
PHYSICAL REVIEW FLUIDS 3, 123603 (2018)

Unsteady motion of a long bubble or droplet in a self-rewetting system
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Motivated by the potential use of self-rewetting fluids (i.e., fluids that exhibit a
nonmonotonic variation of surface tension with temperature) in various heat-transfer
applications, in the present work we formulate and analyze a theoretical model for the
unsteady motion of a long bubble or droplet in a self-rewetting system in a nonuniformly
heated tube due to a combination of Marangoni effects due to the variation of surface
tension with temperature, gravitational effects due to the density difference between the
two fluids, and an imposed background flow along the tube. We find that the evolution of
the shape (but not of the position) of the bubble or droplet is driven entirely by Marangoni
effects and depends on the initial value of its radius in relation to a critical value. In the case
in which Marangoni effects are absent, the bubble or droplet always moves with constant
velocity without changing shape. In the case in which only Marangoni effects are present,
the bubble or droplet either always moves away from or always moves towards the position
of minimum surface tension; in the latter case it ultimately fills the entire cross section of
the tube at a final stationary position which is closer to the position of minimum surface
tension than its original position. In the cases in which either only Marangoni effects and
gravitational effects or only Marangoni effects and background-flow effects are present the
competition between the two effects can lead to a nonmonotonic evolution of the position
of the center of mass of the bubble or droplet. The behavior of a self-rewetting system
described in the present work is qualitatively different from that for ordinary fluids, in
which case the bubble or droplet always moves with constant velocity without changing
shape.

DOI: 10.1103/PhysRevFluids.3.123603

I. INTRODUCTION

The thermocapillary-driven (i.e., surface-tension-gradient-driven, hereafter referred to simply as
“Marangoni-driven”) motion of bubbles and droplets plays an important role in a wide variety of
practical situations including, for example, heat-transfer and material-processing applications. For
most “ordinary” fluids, surface tension, here denoted by σ , is a monotonically (typically, to a good
approximation, linearly) decreasing function of temperature, here denoted by T [see, for example,
Fig. 1(a)], and as a result Marangoni effects draw fluid towards regions with lower temperature.
However, for many years it has been known (see, for example, the pioneering work of Vochten
and Petre [1], Petre and Azouni [2], Legros [3], and Vázquez, Alvarez, and Navaza [4]) that this
behavior is not universal, and that there are certain fluids, notably dilute aqueous solutions of
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FIG. 1. Sketches of surface tension σ as a function of temperature T for (a) an ordinary and (b) a self-
rewetting fluid.

certain long-chain alcohols, that exhibit a nonmonotonic (typically, to a good approximation, locally
quadratic) variation of surface tension with temperature, with a minimum value, here denoted by
σmin, at a well-defined value of temperature, here denoted by Tmin [see, for example, Fig. 1(b)].
In particular, for temperatures above Tmin the surface tension of such fluids is an increasing
function of temperature, and as a result Marangoni effects draw fluid towards regions with higher
temperature. This unusual behavior has stimulated interest in the potential use of such fluids in
various heat-transfer applications, such as pool boiling, spray boiling, and heat pipes, because in
these contexts it tends to reduce dry-out, and hence to enhance the overall heat transfer, by rewetting
hot surfaces, and so has led to them being termed “self-rewetting” fluids (see, for example, the work
of Zhang [5], Abe, Iwasaki and Tanaka [6,7], Abe [8], Savino and collaborators [9–15], Hu et al.
[16], Hu, Zhang, and Wang [17], and Wu [18]).

There have been a few studies of the effect of a nonmonotonic variation of surface tension with
temperature on the dynamics of fluid films (notably the early work by Oron and Rosenau [19],
Slavtchev and Miladinova [20], and the more recent work by Batson, Agnon, and Oron [21]).
However, in contrast to the large body of work on the motion of both confined and unconfined
bubbles and droplets in or of an ordinary fluid in the presence of significant Marangoni effects
(see, for example, the work of Young, Goldstein, and Block [22], Balasubramaniam and Chai [23],
Ehrhard and Davis [24], Wilson [25,26], Smith [27], Balasubramaniam and Subramanian [28],
Mazouchi and Homsy [29,30], Lajeunesse and Homsy [31], Dunn et al. [32], Katz et al. [33], and
Karapetsas, Sahu, and Matar [34]), until recently there has been virtually no work on the motion of
a bubble or droplet in or of a self-rewetting fluid. These studies show that the behavior of a bubble
or droplet in or of a self-rewetting fluid can be qualitatively different from that for an ordinary
fluid. Specifically, the theoretical studies by Karapetsas et al. [35] of the motion of a droplet on a
heated substrate, and by Tripathi et al. [36] of the rise of a bubble in a vertical channel, as well as
the experimental studies by Shanahan and Sefiane [37] of the motion of a bubble in a mean flow,
and by Mamalis, Koutsos, and Sefiane of the motion of a droplet on a heated inclined substrate
[38], of the rise of a bubble in a vertical micro-channel [39], and of the spreading of a droplet on a
heated substrate [40], all demonstrate this. In the present work we seek to bring further insight into
this problem by formulating and analyzing a theoretical model for the unsteady motion of a long
bubble or droplet in a self-rewetting system in a nonuniformly heated tube. In particular, we find
that the evolution of the shape (but not of the position) of the bubble or droplet is driven entirely by
Marangoni effects and depends on the initial value of its radius in relation to a critical value.

II. PROBLEM FORMULATION

Consider the unsteady motion of a long axisymmetric bubble or droplet of fluid (denoted fluid
1), with constant volume V , uniform radius b(t ), and length L(t ), where t denotes time, in a second
fluid (denoted fluid 2), all contained within a nonuniformly heated vertical tube of constant radius
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FIG. 2. Sketch of the geometry of the problem: a long axisymmetric bubble or droplet of fluid (fluid 1) of
uniform radius b(t ) moving in a second fluid (fluid 2), all contained within a nonuniformly heated vertical tube
of constant radius a. The linear temperature distribution T imposed on the tube wall and the resulting quadratic
variation of surface tension σ are shown on the right and the left of the figure, respectively.

a, where 0 < b(t ) < a � L(t ). The motion is due to a combination of Marangoni effects due to the
variation of surface tension with temperature, gravitational effects due to the density difference
between the two fluids, and an imposed background flow along the tube with prescribed axial
volume flux Qb. For brevity, henceforth we use the general term “droplet” rather than “bubble
or droplet,” except when explicitly referring to the special case in which fluid 1 is inviscid.

Figure 2 shows a sketch of the geometry of the problem. We choose a cylindrical polar coordinate
system, with the z axis vertically upwards along the centerline of the tube, and with the origin
z = 0 at the vertical position at which the wall temperature takes the value Tmin. With respect to
this coordinate system, the velocity, pressure, and temperature of fluid i for i = 1, 2 are denoted
by ui = (ui, wi ), pi (r, z, t ), and Ti (r, z, t ), respectively, where ui (r, z, t ) and wi (r, z, t ) denote the
radial and the axial velocity, respectively. The positions of the front and back of the droplet are
denoted by z = zf (t ) and z = zb(t ) = zf (t ) − L(t ) (< zf (t )), respectively, in terms of which the
position of the center of mass of the droplet is given by z = c(t ) = (zf (t ) + zb(t ))/2.

We assume that both fluids are incompressible, with constant bulk material properties which
may differ between the two fluids. Specifically, fluid i for i = 1, 2 has constant density ρi , dynamic
viscosity μi , heat capacity cp,i , and thermal conductivity ki .

To model the self-rewetting properties of the system we take the surface tension of the interface
between the two fluids, σ , to be a quadratic function of temperature T with a minimum value
σ = σmin at T = Tmin given by

σ = σmin + γ

2
(T − Tmin)2, (1)

where γ = d2σ/dT 2 > 0 is a positive constant.
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A linear temperature distribution is imposed on the tube wall, and so

T2 = Tmin + βz on r = a, (2)

where the constant β is the imposed temperature gradient, which may be positive or negative
depending on whether the top or the bottom of the tube is hotter. However, since σ is a quadratic
function of T − Tmin, we find that it depends on β like β2 (rather than like β, as it would do for
ordinary fluids for which σ is a linearly decreasing function of T ), and therefore we may, without
loss of generality, take β to be positive (i.e., we may, without loss of generality, consider the situation
shown in Fig. 2 in which the top of the tube is hotter than the bottom).

Since the droplet is long compared with the radius of the tube, its aspect ratio ε, defined by

ε = a

�
� 1, (3)

is small, where

� = V

πa2
(4)

is a characteristic axial length scale of the problem, chosen such that the scaled volume of the droplet
is unity. It is then appropriate to nondimensionalize and scale all relevant quantities in the system
according to

r∗ = r

a
, b∗ = b

a
, z∗ = εz

a
, L∗ = εL

a
, t∗ = εWt

a
, u∗

i = ui

εW
, w∗

i = wi

W
,

p∗
i = εapi

μ2W
, Q∗

i = Qi

πa2W
, Q∗

b = Qb

πa2W
, T ∗

i = Ti − Tmin

Tmin
, β∗ = aβ

εTmin
, σ ∗ = σ

σmin
,

⎫⎪⎪⎬
⎪⎪⎭

(5)

where the stars denote dimensionless quantities, Q∗
i for i = 1, 2 denote the axial volume fluxes of

fluid 1 and fluid 2, respectively, given by

Q∗
1 = 2

∫ b∗

0
r∗w∗

1 dr∗, Q∗
2 = 2

∫ 1

b∗
r∗w∗

2 dr∗, (6)

and W is the characteristic axial velocity scale. The particular form for W may be chosen in
several different ways, such as W = εγ T 2

min/μ2 when Marangoni effects are important, W = (ρ2 −
ρ1)ga2/μ2 when gravitational effects are important, or W = Qb/πa2 when the background-flow
effects are important, and so we leave W unspecified here.

Away from the ends of the droplet and at leading order in the limit ε → 0, the velocity, pressure,
and temperature of the two fluids satisfy

1

r∗
∂

∂r∗ (r∗u∗
1 ) + ∂w∗

1

∂z∗ = 0,
1

r∗
∂

∂r∗ (r∗u∗
2 ) + ∂w∗

2

∂z∗ = 0, (7)

∂p∗
1

∂r∗ = 0,
∂p∗

2

∂r∗ = 0, (8)

m

r∗
∂

∂r∗

(
r∗ ∂w∗

1

∂r∗

)
= ∂p∗

1

∂z∗ + ρ∗
1 ,

1

r∗
∂

∂r∗

(
r∗ ∂w∗

2

∂r∗

)
= ∂p∗

2

∂z∗ + ρ∗
2 , (9)

1

r∗
∂

∂r∗

(
r∗ ∂T ∗

1

∂r∗

)
= 0,

1

r∗
∂

∂r∗

(
r∗ ∂T ∗

2

∂r∗

)
= 0, (10)

representing balances of mass, linear momentum in the radial direction, linear momentum in the
axial direction, and energy, respectively, and where we have assumed that the reduced Reynolds
numbers ε2Rei and the reduced Péclet numbers ε2Pei for i = 1, 2, defined by

ε2Rei = ερiaW

μi

� 1, ε2Pei = ερicp,iaW

ki

� 1, (11)
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in both fluids are small, and have defined the viscosity ratio,

m = μ1

μ2
, (12)

along with the scaled densities of fluid 1 and fluid 2, respectively,

ρ∗
1 = ρ1ga2

μ2W
, ρ∗

2 = ρ2ga2

μ2W
, (13)

and the scaled density difference between the two fluids,

�ρ∗ = (ρ2 − ρ1)ga2

μ2W
. (14)

The special cases of an inviscid bubble and of an inviscid surrounding fluid correspond to m = 0
and the limit m → ∞, respectively.

Equations (7)–(10) are subject to the following leading-order boundary conditions. At the axis
of symmetry, r∗ = 0,

u∗
1 = 0, (15)

∂w∗
1

∂r∗ = 0, (16)

∂T ∗
1

∂r∗ = 0. (17)

At the tube wall, r∗ = 1,

u∗
2 = 0, (18)

w∗
2 = 0, (19)

T ∗
2 = β∗z∗, (20)

which are a no-penetration condition, a no-slip condition, and the imposed wall temperature,
respectively. At the interface between the two fluids, r∗ = b∗,

u∗
1 = u∗

2, (21)

w∗
1 = w∗

2, (22)

T ∗
1 = T ∗

2 , (23)

κ
∂T ∗

1

∂r∗ = ∂T ∗
2

∂r∗ , (24)

p∗
1 − p∗

2 = 1

b∗

(
1

C
+ M

2β2
T ∗2

1

)
, (25)

∂w∗
2

∂r∗ − m
∂w∗

1

∂r∗ = −M

β2
T ∗

1
∂T ∗

1

∂z∗ , (26)

which are continuity of radial velocity, axial velocity, temperature and heat flux, and balances of
normal stresses and tangential stresses, respectively, where we have defined the thermal conductivity
ratio,

κ = k1

k2
, (27)
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an appropriate capillary number,

C = μ2W

εσmin
, (28)

and an appropriate Marangoni number,

M = εγβ2T 2
min

μ2W
. (29)

Global conservation of mass requires that the total flux of the two fluids must be equal to the
prescribed flux of the imposed background flow, Q∗

b, i.e.,

Q∗
1 + Q∗

2 = Q∗
b. (30)

In particular, in the special case of a closed tube with no background flow, Q∗
b = 0, and so Q∗

1 =
−Q∗

2.
Note that, whereas �ρ∗ and Q∗

b may be either positive, negative, or zero, M must, by definition,
always be non-negative.

The radius of the droplet, b∗, satisfies the kinematic condition

2b∗ db∗

dt∗
+ ∂Q∗

1

∂z∗ = 0, or, equivalently, 2b∗ db∗

dt∗
− ∂Q∗

2

∂z∗ = 0. (31)

Neglecting the small contributions from its ends, the volume of the droplet is given by b∗2L∗ = 1,
and hence its length is simply given by

L∗ = 1

b∗2
. (32)

Note that, since the (dimensional) radius of the droplet must be less than that of the tube (i.e.,
0 < b < a and hence 0 < b∗ < 1), its (dimensional) length must be greater than the characteristic
axial length scale � given by Eq. (4) (i.e., L > � and hence L∗ > 1). Henceforth, for clarity, we drop
the stars on dimensionless quantities.

III. PROBLEM SOLUTION

The thermal problem, given by Eqs. (10), (17), (20), (23), and (24), decouples from the
hydrodynamic problem and may be solved separately to yield simply

T1 = T2 = βz, (33)

showing that the temperatures of both fluids are radially uniform and identically equal to the
imposed wall temperature. In particular, this means that the surface tension given by Eq. (1) is a
quadratic function of z given by

σ = 1 + MC

2
z2. (34)

The hydrodynamic problem, given by Eqs. (7)–(9), (15), (16), (18), (19), (21), (22), (25), and
(26), may now be solved, leading ultimately to the evolution equations for the shape of the droplet
and for its position within the tube [i.e., evolution equations for b(t ), L(t ), zf (t ), zb(t ) and c(t )].

Equation (8) implies that the pressures of both fluids are radially uniform, i.e.,

pi = pi (z, t ) for i = 1, 2. (35)

In particular, using Eqs. (33) and (35), Eq. (25) shows that

p1 − p2 = 1

b

(
1

C
+ M

2
z2

)
. (36)
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Using Eq. (35), Eq. (9) may be integrated to yield expressions for the axial velocities wi , which
may then be used to determine the radial velocities ui and fluxes Qi of both fluids. The expressions
for the pressure gradients and the velocities of both fluids are rather cumbersome, and therefore
have been relegated to Appendix A. However, the fluxes take the forms

Q1 = MzfM(b,m) + �ρfG(b,m) + QbfB(b,m), Q2 = Qb − Q1, (37)

where the functions fj for j = M, G, B, which arise in the Marangoni (M), gravitational (G), and
background-flow (B) contributions to the fluxes, are given by

fM(b,m) = b3

8

[
(1 − b2)[(4m − 1)b2 − 4m − 1]

m − (m − 1)b4
− 4 ln b

]
, (38)

fG(b,m) = b4

8

[
(1 − b2)[(4m − 3)b2 − 4m + 1]

m − (m − 1)b4
− 4 ln b

]
(>0), (39)

fB(b,m) = b2[2m − (2m − 1)b2]

m − (m − 1)b4
(>0), (40)

respectively.
Figure 3 shows fj for j = M, G, B plotted as functions of b for the full range of values of m.

Each of the fj varies monotonically with m, with fM increasing but fG and fB decreasing as m

increases. In particular, in the special case of an inviscid bubble (m = 0), Eqs. (38)–(40) reduce to

fM(b, 0) = −1 − b4

8b
− b3

2
ln b (<0), (41)

fG(b, 0) = (1 − b2)(1 − 3b2)

8
− b4

2
ln b (>0), (42)

fB(b, 0) = 1, (43)

while in the special case of an inviscid surrounding fluid (m → ∞), Eqs. (38)–(40) reduce to

fM(b,∞) = −b3

2

(
1 − b2

1 + b2
+ ln b

)
(>0), (44)

fG(b,∞) = −b4

2

(
1 − b2

1 + b2
+ ln b

)
= bfM(b,∞) (>0), (45)

fB(b,∞) = 2b2

1 + b2
(>0), (46)

respectively. In addition, we note that fM = −(1/2)b3 ln b + O(b3) → 0+, fG = −(1/2)b4 ln b +
O(b4) → 0+, and fB = 2b2 + O(b4) → 0+ in the limit b → 0+, and that fM = −(1 −
b)2 + O((1 − b)3) → 0−, fG = (2/3)(1 − b)3 + O((1 − b)4) → 0+, and fB = 1 − 4m(1 − b)2 +
O((1 − b)3) → 1− in the limit b → 1−.

As Fig. 3 shows, the functions fG and fB are always positive, meaning that, as expected, the
contributions to Q1 and −Q2 due to gravitational and background-flow effects are always of the
same sign as �ρ and Qb, respectively, but the function fM can be either positive, negative, or zero,
and so, despite the fact that M is always non-negative, the contribution to Q1 and −Q2 due to
Marangoni effects may be either positive, negative, or zero. In particular, as Fig. 3(a) also shows,
there is a critical value of the droplet radius, denoted by bc = bc(m) (0 � bc � 1), which depends
on m according to the equation

fM(bc,m) = 0, (47)
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FIG. 3. Plots of the functions fj for j = M, G, B defined by Eqs. (38)–(40) which arise in the Marangoni
(M), gravitational (G), and background-flow (B) contributions to the fluxes appearing in Eqs. (37) as functions
of the droplet radius b for m = 0, 1/8, 1/4, . . ., 1, 3/2, 2, 5, 10 and in the limit m → ∞ given by Eqs. (44)–(46)
(the latter shown with dashed lines).

such that fM is positive for 0 < b < bc and negative for bc < b < 1. As we shall see, the critical
droplet radius bc plays an important role in the motion of the droplet, and so Fig. 4 shows
bc calculated from Eq. (47) plotted as a function of m. In particular, Fig. 4 shows that bc is
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FIG. 4. Plot of the critical droplet radius bc calculated from Eq. (47) as a function of the viscosity ratio
m. The asymptotic expressions bc ∼ exp[−1/(4m) − 1] → 0 in the limit m → 0+ and bc ∼ 1 − (3/2m)1/2 +
(5/4m) → 1− in the limit m → ∞ are shown with dashed lines.

a monotonically increasing function of m satisfying bc ∼ exp[−1/(4m) − 1] → 0+ in the limit
m → 0+ and bc ∼ 1 − (3/2m)1/2 + (5/4m) → 1− in the limit m → ∞.

Now that the velocities, and hence the fluxes, are known, the evolution of the shape of the droplet
is governed by the kinematic condition (31). The evolution of b(t ) and L(t ) is analyzed in Sec. IV.
Once the evolution of the shape of the droplet has been determined, we can determine the evolution
of its position within the tube by considering the motion of the ends of the droplet. The evolution of
zf (t ), zb(t ), and c(t ) is analyzed in Sec. V.

IV. EVOLUTION OF THE SHAPE OF THE DROPLET

Using Eq. (37), the kinematic condition (31) leads to the equation governing the evolution of the
radius b(t ), and hence of the length L(t ), of the droplet, namely,

db

dt
= −MfM(b,m)

2b
, (48)

where fM is given by Eq. (38). Equation (48) is a separable differential equation, with implicit
solution t = t (b) given by

t = 2

M

∫ b0

b

b̃

fM(b̃, m)
db̃, (49)

where the initial value of b is denoted by b0 = b(0) (with the corresponding initial value of L

denoted by L0 = L(0) = 1/b2
0). However, since the integral in Eq. (48) cannot, in general, be

evaluated in closed form, we investigated b numerically via Eq. (48) and asymptotically via Eq. (49).
An important observation is that, since the gravitational and background-flow contributions to

Q1 and −Q2 given by Eq. (37) are independent of z, they do not appear in Eq. (48), and hence the
evolution of b and L is driven entirely by Marangoni effects (i.e., is independent of gravitational
and background-flow effects). In particular, in the absence of Marangoni effects (M = 0), but not,
in general, when they are present, b and L are constants (i.e., the droplet moves without changing
shape). Moreover, since M can be removed explicitly from Eqs. (48) and (49) by an appropriate
rescaling of time, changing the value of M changes the time scale, but not the qualitative behavior,
of the evolution of b and L.

Inspection of Eq. (48) with fM given by Eq. (38) shows that, regardless of the values of �ρ

and Qb, when 0 < b < bc then b always decreases and hence L always increases in time, but when
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bc < b < 1 then b always increases and hence L always decreases in time. In particular, this means
that when the initial radius b0 satisfies 0 < b0 < bc the droplet becomes narrower and longer as time
increases, but when it satisfies bc < b0 < 1 the droplet becomes wider and shorter as time increases,
ultimately filling the entire cross section of the tube as t → ∞. Specifically, Eq. (49) shows that

b ∼ b0 − MfM(b0,m)

2b0
t, L ∼ L0 + MfM(b0,m)L2

0t (50)

as t → 0+, and that

b ∼ 4

Mt
[

ln
Mt

4
−

(
1 + 1

4m

)] → 0, L ∼ M2t2

16

[
ln

Mt

4
−

(
1 + 1

4m

)]2

→ ∞ (51)

as t → ∞ when 0 < b0 < bc, whereas

b ∼ 1 − 2

Mt
→ 1−, L ∼ 1 + 4

Mt
→ 1+ (52)

as t → ∞ when bc < b0 < 1. In particular, in the special case of an inviscid bubble (m = 0) then
bc = 0 and hence the droplet always becomes wider and shorter, whereas in the special case of an
inviscid surrounding fluid (m → ∞) then bc → 1− and hence the droplet always becomes narrower
and longer.

Figure 5 shows the evolution of b and L calculated numerically from Eq. (48) for various b0 and
L0 = 1/b2

0 in the case m = 1 and M = 1. In particular, Fig. 5 illustrates how the critical values
b = bc and L = Lc = 1/b2

c separate droplets that become narrower and longer from those that
become wider and shorter.

At first sight, the fact that the droplet may either expand or contract might seem rather surprising
as, regardless of the value of m, σ is a quadratic function of z given by Eq. (34), and hence
Marangoni effects always drive flow away from z = 0, and so we might naively expect the droplet
always to become wider and shorter. However, while, as we have seen, this is true for an inviscid
bubble with m = 0, it is not, in general, true for a viscous droplet with m �= 0, in which case the
change in the shape of the droplet depends on the relative strengths of the Marangoni-induced flows
in the two fluids. Specifically, for a droplet satisfying 0 < b < bc the flux of the Marangoni-driven
axial flow in the droplet is a linearly increasing function of z, whereas that of the surrounding fluid
is a linearly decreasing function of z, with the result that the droplet expands axially and contracts
radially. On the other hand, for a droplet satisfying bc < b < 1 the opposite occurs, with the result
that the droplet contracts axially and expands radially.

Note that the behavior described in this section is qualitatively different from that for ordinary
fluids for which σ is a linearly decreasing function of T analyzed by Wilson [25]. In the latter case
the Marangoni contribution to Q1 and −Q2 is independent of z, and hence b and L are constants
(i.e., the droplet always moves without changing shape).

V. EVOLUTION OF THE POSITION OF THE DROPLET

As we showed in the previous section, the present model predicts that the evolution of the shape
of the droplet is driven entirely by Marangoni effects (i.e., it is independent of gravitational and
background-flow effects). However, as we now describe, the evolution of the position of the droplet
depends, in general, on all three effects.

In order to determine the evolution of the position of the droplet we need to determine the
evolution of the positions of the front, z = zf (t ), and the back, z = zb(t ), and hence of the center of
mass, z = c(t ) = (zf (t ) + zb(t ))/2, of the droplet. In general, the details of the flow near the ends
of the droplet will be complicated, but, since we are interested in the overall motion of the droplet
rather than the details of the flow near its ends, a simple but realistic modeling assumption is that
the motion of each end is due to the flux of fluid 1 at that end, i.e., we take the motion of the front
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FIG. 5. Evolution of (a) the radius b and (b) the length L of the droplet calculated numerically from Eq. (48)
for various initial radii b0 and initial lengths L0 = 1/b2

0 in the case m = 1 and M = 1. The critical values
b = bc � 0.3729 and L = Lc = 1/b2

c � 7.1899 are shown with dashed lines.

and of the back of the droplet to be governed by

b2 dzf

dt
= Q1|z=zf (t ) and b2 dzb

dt
= Q1|z=zb(t ), (53)

respectively. Adding together the two equations in (53) [41] yields

b2 dc

dt
= 1

2
[Q1|z=zf (t ) + Q1|z=zb(t )], (54)

which, since Q1 given by Eq. (37) is a linear function of z, reduces to

b2 dc

dt
= Q1|z=c(t ), (55)

leading to the equation governing the evolution of the center of mass of the droplet, c(t ), namely,

dc

dt
= McfM(b,m) + �ρfG(b,m) + QbfB(b,m)

b2
, (56)

where fM, fG, and fB are given by Eqs. (38), (39), and (40), respectively. With Eq. (48), Eq. (56)
has a parametric solution for c (with parameter b) given by

c = b2
0c0

b2
− 2

b2

∫ b

b0

b̃[�ρfG(b̃, m) + QbfB(b̃, m)]

MfM(b̃, m)
db̃, (57)
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where the initial value of c is denoted by c0 = c(0). However, as for Eq. (49), since the integral in
Eq. (57) cannot, in general, be evaluated in closed form, we investigated c numerically via Eq. (56)
and asymptotically via Eq. (57). Once c is known, the positions of the ends of the bubble are given
simply by zf = c + (L/2) and zf = c − (L/2), respectively.

Equation (56) shows that, unlike the evolution of b and L described in Sec. IV, the evolution of
c depends on �ρ and Qb as well as on M . In particular, Eq. (56) shows that, except in the case in
which Marangoni effects are absent (M = 0) analyzed in Sec. VI, in which case b and L and hence
dc/dt are constants, the velocity of the droplet, dc/dt , is not, in general, constant. Specifically,
Eq. (57) shows that

c ∼ c0 + Mc0fM(b0,m) + �ρfG(b0,m) + QbfB(b0,m)

b2
0

t (58)

as t → 0+, and that the behavior as t → ∞ depends on whether Qb is zero or nonzero.
In the special case of a closed tube with no background flow, Qb = 0, it is found from Eq. (57)

that when 0 < b0 < bc then c = O(t ln t )2 → ∞ as t → ∞ (i.e. that the droplet ultimately moves
far away from z = 0), but when bc < b0 < 1 then c approaches a constant value c∞ according to
c ∼ c∞[1 + 4/(Mt )] → c∞ as t → ∞ (i.e., that the droplet ultimately approaches a final stationary
position).

In the general case Qb �= 0 it is found from Eq. (57) that |c| → ∞ as t → ∞ (i.e., that the
droplet again ultimately moves far away from z = 0). In particular, when bc < b0 < 1 then c/Qb ∼
t + O(ln t ) as t → ∞, showing that in this case the droplet ultimately moves at a constant velocity
determined by the background flow. However, when 0 < b0 < bc then the behavior of c has a more
complicated dependence on t , and so in this case the droplet does not, in general, ultimately move
with constant velocity.

In the next four sections we use Eqs. (56) and (57) to determine the evolution of c in four different
cases. Specifically, in Sec. VI we consider the case in which Marangoni effects are absent (M = 0),
in Sec. VII we consider the case in which only Marangoni effects are present (�ρ = 0 and Qb = 0),
while in Secs. VIII and IX we consider the cases in which either only Marangoni effects and
gravitational effects are present (Qb = 0) or only Marangoni effects and background-flow effects
are present (�ρ = 0), respectively. In each case, since the evolution of b and L has already been
determined in Sec. IV, we need only determine the evolution of c to complete the description of the
motion of the droplet.

Note that, once again, the behavior described in this section is qualitatively different from that
for ordinary fluids for which σ is a linearly decreasing function of T studied by Wilson [25]. In the
latter case b and L are constants and the Marangoni contribution to dc/dt is independent of c, and
hence dc/dt is constant (i.e., the velocity of the droplet is always constant).

VI. MARANGONI EFFECTS ARE ABSENT (M = 0)

In the case in which Marangoni effects are absent (M = 0), b = b0 and L = L0 are constants,
and from Eq. (56) the droplet moves with constant velocity

dc

dt
= �ρfG(b0,m) + QbfB(b0,m)

b2
0

(59)

without changing shape. In particular,

dc

dt
= �ρ

[(
1 − b2

0

)(
1 − 3b2

0

)
8b2

0

− b2
0

2
ln b0

]
+ Qb

b2
0

(60)
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FIG. 6. Plots of the constant velocity of the droplet dc/dt when Marangoni effects are absent given by
Eq. (59) as a function of its initial radius b0 in the case M = 0 and �ρ = 100 when (a) Qb = 1, (b) Qb = −8,
(c) Qb = −25/2, and (d) Qb = −15 for m = 0, 1/32, 1/16, . . ., 1/4, 1/2, . . ., 2 and in the limit m → ∞ given
by Eq. (61) (the latter shown with dashed lines).

when m = 0, and

dc

dt
= −�ρb2

0

2

(
1 − b2

0

1 + b2
0

+ ln b0

)
+ 2Qb

1 + b2
0

(61)

in the limit m → ∞.
In this case we may, without loss of generality, take �ρ > 0, but Qb may be positive, negative,

or zero. When Qb � 0 then background-flow and gravitational effects cooperate, and so dc/dt > 0
(i.e., the droplet always moves upwards); however, when Qb < 0 then the effects compete, and so
dc/dt may be positive, negative, or zero (i.e., the droplet may move upwards, downwards, or remain
stationary).

Figure 6 shows dc/dt plotted as a function of b0 for the full range of values of m for four
different values of Qb satisfying Qb > 0, −�ρ/8 < Qb < 0, Qb = −�ρ/8, and Qb < −�ρ/8,
respectively. In particular, Fig. 6 illustrates that, except in the special case of an inviscid bubble
m = 0 [42], dc/dt is a nonmonotonic function of b0, with either a maximum and a minimum
(when Qb < 0) or just a maximum (when Qb � 0) between its values 2Qb and Qb at b0 = 0 and
b0 = 1, respectively. Intriguingly, Fig. 6(b) also illustrates that when −�ρ/8 < Qb < 0, droplets
with radius b0 = [1 − (−8Qb/�ρ)1/2]1/2 have the same velocity, namely, dc/dt = −�ρ(1 − b2

0 +
2b2

0 ln b0)/4, for all values of m.

VII. ONLY MARANGONI EFFECTS ARE PRESENT (�ρ = 0 and Qb = 0)

In the case in which only Marangoni effects are present (�ρ = 0 and Qb = 0), then b and L

evolve as described in Sec. IV, and from Eq. (57) the position of the center of mass of the droplet is
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FIG. 7. Evolution of the position of the center of mass of the droplet c when only Marangoni effects are
present given by Eq. (62) for initial positions c0 = −2, −3/2, −1, . . . , 2 in the case m = 1, M = 1, �ρ = 0,
and Qb = 0 when (a) b0 = 1/4 (< bc � 0.3729) and (b) b0 = 1/2 (> bc).

given by

c = b2
0c0

b2
= b2

0c0L, (62)

and hence the positions of the ends of the droplet are given by zf = (b2
0c0 + (1/2))L and zb =

(b2
0c0 − (1/2))L.
Figure 7 shows the evolution of c for various c0 for two different values of b0, one satisfying

0 < b0 < bc and the other satisfying bc < b0 < 1. In particular, Fig. 7(a) illustrates that when 0 <

b0 < bc then c/c0 is an increasing function of t satisfying c/c0 → ∞ as t → ∞ (i.e., the droplet
always moves away from z = 0), whereas when bc < b0 < 1 then c/c0 is a decreasing function of
t satisfying c/c0 → c∞/c0 = b2

0 (<1) as t → ∞ (i.e., the droplet always moves towards z = 0).
Note that both parts of Fig. 7 are symmetric about c = 0, reflecting the symmetry of σ given by
Eq. (34) about z = 0.

Combining these results for the evolution of c with those for the evolution of b and L described
in Sec. IV, Fig. 8 shows examples of the four qualitatively different forms of the evolution of a
droplet when only Marangoni effects are present when c0 > 0, illustrating that when 0 < b0 < bc

the droplet becomes narrower and longer and moves away from z = 0 (in particular, satisfying
b → 0+, L → ∞, and c/c0 → ∞ as t → ∞) as shown in Figs. 8(a) and 8(b), whereas when bc <

b0 < 1 the droplet becomes wider and shorter and moves towards z = 0, ultimately filling the entire
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FIG. 8. Examples of the four qualitatively different forms of the evolution of a droplet when only
Marangoni effects are present when c0 > 0 in the case m = 1, M = 1, �ρ = 0, Qb = 0, for which bc �
0.3729. In (a) and (b), L0 = 9, b0 = 1/3 (<bc), with (a) c0 = 10, (b) c0 = 2, and the snapshots are shown
at t = 0, 15, 30, 45, whereas in (c) and (d), L0 = 4, b0 = 1/2 (>bc), with (c) c0 = 5/2, (d) c0 = 1, and the
snapshots are shown at t = 0, 20, 40, 60. In each snapshot the center of mass of the droplet is denoted by a dot
(•). Note that the corresponding evolutions when c0 < 0 are simply the mirror images of those when c0 > 0 in
the plane z = 0, and the evolutions when c0 = 0 have c ≡ 0 for all t .

cross section of the tube at a final stationary position which is closer to z = 0 than its original
position (in particular, satisfying b → 1−, L → 1+, and c/c0 → c∞/c0 = b2

0 (<1) as t → ∞) as
shown in Figs. 8(c) and 8(d). Note that in Figs. 8(a) and 8(c) the entire droplet is initially (and
always remains) above z = 0, whereas in Figs. 8(b) and 8(d) the back of the droplet is initially (and
always remains) below z = 0. Because of the symmetry of σ given by Eq. (34) about z = 0, the
corresponding evolutions when c0 < 0 are simply the mirror images of those when c0 > 0 in the
plane z = 0, and the evolutions when c0 = 0 have c ≡ 0 for all t (i.e., the droplet changes shape
symmetrically with its center of mass remaining stationary at z = 0).
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FIG. 9. Evolution of the position of the center of mass of the droplet c when only Marangoni and
gravitational effects are present given by Eq. (57) in the case m = 1, M = 1, �ρ = 10, and Qb = 0 for
initial positions (a) c0 = −14, −12, −10, . . ., 12, 14 when b0 = 1/4 (< bc � 0.3729) and (b) c0 = −15,
−12, −9, . . ., 12, 15 when b0 = 1/2 (>bc ). The evolutions corresponding to the critical values (a) c0 = cG

1 �
−6.7523 and c0 = cG

2 � −3.3930, and (b) c0 = cG
1 � 8.5571 and c0 = cG

2 � −6.8558, which separate the
three different behaviors, are shown with dashed lines.

VIII. ONLY MARANGONI AND GRAVITATIONAL EFFECTS ARE PRESENT ( Qb = 0)

In the case in which only Marangoni and gravitational effects are present (Qb = 0), then b and
L evolve as described in Sec. IV, and the position of the center of mass of the droplet is given by
Eq. (57).

In this case we may, without loss of generality, take �ρ > 0, and, like the case in which only
Marangoni effects are present described in Sec. VII, despite the fact that M is non-negative, the
droplet may move upwards or downwards. However, in contrast to the case described in Sec. VII,
in this case the droplet cannot remain stationary, and the competition between Marangoni and
gravitational effects can lead to a nonmonotonic evolution of c. In particular, recall from Sec. V
that since Qb = 0 then when 0 < b0 < bc then c = O(t ln t )2 → ∞ as t → ∞ (i.e., that the droplet
ultimately moves far away from z = 0), but when bc < b0 < 1 then c approaches a constant value
c∞ according to c ∼ c∞[1 + 4/(Mt )] → c∞ as t → ∞ (i.e., that the droplet ultimately approaches
a final stationary position).

Figure 9 shows the evolution of c for various c0 for two different values of b0, one satisfying
0 < b0 < bc and the other satisfying bc < b0 < 1.
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First, consider the case of a droplet satisfying 0 < b0 < bc shown in Fig. 9(a), for which, as we
have already described in Sec. IV, b → 0+ and L → ∞ as t → ∞. In this case Eq. (57) shows that
|c| → ∞ according to

c ∼ k

b2
(63)

as t → ∞, where

k = b2
0c0 + 2�ρ

M

∫ b0

0

bfG(b,m)

fM(b,m)
db (64)

is a constant. In particular, Fig. 9(a) shows that there are three qualitatively different possible
evolutions of c depending on the value of c0 in relation to two critical values, denoted by cG

1 and cG
2 ,

where cG
1 < cG

2 . Specifically, when c0 > cG
2 then c increases monotonically, when cG

1 < c0 < cG
2

then c first increases to a maximum and then decreases, and when c0 < cG
1 then c decreases

monotonically, where the critical value cG
1 is the value of c0 for which dc/dt (0) = 0, which from

Eq. (58) is given by

cG
1 = −�ρfG(b0,m)

MfM(b0,m)
, (65)

and the critical value cG
2 is the value of c0 for which k = 0, namely,

cG
2 = −2�ρ

Mb2
0

∫ b0

0

bfG(b,m)

fM(b,m)
db. (66)

Second, consider the case of a droplet satisfying bc < b0 < 1 shown in Fig. 9(b), for which, as
we already described in Sec. IV, b → 1− and L → 1+ as t → ∞. In this case Eq. (57) shows that
c → c∞ as t → ∞, where

c∞ = b2
0c0 − 2�ρ

M

∫ 1

b0

bfG(b,m)

fM(b,m)
db. (67)

Specifically, Fig. 9(b) shows that there are again three qualitatively different possible evolutions
of c depending on the value of c0 in relation to two critical values, again denoted by cG

1 and cG
2 ,

where now cG
1 > cG

2 . Specifically, when c0 > cG
1 then c decreases monotonically, when cG

2 < c0 <

cG
1 then c first increases to a maximum and then decreases, and when c0 < cG

2 then c increases
monotonically, where the critical value cG

1 is again given by Eq. (65) but the critical value cG
2 is now

the value of c0 for which c∞ = 0, namely,

cG
2 = 2�ρ

Mb2
0

∫ 1

b0

bfG(b,m)

fM(b,m)
db. (68)

IX. ONLY MARANGONI AND BACKGROUND-FLOW EFFECTS ARE PRESENT (�ρ = 0)

In the case in which only Marangoni and background-flow effects are present (�ρ = 0), then b

and L evolve as described in Sec. IV, and the position of the center of mass of the droplet is given
by Eq. (57).

In this case we may, without loss of generality, take Qb > 0, and, like the case in which
Marangoni and gravitational effects are present as described in Sec. VIII, despite the fact that
M is non-negative, the droplet may again move upwards or downwards. Moreover, like in the
case described in Sec. VIII, in this case the droplet cannot remain stationary, and the competition
between Marangoni and background-flow effects can lead to a similar (but not exactly equivalent)
nonmonotonic evolution of c. In particular, recall from Sec. V that since Qb �= 0 then |c| → ∞ as
t → ∞ (i.e., that the droplet ultimately moves far away from z = 0).
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FIG. 10. Evolution of the position of the center of mass of the droplet c when only Marangoni and
background-flow effects are present given by Eq. (57) in the case m = 1, M = 1, �ρ = 0, and Qb = 1/10 for
initial positions (a) c0 = −10, −9, −8, . . ., 3, 4 when b0 = 1/4 (< bc � 0.3729) and (b) c0 = −5, −5/2, 0, . . .,
25/2, 15 when b0 = 1/2 (> bc ). The evolutions corresponding to the critical values (a) c0 = cB

1 � −5.9993
and c0 = cB

2 � −4.4817, and (b) c0 = cB
1 � 6.7484 and c0 = cB

2 � 4.0561, which separate the three different
behaviors, are shown with dashed lines.

Figure 10 shows typical evolutions of c for various c0 for two different values of b0, one satisfying
0 < b0 < bc and the other satisfying bc < b0 < 1.

First, consider the case of a droplet satisfying 0 < b0 < bc shown in Fig. 10(a). The evolution of
c in this case parallels that shown in Fig. 9(a) (with �ρ, fG, cG

1 , and cG
2 replaced with Qb, fB, cB

1 ,
and cB

2 , respectively), and so the discussion need not be repeated here. The critical values cB
1 and cB

2 ,
where cB

1 < cB
2 , are given by

cB
1 = −QbfB(b0,m)

MfM(b0,m)
(69)

and

cB
2 = − 2Qb

Mb2
0

∫ b0

0

bfB(b,m)

fM(b,m)
db. (70)

Second, consider the case of a droplet satisfying bc < b0 < 1 shown in Fig. 10(b). In this case
Eq. (57) shows that c ∼ Qbt → ∞ as t → ∞, and the evolution of c in this case is similar to,
but qualitatively different from, that shown in Fig. 9(b). Specifically, when c0 > cB

1 then c first
decreases and then increases with t , when cB

2 < c0 < cB
1 then c first increases, then decreases, and
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then increases again, and when c0 < cB
2 then c increases monotonically with t . The critical value cB

1
is defined in the same way that cG

1 was in Sec. VIII, and so is again given by Eq. (69). However,
since there is now no value of c0 that leads to a constant value of c as t → ∞, the critical value cB

2
is not defined in the way that cG

2 was in Sec. VIII. Instead, cB
2 is determined as the value of c0 for

which the maximum, the minimum, and the point of inflection of the solution c coincide, so that
dc/dt = 0 and d2c/dt2 = 0. With Eq. (48) these lead to the condition

fB
∂fM

∂b
− fM

∂fB

∂b
= 0 (71)

determining the value b = bSP of b corresponding to the stationary value c = cSP of c. Equation
(56) then gives cSP = −QbfB/MfM evaluated at b = bSP, and so cB

2 is obtained from Eq. (57) as

cB
2 = Qb

Mb2
0

(
2

∫ b

b0

b̃fB

fM
db̃ − b2fB

fM

)∣∣∣∣
b=bSP

. (72)

X. CONCLUSIONS

In the present work we formulated and analyzed a theoretical model for the unsteady motion of a
long bubble or droplet in a self-rewetting system in a nonuniformly heated tube due to a combination
of Marangoni effects, gravitational effects due to the density difference between the two fluids, and
an imposed background flow along the tube.

We found that the present model predicts that the evolution of the shape of the droplet is driven
entirely by Marangoni effects, and depends on the initial value of its radius b0 in relation to the
critical value bc = bc(m) given by Eq. (47). Specifically, as described in Sec. IV, when 0 < b0 <

bc the droplet becomes narrower and longer as time increases, but when bc < b0 < 1 the droplet
becomes wider and shorter as time increases, ultimately filling the entire cross section of the tube
as t → ∞. However, as described in Sec. V, the evolution of the position of the droplet depends,
in general, on gravitational and background-flow effects in addition to Marangoni effects. In the
case in which Marangoni effects are absent the droplet always moves with constant velocity given
by Eq. (59) without changing shape. In the case in which only Marangoni effects are present when
0 < b0 < bc the droplet always moves away from z = 0 as time increases, but when bc < b0 < 1
the droplet moves towards z = 0 as time increases, ultimately filling the entire cross section of
the tube at a final stationary position which is closer to z = 0 than its original position. Figure 8
shows examples of the four qualitatively different forms of the evolution of the droplet in this case.
In the cases in which either only Marangoni effects and gravitational effects or only Marangoni
effects and background-flow effects are present the competition between the two effects can lead to
a nonmonotonic evolution of c.

For completeness, the corresponding results for the closely related problem of a two-dimensional
droplet in a channel are presented in Appendix B.

Finally, it should be reiterated that the behavior of a self-rewetting system described in the present
work is qualitatively different from that for ordinary fluids, in which case the droplet always moves
with constant velocity without changing shape.
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APPENDIX A: EXPRESSIONS FOR THE PRESSURE GRADIENTS
AND THE VELOCITIES OF BOTH FLUIDS

In this Appendix we obtain the expressions for the pressure gradients and velocities of both
fluids.

With the pressures of both fluids, pi for i = 1, 2, satisfying Eq. (35), integration of Eqs. (9) twice
with respect to r introduces four unknown functions of z and t , which, along with the two unknown
pressure gradients, ∂pi/∂z, means that there are a total of six unknown functions to determine. These
functions are determined from Eq. (16) on r = 0, Eq. (19) on r = 1, Eqs. (22) and (26) with Ti for
i = 1, 2 given by Eq. (33) on r = b, and Eq. (30) with Qi for i = 1, 2 given by Eq. (6), together
with ∂p1/∂z − ∂p2/∂z = Mz/b (obtained by differentiation of Eq. (36) with respect to z), leading
to the expressions for the axial components of velocity wi and the pressure gradients ∂pi/∂z. Then
integration of Eqs. (7) subject to Eq. (15) on r = 0 and Eq. (18) on r = 1 leads to expressions for
the radial components of velocity ui (which automatically satisfy Eq. (21) on r = b). Specifically,
the pressure gradients are given by

∂p1

∂z
= Mmz(1 − b2)(1 + 3b2) − �ρmb(1 − b2)2 − 8Qbmb

b[m − (m − 1)b4]
− ρ1,

∂p2

∂z
= ∂p1

∂z
− Mz

b
, (A1)

and the velocity components are given by

u1 = Mr

16b

[
− (1 − b2)[4(m − 1)b4 + b2(3r2 − 4m − 2) + r2]

m − (m − 1)b4
+ 4b2 ln b

]
, (A2)

w1 = Mz

4b

[
(1 − b2)[2(m − 1)b4 + b2(3r2 − 2m − 1) + r2]

m − (m − 1)b4
− 2b2 ln b

]

+ �ρ

4

[
(1 − b2)[2(m − 1)b4 + b2(r2 − 2m + 1) − r2]

m − (m − 1)b4
− 2b2 ln b

]

+ 2Qb[(1 − m)b2 + m − r2]

m − (m − 1)b4
, (A3)

u2 = Mb

16r

[
− (1 − r2)[2(m − 1)b4 − (2m + 1)b2(1 − r2) − 2mr2]

m − (m − 1)b4
+ 4r2 ln r

]
, (A4)

w2 = Mbz

4

[
(1 − r2)[(2m + 1)b2 − 2m]

m − (m − 1)b4
− 2 ln r

]

+ �ρb2

4

[
(1 − r2)[(2m − 1)b2 − 2m]

m − (m − 1)b4
− 2 ln r

]
+ 2Qbm(1 − r2)

m − (m − 1)b4
. (A5)

Figure 11 shows the radial velocity u1 and the normalized axial velocity w1/z at the interface
r = b when only Marangoni effects are present plotted as functions of b for the full range of values
of m in the case M = 1, Qb = 0, and �ρ = 0. In particular, Fig. 11 shows that u1 and w1 are
nonmonotonic functions of b satisfying u1 < 0 for 0 < b < bc, u1 > 0 for bc < b < 1, and w1 > 0
for 0 < b < 1.

APPENDIX B: CORRESPONDING RESULTS FOR A TWO-DIMENSIONAL
DROPLET IN A CHANNEL

In this Appendix for completeness we briefly summarize the corresponding results for the closely
related problem of a two-dimensional droplet with constant volume (per unit width) V = 2bL, semi-
width b = b(t ), and length L = L(t ) in a nonuniformly heated channel of constant semi-width a.
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FIG. 11. Plots of (a) the radial velocity u1 and (b) the normalized axial velocity w1/z at the interface r = b

given by Eqs. (A2) and (A3), respectively, when only Marangoni effects are present as functions of b for m = 0,
1/4, 1/2, 3/4, 1, 2, 5, and 10 and in the limit m → ∞ (the latter shown with dashed lines) in the case M = 1,
Qb = 0, and �ρ = 0.

Referred to Cartesian coordinates Oxyz, with the z axis vertically upwards along the centerline
of the channel, the walls of the channel are at x = ±a, and, since the problem is symmetric about
x = 0, we need only consider the flow in 0 � x � a. The geometry of the problem is as sketched
in Fig. 2, but with the coordinate r replaced by x. The characteristic axial length scale � and the
appropriate nondimensionalization are given by Eqs. (4) and (5), respectively, with r replaced by x

and πa2 replaced by 2a.
The leading-order governing equations corresponding to Eqs. (7)–(10) are

∂u∗
1

∂x∗ + ∂w∗
1

∂z∗ = 0,
∂u∗

2

∂x∗ + ∂w∗
2

∂z∗ = 0, (B1)

∂p∗
1

∂x∗ = 0,
∂p∗

2

∂x∗ = 0, (B2)

m
∂2w∗

1

∂x∗2
= ∂p∗

1

∂z∗ + ρ∗
1 ,

∂2w∗
2

∂x∗2
= ∂p∗

2

∂z∗ + ρ∗
2 , (B3)

∂2T ∗
1

∂x∗2
= 0,

∂2T ∗
2

∂x∗2
= 0, (B4)
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and are subject to the leading-order boundary conditions (15)–(26) with r∗ replaced by x∗ where
appropriate, except for Eq. (25), which is replaced by simply

p∗
1 − p∗

2 = 0. (B5)

The semi-width of the droplet, b∗, now satisfies the kinematic condition

db∗

dt∗
+ ∂Q∗

1

∂z∗ = 0, or, equivalently,
db∗

dt∗
− ∂Q∗

2

∂z∗ = 0, (B6)

while the volume of the droplet is now given by b∗L∗ = 1, and hence Eq. (32) is replaced by

L∗ = 1

b∗ . (B7)

Dropping the stars on dimensionless quantities, the temperatures of both fluids are again given
by Eq. (33), the pressure gradients are given by

∂p1

∂z
= ∂p2

∂z
= 3Mmz(1 − b2) − �ρm(1 − b)2(2 + b) − 3Qbm

2[m − (m − 1)b3]
− ρ1, (B8)

and the velocity components are given by

u1 = M (1 − b)[3b − 1 − (m − 1)(1 − b)3 − (1 + b)x2]x

4[m − (m − 1)b3]
, (B9)

w1 = Mz(1 − b)[4b3 + m(1 − b)3] + �ρb(1 − b)2[m(1 − b)2 − 2b2] + 3Qbm(1 − b2)

4[m − (m − 1)b3]

− [3Mz(1 − b2) + �ρ(1 − b)2(2 + b) + 3Qb](b2 − x2)

4[m − (m − 1)b3]
, (B10)

u2 = −M[m(1 − b2)x − 2b2(m − (m − 1)b)](1 − x)2

4[m − (m − 1)b3]
, (B11)

w2 = (Mz + �ρb)(1 − x) − [3Mmz(1 − b2) + �ρb(3m(1 − b2) + 2b2) − 3Qbm](1 − x2)

4(m − (m − 1)b3)
.

(B12)

Figure 12 shows the transverse velocity u1 and the normalized axial velocity w1/z at the
interface x = b when only Marangoni effects are present plotted as functions of b for the case
M = 1, Qb = 0, and �ρ = 0. In particular, Fig. 12 shows that u1 and w1 are nonmonotonic
functions of b satisfying u1 < 0 for 0 < b < bc, u1 > 0 for bc < b < 1, w1 > 0 for 0 < b < 1,
and w1 → (M/4)− as b → 0+ (the latter of which is, slightly unexpectedly, qualitatively different
from the corresponding behavior in the axisymmetric case shown in Fig. 11).

The axial volume fluxes of fluid 1 and fluid 2, respectively, are given by

Q1 = 2
∫ b

0
u1 dx, Q2 = 2

∫ 1

b

u2 dx, (B13)
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FIG. 12. Plots of (a) the transverse velocity u1 and (b) the normalized axial velocity w1/z at the interface
x = b given by Eqs. (B9) and (B10), respectively, when only Marangoni effects are present as functions of b

for m = 0, 1/4, 1/2, 3/4, 1, 2, 5, and 10 and in the limit m → ∞ (the latter shown with dashed lines) in the
case M = 1, Qb = 0, and �ρ = 0.

which lead again to Eqs. (37), but with the functions fj for j = M, G, B now defined by

fM(b,m) = (1 − b)2b[m(1 − b)2 − 2b2]

2[m − (m − 1)b3]
, (B14)

fG(b,m) = (1 − b)3b2[3m(1 − b) + 4b]

6[m − (m − 1)b3]
, (B15)

fB(b,m) = b[3m
(
1 − b2

) + 2b2]

2[m − (m − 1)b3]
. (B16)

These fj are qualitatively similar to the corresponding functions in the axisymmetric case given by
Eqs. (38)–(40) and shown in Fig. 3.

The evolution of the semi-width of the droplet, b(t ), is governed by the equation

db

dt
= −MfM(b,m), (B17)

which has the implicit solution t = t (b) given by

Mt = φ(b) − φ(b0), (B18)
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where the function φ(b) is defined by

φ = 1

1 − b
+ 3m + 2

2
ln

(
m − 2b2

(1 − b)2

)
+ 7

√
m

2
√

2
ln

b − bc

b̂c − b
− 2 ln

b

1 − b
, (B19)

in which bc = bc(m) and b̂c = b̂c(m) are the roots of fM(b,m) = 0 given by

bc =
√

m√
m + √

2
, b̂c =

√
m√

m − √
2
. (B20)

The evolution of b, and hence of L, given by Eq. (B18) is qualitatively similar to that in the
axisymmetric case shown in Fig. 5.

The evolution of the position of the center of mass of the droplet, c(t ), is governed by

dc

dt
= McfM + �ρfG + QbfB

b
, (B21)

which has a parametric solution for c (with parameter b) given by

c = b0c0

b
+ 1

b
(ψ (b) − ψ (b0)), (B22)

where the function ψ (b) is defined by

ψ = 1

M

{
Qb

1 − b
+ (1 − b)[3m2(1 + b) − 2m(5b − 3) − 8(1 − b)]�ρ

6(m − 2)2
− 3mQb ln(1 − b)

−
√

2m

[
Qb + (3m2 + 6m − 8)�ρ

6(m − 2)3

]
ln

b̂c − b

b − bc

+m

[
3Qb

2
− (7m − 6)�ρ

3(m − 2)3

]
ln[(b̂c − b)(b − bc)]

}
. (B23)

The evolution of c(t ), and hence of zf (t ) and zb(t ), given by Eq. (B22) is qualitatively similar to
that in the axisymmetric case shown in Figs. 6, 7, 9, and 10.
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