,∞). The joint presence of side walls and an obstacle like a sphere is crucial,
essentially because it generates strong topological changes due to the development of Hartmann
layers. As anticipated from Ref. [22], one demonstrates in the present paper that the symmetry
breakup generated by the presence of a spherelike obstacle causes a strong interaction between
the sphere and the channel walls by way of the electric circuit, which may significantly alter flow
patterns as well as flow coefficients. More particularly, a first numerical evidence of the gradual
emergence of a Hunt’s wake at the location of the sphere is made evident for a sufficiently large
particle Stuart number. Owing to MHD-induced tendency to two dimensionality, the isovorticity
pattern around the sphere is found to switch from a wing-shaped to a saddle-shaped pattern for a
growing transverse magnetic field. Other MHD working conditions are simulated and some original
correlations for the wake length and drag coefficient with respect to MHD flow coefficients are
drawn up. An original scaling law highlighting the significant influence of an outer transverse
magnetic field on the transition between different MHD flow regimes is finally proposed.
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It must be pointed out that present results could be extended by scrutinizing other values of the
following parameters: the blockage ratio λ and other Rep, Np pairs. As previously said, the regimes
linked to higher values of Rep, Np should be interesting (possible arising of Roberts singularities
[47]) but quite challenging considering CPU costs, meshing issues risen by the thinness of the
Hartmann layers, and the need for simulating the unsteady behavior of the sphere wake. The nature
of the boundary condition at the surface of the sphere also could reveal to be an insightful topic for
future studies on bubble MHD flow. The electrical activation of the Hartmann layers at the surface
of the sphere, in link with the boundary condition implemented at its surface, should dramatically
affect the MHD flow topology. A “true” boundary condition spanning between slip and no-slip BCs
[42,48–50] as well as a proper numerical implementation of the full jump momentum balance at the
liquid/gas interface (following, e.g., the approach of Reusken and Zhang [51]) should be considered
as a future step toward the description of MHD bubble flows.
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APPENDIX A: STREAMWISE OR TRANSVERSE MAGNETIC FIELD?

Let us highlight an issue of particular interest in view of magnifying the interplay between
bulk MHD and the spherical inclusion, related to the respective orientations of the velocity field
ad infinitum and of the outer dc field. Let us determine whether a streamwise or a transverse
configuration seems more insightful by considering the case of an insulating sphere (rigid bubble)
rising freely in an unbounded medium, and let us investigate here the streamwise configuration,
where the velocity and the outer magnetic field are aligned (along the �ex direction) far from the
inclusion. The governing MHD equations provide particularly insightful information.

The spherical system of coordinates attached to the sphere, as defined in Fig. 8, is used, and a
potential formulation of the MHD problem is selected. After an appropriate scaling (dimensionless
quantities being superscripted 
), the potential formulation leads to the following MHD equation
[5] for the electric potential φ
:

�
φ
 = div
(�v
 × �ex ).

Let us develop further this equation by projecting �ex on the spherical frame (�er , �eθ , �eϕ ): Classically,
�ex = sin(θ )�er + cos(θ )�eθ , and here �v
 = v


r (r
, θ )�er + vθ (r
, θ )�eθ for symmetry reasons. Conse-
quently, the vector �v
 × �ex is oriented along the single �eϕ component, but depends on r and θ alone.
Its divergence is consequently zero, resulting in

�
φ
 = 0. (A1)

Now, with the outer field being oriented along the �ex direction, Ohm’s law delivers the following
expression for the electric current densities �j
 [5]:

�j
 = −−−→
grad(φ
) + �v
 × �ex = −∂φ


∂r

�er − 1

r


∂φ


∂θ
�eθ + [v


r sin(θ ) − v

θ cos(θ )]�eϕ, (A2)
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(a) (b)

(c) (d)

FIG. 18. Hydrodynamic flow patterns around the sphere. (a) Norm (color scale) and streamlines of the
velocity field �v
 in (xz), for Rep = 1.1; (b) norm (color scale) and streamlines of the velocity field �v
 in
(xz), for Rep = 125.9; (c) �v
 streamlines at Rep = 125.9: recirculation region (red) and (xy ) (blue); (d) ||ω


y ||
contours in (xz), for Rep = 52.6. Inset: Equivalent of (dimensional) vorticity ωy contours at Rep = 52.9, from
Ref. [53].

where the
−−→
grad(φ
) and �v
 × �ex terms are denominated the Coulomb and Lorentz parts of the electric

current densities, respectively.
As such, Eq. (A1) does not bring any source term due to velocity into play. Moreover, the

electric current densities, given in Eq. (A2), do not depend on velocity as far as the in-plane
components are concerned, while the out-of-plane component is purely electromotive. As such,
only a passive interplay between the Coulomb and Lorentz part is expected, with no need for the
electrical activation of the Hartmann layers along the sphere, which would not deeply alter the
core-flow topology.3

In the light of these remarks, we shall focus on the transverse configuration in this paper, with
�B0 = B0�ez. However, this choice has a major drawback: The axisymmetry of the problem is broken,
which considerably compromises an analytical approach to the problem. It is also worth noting
that the presence of duct walls also leads to symmetry breakup. For all these reasons, a numerical
approach is favored in this paper (see Sec. II).

3Except in the case where the wake becomes unstable; see, e.g., a very recent paper by Pan et al. [52] in the
case of slip conditions applied at the channel walls.
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(a) (b)

FIG. 19. Evolution of flow coefficients with respect to Rep. (a) Drag coefficient with respect to various Rep

values. Line, correlation (12); symbols, present results; (b) wake length relative to sphere diameter for various
Rep values. Solid line, correlation (10); dashed line, 0.9 × (10); cross symbols, present results. Inset: different
wake length results exposed in Ref. [53] compared to present results.

APPENDIX B: BENCHMARK WITH THE PURELY HYDRODYNAMIC CASE (Ha = 0)

This Appendix focuses on the benchmarking asymptotic study relative to the purely hydrody-
namic case Ha = 0.

1. Flow patterns

The hydrodynamic flow patterns are in satisfying agreement with the different observations made
in Sec. I C 1. When Rep is small, the Stokes flow patterns are recovered in Fig. 18(a). When Rep

is large enough, the steady wake regime is observed in Fig. 18(b) with the arising of a counter-
clockwise vortex pair (also referred to as twin vortices or vortex bubble in the literature; see, e.g.,
Ref. [54]). The flow acceleration due to confinement is seen in the magnitude of the velocity field,
which reaches higher values than at the inlet, in the regions between the top (respectively the bottom)
of the sphere and the top (respectively bottom) duct wall. Flow separation and recirculating areas
are noticeable in the vicinity of the sphere, as magnified in Fig. 18(c). Finally, the vorticity contours
ω


y in the plane (xz) [see Fig. 18(d)] are in qualitative agreement with those found, e.g., in Ref. [53]
at the same value of Rep.4 The underlying vortical structure of the wake explains the toroidal vortex
observed in the streamline patterns and the emergence of the steady recirculating areas.

2. Flow coefficients

Once again, the agreement between numerical results and the predictions stemming from the state
of the art is relatively satisfying. Concerning the drag coefficient Cd [see Fig. 19(a)], the evolution
with respect to Rep follows the one predicted by Eq. (12), and the mean error lies within 2%.
With respect to the wake length [see Fig. 19(b)], the results seem less satisfying when compared
directly with Eq. (10). The agreement is far better when considering 10% lower values for the latter,
taking account of the blockage ratio, except for Rep numbers close to the creeping flow/steady wake
transition. If now we consider other results exposed, e.g., in Ref. [53] [inset of Fig. 19(b)], the
present results seem quite relevant. The other results indeed correspond to unbounded flow studies,
where the ratio Lw/d is consequently larger than for confined layouts, as is the case in this study. As

4The authors do not explicitly define a dimensionless vorticity, preventing us from concluding on the
quantitative agreement.
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expected, this feature is systematically found in the inset of Fig. 19(b) (the discrepancy lying within
10%, as previously said in link with the confinement). Consequently, the hydrodynamic benchmark
makes us reasonably confident about the validity of the numerical simulations.

APPENDIX C: NUMERICAL PRECISION OF THE CODE

In order to give an estimate of the numerical precision, two different tests are performed. First,
the mesh is significantly refined with the standard geometry: from 9 × 105 (standard mesh) up to
1.4 × 106 elements (heavy mesh). Second, the outflow conditions are modified in order to check
whether the 15d distance downstream from the sphere constitutes a sufficient “buffer” region or not.
This distance is extended up to 22d. Three cutting lines are defined:

(1) A first one, along the main x axis, spanning from the rear of the sphere to x = 10d within
the z = 0 plane,

(2) a second one, along the transverse direction �ey , spanning between the two side walls within
the (yz) plane at x = 7.5d, and

(3) a last one, along the direction of the magnetic field �ez, spanning between the bottom and top
duct walls, within the (yz) plane at x = 7.5d.

For each layout (standard mesh, heavy mesh, and longer duct), the y component of the electric
current density and the x component of the velocity along the three cutting lines have been
compared for various Reynolds numbers at a given Ha value (Ha = 10). As all the curves being
perfectly superimposed in each case, both the numerical precision of the code and the numerical
implementation of the sphere MHD problem can be considered as secured.
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