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The lateral migration of a suspended vesicle (a model of red blood cells) in a bounded
shear flow is investigated numerically at vanishing Reynolds number (the Stokes limit)
using a boundary integral method. We explore, among other parameters, the effect of
the viscosity contrast λ = ηin/ηout, where ηin, ηout denote the inner and the outer fluids’
viscosities. It is found that a vesicle can either migrate to the center line or towards the
wall depending on λ. More precisely, below a critical viscosity contrast λc, the terminal
position is at the center line, whereas above λc, the vesicle can be either centered or
off-centered depending on initial conditions. It is found that the equilibrium lateral position
of the vesicle exhibits a saddle-node bifurcation as a function of the bifurcation parameter
λ. When the shear stress increases the saddle-node bifurcation evolves towards a pitchfork
bifurcation. A systematic analysis is first performed in two dimensions (due to numerical
efficiency), and the overall picture is confirmed in three dimensions. This study can be
exploited in the problem of cell sorting and can help understand the intricate nature of the
dynamics and rheology of confined suspensions.
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I. INTRODUCTION

The problem of lateral migration (or cross-streamline migration) of small enough particles
(where inertia can be neglected) is of considerable importance in many fields, such as in mechanics,
physics, chemistry, and biology [1–4]. A particular property of the inertialess limit (or the Stokes
limit) is that a rigid particle, when it stays oriented in the shear plane, cannot migrate perpendicularly
to the flow direction in a linear shear flow. This is traced back to the invariance of the Stokes
equations under time reversal. Soft particles, in contrast, can acquire a cross-streamline migration
because their deformation can lead to an upstream-downstream asymmetry, breaking thus the
reversibility of the Stokes equations. A particularly studied example of interest to our study is the
lift of a vesicle due to a wall [5–20]. This type of lift plays an important role in hemodynamics,
where red blood cells (RBCs) have a tendency to accumulate towards the blood vessel center,
leaving behind a cell-free layer close to the vessel wall. This effect is accompanied by an ample
decrease of blood viscosity [21] upon decreasing the vessel diameter and is commonly known as
the Fåhræus-Lindqvist effect [22].

*abdessamad.nait-ouhra@univ-grenoble-alpes.fr
†chaouqi.misbah@univ-grenoble-alpes.fr

2469-990X/2018/3(12)/123601(16) 123601-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.3.123601&domain=pdf&date_stamp=2018-12-05
https://doi.org/10.1103/PhysRevFluids.3.123601


ABDESSAMAD NAIT-OUHRA et al.

When a vesicle is placed in a linear shear flow, i.e., between two parallel planes moving with
equal and opposite velocities, it has been reported (in accordance to intuition) that the vesicle will
feel symmetric lifts from both walls, so that the ultimate position is a centered one. When the
vesicle settles in the center it undergoes a tank-treading motion (provided the viscosity contrast
is small enough). For higher viscosity contrast the vesicle may undergo a tumbling dynamics, but
the wall-induced lift still operates [23,24] and pushes the vesicle (or RBC) towards the channel
center. Indeed, during tumbling, the particle is elongated along its longest axis during one part of
the tumbling cycle and compressed during the other one due to the elongational component of the
shear flow. This creates an asymmetry of the shape during the two halves of the tumbling period,
leading to a net migration (albeit small compared to the case where the vesicle undergoes tank
treading).

By investigating systematically the question of a cross-streamline migration in a linear shear
flow created by two countertranslating planes, we find that the problem can be more complicated
than previously thought. Indeed, the center line does not always correspond to the final position.
Instead we find a complex phase diagram, where for low enough viscosity contrast the vesicle
always reaches the center, for all sets of initial conditions that we have explored. However, beyond
a critical viscosity contrast the vesicle can either reach the center line or move towards one of the
two walls and align with the flow. Whether the vesicle chooses one or the other solution depends
on initial conditions. In other words, beyond a critical viscosity contrast, there is coexistence of two
stable branches of solutions (the centered and the off-centered one). According to the bifurcation
theory nomenclature, there should exist a critical viscosity contrast at which the system undergoes
a saddle-node bifurcation. This is what will be shown here. Besides the analysis of the bifurcation,
we shall also describe the basin of attraction of each solution (when they coexist), as well as the
effect of other parameters (reduced area and degree of confinement) on the overall solutions.

When the shear stress increases, it is found that the saddle-node bifurcation evolves into a
pitchfork bifurcation. In that case, there is no coexistence, but rather the central position becomes
unstable beyond a critical viscosity contrast in favor of an off-centered solution. The first and
systematic study is dedicated to a two-dimensional (2D) geometry. Due to computational efficiency,
this will allow us to scan a quite large parameter space. At the end, we will devote a brief discussion
to the same problem in three dimensions in order to highlight the robust nature of the problem.

In our simulations the viscosity contrast λ is varied in a wide range λ = 1–50. Experimentally,
this range can be achieved with vesicles by adding polymers inside the vesicle (like dextran) [25].
For RBCs, the physiological value of λ is about 5 to 10 [26,27]. In addition, in some blood diseases
[28–33], such as sickle cell anemia and malaria, larger values can be achieved.

II. MODEL AND SIMULATION METHOD

A. Membrane model

We consider a vesicle in two or three dimensions immersed in a semi-infinite fluid bounded on the
top and bottom by two parallel planes. The vesicle is subjected to a planar shear flow v0

x = γ̇ y (or,
in three dimensions, v0

x = γ̇ z) with v0
x the component along the flow direction of the imposed flow

v0. Here the x axis (x and y in three dimensions) is defined to be parallel to the walls. The vesicle
membrane acts on the fluid via bending and tension forces, the latter resulting from membrane
inextensibility. The total force in two dimensions is given by [13]

fmem→flu = κ

(
d2c

ds2
+ 1

2
c3

)
n − ξcn + dξ

ds
t. (1)

An analogous expression in three dimensions can be found, for example, in Ref. [34]. This
membrane force per unit area is obtained from the functional derivative of the Helfrich [35,36]
bending energy, which reads in two dimensions E = κ

2

∫
mem c2 ds + ∫

mem ξ ds, where κ is the
membrane bending rigidity, c is the membrane curvature, s is the curvilinear coordinate along
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the membrane, and n and t are the unit normal and tangent vectors. In addition, ξ is a Lagrange
multiplier that enforces membrane inextensibility. The enclosed area A is conserved automatically
because of the fluid incompressibility and the membrane impermeability.

B. 2D boundary integral formulation

We consider the limit of vanishing Reynolds numbers (the Stokes limit). The full problem is
described by several dimensionless numbers:

λ = ηin

ηout
, Cκ = ηoutγ̇ R3

0

κ
≡ γ̇ tc, Cn = 2R0

W
, τ = 4πA

L2
. (2)

Here λ is the viscosity contrast with ηin, ηout denoting the inner and the outer viscosities. Cκ is the
capillary number measuring the flow strength over the bending energy of the membrane. In other
words, Cκ controls how the shapes of vesicles deform in response to an applied external flow. The
timescale tc is the typical time needed for the vesicle to recover its equilibrium shape after cessation
of flow. All times will be measured hereafter in units of tc. Cn is the degree of confinement, where
W is the channel width. τ is reduced area, where L is the vesicle perimeter and the effective radius
R0 = √

A/π .
Because of the linearity of the Stokes equations, we can use the boundary integral method [37]

to formulate the dynamics of the vesicle. For a point r0 which belongs to a membrane, the velocity
v(r0) of this point has the following dimensionless expression in two dimensions:

v(r0) = 2

1 + λ
v0(r0) + 1

2πCκ (1 + λ)

∫
mem

ds fmem→flu(r) · G2w(r, r0)

+ 1 − λ

2π (1 + λ)

∫
mem

ds v(r) · T2w(r, r0) · n(r), (3)

where we have used the following scales: R0 = √
A/π for the length, U = γ̇ R0 for the velocity,

and κ/R3
0 for the force per unit area. G2w(r, r0) and T2w(r, r0) are the Green’s functions (second-

and third-order tensors) satisfying the no-slip boundary condition at the bounding walls (see
Refs. [38,39] for more details). The dimensionless force fmem→flu is given formally by the same
expression in Eq. (1) in which membrane bending rigidity κ is set to unity (we keep the same
notation for simplicity).

The still unknown Lagrange multiplier ξ is obtained by imposing a divergence-free velocity
along the membrane, expressing the membrane incompressibility. The numerical method of
imposing membrane incompressibility follows closely that presented in Ref. [40].

The displacement in the course of time of the vesicle membranes is obtained by updating the
discretization points after each time step using an Euler scheme r0(t + dt ) = v(t )dt + r0(t ).

C. 3D boundary integral formulation

For the three-dimensional (3D) simulation we consider, as for the 2D case, the limit of vanishing
Reynolds numbers and use the 3D periodic boundary integral method as described in Ref. [41] and
validated in Refs. [14,42,43]. The setup employs a single oblate vesicle with a viscosity contrast of
λ placed between two parallel walls. Exploiting the translational invariance, the vesicle is fixed in
the x and y directions (parallel to the walls) but can move freely in the z direction (perpendicular to
the walls). Even in three dimensions, a vesicle does not exhibit any shear elasticity. We model the
vesicle’s bending rigidity according to the Helfrich model with a bending modulus κ [35,36]. The
force (per unit area) fmem→flu can be expressed as

fmem→flu = 2κ[2c(c2 − K ) + �sc]n. (4)

Here c is the mean curvature, K the Gaussian curvature, and �s the Laplace-Beltrami operator.
Numerically, we compute the surface force via the parabolic fitting method from Ref. [44] (a detailed
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FIG. 1. The evolution of the equilibrium lateral position hf and the dimensionless tank treading velocity
Vtt /(R0γ̇ /2) (a and b, respectively) according to the bifurcation parameter λ. Here τ = 0.7, Cκ = 1, and
W/R0 = 5. R0γ̇ /2 is the velocity of membrane of a circular vesicle under shear flow in unbounded geometry.

analysis can be found in Ref. [45]; see Method E therein). The spontaneous curvature is set to zero.
An artificial volume drift of the vesicle is countered by employing the no-flux condition and the
rescaling method as in Ref. [41]; i.e., the volume V is perfectly conserved. The global surface
area is kept approximately constant via an effective surface force with a surface modulus of κA =
2000κ/R2

0 . This results in typical surface deviations of �0.3%, which is consistent with Ref. [34].
The mesh is stabilized by employing the procedure from Ref. [41, Eq. (2.74)] (which is very similar
to Ref. [44, Eq. (59)]) with a strength of ζ = 0.03 (ζ is a parameter that controls the stiffness of the
scheme used the prevent the large distortions of the mesh). The surface is discretized with 1280 flat
triangles.

The full 3D problem is described by the same dimensionless numbers as the previous 2D case,
with a slight difference for the reduced volume, which is given by τ3D = 6

√
πV/A′3/2 (with the

vesicle volume V and surface area A′) and an effective radius defined as R0 = [3V/(4π )]1/3.
Numerically, the boundary integral equation is computed with seven Gauss points per triangle

and appropriate singularity removal [41]. The calculation of the periodic Green’s functions is
accelerated with the SPME method [46] with cutoff errors below 10−4. GMRES is used to solve
the linear system with a target residual of 10−4. Time integration is performed via the adaptive
Bogacki-Shampine method with the absolute tolerance set to 10−5R0 and the relative tolerance set
to 10−5.

III. RESULTS

A. Off-centered stable positions beyond a critical viscosity contrast

We first start by describing systematically the results for the 2D model. The 3D simulations show
a qualitatively similar behavior, as shown in the last subsection. In this section we investigate the
influence of the viscosity contrast λ on the equilibrium lateral position of the vesicle. The lateral
migration of a vesicle is described using the vesicle’s center of mass. Initially the vesicle is located
at a small enough distance (0.72R0) from the lower wall and is then subjected to a shear flow.
Figure 1 contains the first central result, showing the final position hf (distance from the center of
the channel to the center of mass of the vesicle) as a function of λ. Here the other parameters are
kept fixed: τ = 0.7, Cκ = 1, and W/R0 = 5. As shown in that figure, below a critical value of λ

(λc � 16) the final position corresponds to the center of the channel; note that the center line is at
0 on the vertical axis in Fig. 1(a) and the lower wall is at −0.5. In this case (centered vesicle), the
vesicle dynamics correspond to the classical behavior [27,39,40,47–49]: tank-treading motion (TT)
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FIG. 2. The evolution of the lateral position of the vesicle hf as a function of time (in units of tc) for several
λ. The center is at 0 on the vertical axis, and the lower wall is at −0.5. In this case, below λc = 16, the vesicle
is centered. For very low λ (TT motion), it reaches the center of the channel faster, while for larger lambda, but
still below λc, TB motion is observed, and the time to reach the center becomes significantly longer. Beyond
λc the vesicle is off-centered. A typical sequence of snapshots are shown. Here we set Cκ = 1, τ = 0.7 and
W/R0 = 5. We note that in panel (c) (λ = 16), the final value of hf is computed as a time average over more
than 4000tc.

when λ is small enough (λ � 10) and tumbling regime (TB) for λ � 10. In both cases the vesicle
feels a wall-induced lift that pushes it towards the center line. However, the vesicle in the TT regime
(λ = 1, Fig. 2) reaches the center line faster than in the case of TB motion (λ = 11). Figures 2(a)
and 2(b) show the behavior in the course of time in the case where the vesicle undergoes TT and
TB, respectively.

An interesting feature is discovered for higher values of λ. Indeed, for λ � λc, the vesicle,
initially located close to the wall, lifts off slightly and never reaches the center line. Instead, it tends
with time to a final off-centered position [Figs. 2(c) and 2(d)]. In addition, the vesicle, despite high
values (up to 50) of the viscosity contrast, never showed TB and rather exhibits a flow alignment
(FA), where the vesicle is off-centered and almost aligned with the flow (vesicle’s long axis is
parallel to the flow direction) while the membrane performs TT with a lower tank-treading velocity
(Vtt ) than that of the TT and TB motions [Fig. 1(b)].

Note that above the critical value of viscosity contrast λc but close to it, the vesicle reaches
its final off-centered position in a nonmonotonous way with time, by undergoing quite ample
oscillations [Fig. 2(c)]. Note, finally, that when λ > λc the vesicle always reaches an off-centered
position. We will see later that the situation is more complex, since the final position is sensitive to
initial position (see Sec. III C).

In the following section we investigate the effect of the channel width on the dynamics of the
vesicle, and we shall provide some intuitive mechanisms controlling the equilibrium lateral position
of the vesicle within the channel.
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FIG. 3. The evolution of the equilibrium lateral position hf as a function of the bifurcation parameter λ

for several channel width W . Here we set Cκ = 1 and τ = 0.7 and the initial position of the vesicle is close
enough to the lower wall. Beyond λc the vesicle is initially set either at the center or at a small enough distance
(0.72R0) from the lower wall. TT, TB, and FA are shown.

B. Effect of channel width and qualitative physical arguments for the emergence
of the off-centered solution

We have analyzed the role played by the confinement (see Fig. 3) by considering an initial
position close enough to the lower wall. The three main regimes attained by a vesicle in shear
flow for W/R0 = 5, TT, TB, and FA (see the previous section), persist for all explored values of
confinement. Each value of W (Fig. 3) is associated with a critical viscosity contrast λc(W ), below
which the particle always migrates away from the wall to the center line of the channel, whereas
beyond λc(W ) an off-centered position with FA is attained by the vesicle.

A high confinement favors the centered solution, as can be seen in Figs. 3 and 4. This result is
quite intuitive. In short, the main effect of the confinement is to shift the transition threshold value
λc to higher values upon increasing the degree of confinement.

Let us now provide some mechanisms controlling the stable lateral position. Our results (Fig. 3)
show that below λc the vesicle can either perform a TT motion or a TB motion. In the pure TT
regime the wall-induced lift is so strong that the vesicle continues to migrate until it reaches the
center where the effects of the two walls compensate each other. Upon increasing λ the vesicle
undergoes a TB transition. A linear shear flow can be viewed as a superposition of a rotational and
an elongational flow [Fig. 5(a)]. If λ is not too large the TB vesicle still shows some deformation,
and during one half of the TB cycle, the vesicle is oriented with its long axis having positive angle
with the horizontal axis, in which case it is elongated by the shear flow and will lift off with a certain
amplitude. During the second half of the TB cycle the vesicle long axis is oriented along negative
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FIG. 4. Phase diagram showing regions where migration is towards the center or towards the wall
depending on λ and W . Migration towards the center line is favored by confinement (small W ). The solid
line is a guide for the eyes. The simulations data are shown as dots. Here we set τ = 0.7 and Cκ = 1.

angles, and it is compressed by the shear flow. Thus its migration speed is lower than in the first
half of the cycle. Thus, globally the vesicle will lift off, albeit less than in the TT regime, and finally
reaches the center.

FIG. 5. (a) Decomposition of the linear shear flow into pure rotational and elongational components.
(b)–(e) Schema showing the link between the orientation angle of the vesicle with the direction of the flow
(horizontal axis) and the lift of the vesicle. We show here the pressure profile given in Ref. [8] as an illustration.
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FIG. 6. Angle � vs lateral position of the vesicle hf . Here λ = 16, Cκ = 1, and W = 5R0.

In the vicinity of λc, the vesicle still has a small tendency to lift off [Fig. 5(b)] due to a small
upstream or downstream asymmetry, and may acquire a slightly positive angle [Fig. 5(c)] [6,8,10].
Since the viscosity contrast is large enough, the vesicle, once it has started lifting, will be subject
to TB, which has an antagonist effect, causing the lift-off angle to decrease, and even to reverse it
[TB is clockwise; Fig. 5(d)]. The vesicle will then have an antilift pushing it back towards the wall.
Once close to the wall, the vesicle aligns with the wall. At the wall [Fig. 5(e)] due to an overpressure
ahead and underpressure at the rear [6,8,10] the lubrication forces causing lift become again strong
enough to lift off the vesicle, which again faces the antagonist effect of TB, and so on. The interplay
of these two antagonist effects leads to an oscillation of the vesicle position (as seen in Fig. 2).
When λ is increased further and further the TB effect always wins and acts to stick the vesicle close
to the wall and force it to align with the wall, leading to a permanent flow alignment.

In short, from Fig. 6 we see that the migration away from the walls is associated with a positive
orientation angle, whereas the opposite happens for a negative tilt angle. Ultimately the vesicle
settles at a certain y position where it is almost aligned with the flow direction (� � 0).

C. Effect of the initial position

We will now dig further into the existence of different branches of solutions. For that purpose,
we investigate how the initial position of the vesicle affects its final stable position by performing a
systematic study varying the initial position of the vesicle within a channel for different values of λ.
We set W = 5R0, Cκ = 1, and τ = 0.7.

In Fig. 7 we find that the initial position does not affect the final position of the vesicle if λ � λc.
For all initial positions explored in the simulations, the vesicle is found to migrate towards the center
line independent of the initial position. In other words, the basin of attraction of this solution seems
to be the whole channel width. The situation is different for λ � λc. The vesicle can either migrate
towards the wall or towards the center line of the channel. It migrates towards the wall if its initial
position is within the orange area (the basin of attraction) and towards the center line if its initial
position is within the yellow area (the basin of attraction of this solution) in Fig. 7. The blue curve
in Fig. 7 corresponds to the final stable position of the vesicle if its initial position is within the
orange area. Even when the initial position of the vesicle is above the solid blue curve but within the
orange area (between the solid and dashed blue line), the vesicle is attracted towards the blue solid
line, which is thus a stable branch.

In order to check the stability of this branch, we introduce a small perturbation of the equilibrium
lateral position of the vesicle for a specific value of λ as shown in Fig. 8. After a few characteristic
times, the center of mass of the vesicle comes back to its equilibrium position, meaning the (linear)
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FIG. 7. Phase diagram showing regions where migration is towards the center (if initial position is within
yellow area) or towards the wall (if initial position is within orange area). The saddle-node bifurcation occurs
at λc � 16 for a reduced area τ = 0.7, a capillary number Cκ = 1, and a channel width W = 5R0. The channel
center is at zero, and the wall is at −0.5 on the vertical axis. The simulations data are shown as dots.

stability of the solution. If we set initially the vesicle in the vicinity of the dashed blue curve, but
in the yellow region, the vesicle migrates towards the center line for each value of λ. Thus the solid
blue line is a stable branch, whereas the dashed blue line is unstable. The two stable lines (solid
blue and solid green lines) are thus separated by the unstable (blue dashed line) branch. This is
a typical situation of coexistence of solutions. The solid blue line is a node (in the language of
dynamical systems), and the dashed line is a saddle. Thus, in principle the solid and dashed blue
lines should intersect on the left side in Fig. 7 (around λ ∼ 16 with a vertical tangent), corresponding
to a saddle-node bifurcation point [50]. However, it was not easy to detect this point with a good
enough precision, as there is a discontinuous jump close to the saddle-node point. We have seen that
the final position of the vesicle is affected by its initial position if λ � λc.

Besides varying the initial position, we also run simulations for vesicles with the same position
but different orientations. We observe that indeed the initial orientation of the vesicle can also
affect its final position, i.e., whether the vesicle chooses one of the two steady branches depends
on orientation.

FIG. 8. Lateral position of the vesicle hf vs time before and after a small destabilization. From this figure
we see clearly that the final solution (i.e., final position) is stable. Here λ = 50, Cκ = 1, W = 5R0, and τ = 0.7.
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FIG. 9. The evolution of the equilibrium lateral position hf according the bifurcation parameter λ for
several capillary numbers Cκ . The initial position of the vesicle is close enough to the lower wall. Beyond
λc the vesicle is initially set at the center line or at a small enough distance (0.72R0) from the lower wall. TT,
TB, and FA are shown. Beyond a certain value of Cκ , the TB motion is suppressed.

D. Effect of capillary number

In this section we investigate the effect of capillary number Cκ (this parameter controls the
deformability of the vesicle under flow). Capillary numbers Cκ � 1 imply large flow rates and
thus in general large deformation. The other parameters are kept fixed: W = 5R0, τ = 0.7, and
we set the vesicle initially close enough to the lower wall. Here our aim is not to study sensitivity
to initial conditions, but rather to analyze the evolution of the new off-centered solution. This is
why the initial position is set close to the wall. The explored capillary number range is 0.5–10.
Figure 9 illustrates the effect of Cκ on the equilibrium lateral position of the vesicle within the
channel. The main difference with previous results is that upon increasing Cκ the line representing
the final position as a function of λ exhibits less and less stronger jumps at the bifurcation point.
Our results show even that above a certain value of Cκ (Cκ � 2.5), the equilibrium lateral position
of the vesicle hf does not undergo any discontinuity as a function of λ. In other words, we have an
evolution from a saddle-node bifurcation into a pitchfork one. To further support this conclusion,
we have run simulations for λ > λc by setting the vesicle in the center line. After some time, due
to numerical noise, the vesicle left the center towards an off-centered final position, meaning that
(unlike the case where Cκ is small) the central position is linearly unstable. It is interesting to note
that the change of the nature of the bifurcation (from saddle-node to pitchfork) seems to coincide
with the disappearance of the TB motion. More precisely, upon increasing the viscosity contrast
λ the vesicle shows TT motion with central position, and at a critical λ, its equilibrium position
gradually moves from the center towards the wall (by still performing TT). When λ is far enough
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FIG. 10. Phase diagram showing regions where migration is towards the center or towards the wall
depending on λ and Cκ . We see here that the capillary number (Cκ ) has a nonmonotonic effect on the lateral
position of the vesicle; see the text for explanation. The solid line is a guide for the eye. The simulations are
shown as dots. Here we set τ = 0.7 and W = 5R0. Initially the vesicle is close enough to the one of the walls.

from the critical value, the vesicle shows a flow alignment. Note that the absence of TB by increasing
λ is favored by the presence of the bounding walls. It is known in an unbounded linear shear flow
in three dimensions that if the vesicle is in the TB regime, then an increase of Cκ suppresses TB in
favor of vacillating breathing or even flow alignment [34,49,51–53]. The phase diagram in Fig. 10
shows the regions where the vesicle migrates towards the center and those where it migrates towards
the wall (by having an initial position close to the wall). The widening of the basin of attraction of
the central position beyond Cκ � 2.5 is attributed to the ample increase of deformability that favors
the wall induced migration.

E. Effect of reduced area

Finally, let us give a brief report on the influence of the reduced area τ (for a circle τ = 1,
otherwise τ < 1). The results are shown in Fig. 11. The other parameters are fixed as W = 5R0 and
Cκ = 1. The vesicle is set initially at a small distance from the lower wall. The range of viscosity
contrast over which the TB motion survives (with, as before, migration towards the center) becomes
wider with τ. This means that the transition towards FA is delayed. This is shown by the widening
of the yellow region in Fig. 12. When τ increases the vesicle becomes more and more rounded (i.e.,
less elongated) so that the TB strength becomes weaker to force the vesicle to align with the wall in
the vicinity of the wall. The vesicle migration towards the center wins over the antagonist TB effect
(see Fig. 5, which explains competition between TB and lift off).

F. 3D results

The question naturally arises whether the above 2D results are a consequence of dimensionality
or whether they point to a more general phenomenon. To indicate that the observed phenomena are
not an artifact of the 2D model, we here devote a brief discussion to the 3D case thus validating
the key results of the 2D studies. The details of the numerical procedure can be found in Ref. [41]
and in the Methods section of this work. We have set the reduced volume τ3D = 0.7, the channel
width W = 5R0, and the capillary number Cκ = 1. For each value of λ, we start with the vesicle
at different initial z positions: In the center (z0 = 0) and off-centered at z0/R0 = ±1.2, except for
λ > 40, where we use z0/R0 = ±1 for stability reasons. We then consider the average z position in
the steady state, which we denote as hf as in the 2D case. The result can be seen in Fig. 13. For small
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FIG. 11. The evolution of the equilibrium lateral position hf according to the bifurcation parameter λ for
several reduced area τ. Here we set Cκ = 1 and W = 5R0. Initially the vesicle is close enough to one of the
walls. Beyond λc the vesicle is initially set at the center line or at a small enough distance (0.72R0) from the
lower wall. TT, TB, and FA are shown.

values of λ, the vesicle always moves towards the center (hf ≈ 0), in good qualitative agreement
with the previous 2D results. However, above a critical threshold of λ ≈ 25, the vesicle assumes an
off-centered position near the walls (hf 
= 0). The slight asymmetry for the two off-center starting

FIG. 12. Phase diagram showing regions where migration is towards the center or towards the wall
depending on λc and reduced area τ. Migration towards the center line is favored with increasing τ. The
solid line is a guide for the eyes. The simulations data are shown as dots. Here we set W = 5R0 and Cκ = 1.
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FIG. 13. Average steady-state z position hf for a 3D vesicle as a function of the viscosity ratio λ. Three
different initial positions are used: in the center (z0 = 0) and near the walls (z0 ≶ 0). Here we set W = 5R0,
τ3D = 0.7, and Cκ = 1.

positions at λ = 25 is a numerical artifact, stemming from the fact that we need to solve a Fredholm
equation of the mixed kind. In most cases, the vesicle tumbles. Exceptions are found only at λ = 5,
where the vesicle assumes a tank-treading dumbbell shape when started off-centered, and at λ � 40,
where the vesicle exhibits a rolling motion when started in the center. The latter also explains why
the z0 = 0 branch in Fig. 13 is distinct for λ � 40.

In short, we confirm in three dimensions that the vesicle under linear shear flow migrates towards
the center for lower values of λ and towards the wall for values of λ above a critical value. These
results are qualitatively consistent with the 2D results. Note that the presence of a third dimension
can allow the vesicle to undergo different kinds of out-of plane motion, which may make the phase
diagram quite complex. We hope to report on this matter in the future.

IV. CONCLUSION

In this article, the dynamical behavior of a single vesicle in a confined shear flow as a function
of viscosity contrast λ has been investigated numerically. We have performed a systematic study in
two dimensions on the effect of the relevant parameters: capillary number (Cκ ), channel width (W ),
and reduced area (τ) on the equilibrium lateral position of the vesicle. We have seen that below a
critical viscosity contrast λc, the ultimate position of the vesicle is at the center line, whereas above
λc, the vesicle can be either centered or off-centered depending on initial conditions. Finally, we
carried out a 3D numerical simulation to confirm the overall picture obtained in two dimensions.

The revelation here of the existence of different kinds of solutions may lead to different
suspension structuring when the concentration is increased. This structuring is expected to impact
the rheological properties of the suspension. This constitutes the next interesting step. Finally, the
dependence of solutions on the viscosity contrast as well as on the capillary number offers a versatile
potential to manipulate and sort deformable particles depending on their internal viscosity and their
compliance.
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