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We present an extensive study of Boussinesq thermal convection including a
temperature-dependent internal heating source, based on numerical three-dimensional
simulations. The temperature dependence mimics triple-α nuclear reactions and the fluid
geometry is a rotating spherical shell. These are key ingredients for the study of convective
accreting neutron star oceans. A dimensionless parameter Ran, measuring the relevance of
nuclear heating, is defined. We explore how flow characteristics change with increasing
Ran and give an astrophysical motivation. The onset of convection is investigated with
respect to this parameter and periodic, quasiperiodic, chaotic flows with coherent struc-
tures, and fully turbulent flows are exhibited as Ran is varied. Several regime transitions
are identified and compared with previous results on differentially heated convection.
Finally, we explore (tentatively) the potential applicability of our results to the evolution
of thermonuclear bursts in accreting neutron star oceans.
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I. INTRODUCTION

Convection is responsible for transporting angular momentum and for the generation of magnetic
fields in cosmic bodies, in particular, in the Earth’s outer core [1]. Surface zonal patterns observed
on the gas giants (Jupiter and Saturn) [2,3] and the ice giants (Uranus and Neptune) [4] are thought
to be maintained by convection within deeper layers. In the case of stars, the differential rotation
and meridional circulation observed in the Sun [5] and in main sequence stars [6] are modeled using
compressible convective models. The latter also seems to be quite sufficient to explain the magnetic
fields of isolated white dwarfs [7].

Convection, driven by nuclear burning, is also believed to be important in accreting white dwarfs
and neutron stars. For the former, fully three-dimensional simulations in [8] of the convective
dynamics establish the conditions for runaways (thermonuclear explosions) in sub-Chandrasekhar-
mass white dwarfs. Neutron stars that accrete matter from a companion star build up a low-density
fluid layer of predominantly light elements (hydrogen and helium) on top of the star’s solid
crust, forming a surface ocean (see [9] for a discussion of the conditions for solidification at the
ocean-crust interface). Thermonuclear burning of these elements as they settle in the ocean can be
unstable, giving rise to the phenomenon of type I x-ray bursts [x-ray bursts are a sudden increase
in the x-ray luminosity of a source as radiation from the runaway thermonuclear reactions escapes

2469-990X/2018/3(12)/123501(29) 123501-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.3.123501&domain=pdf&date_stamp=2018-12-10
https://doi.org/10.1103/PhysRevFluids.3.123501


F. GARCIA, F. R. N. CHAMBERS, AND A. L. WATTS

(see [10] for a general review) and should not be confused with the convective bursts studied in
the planetary literature [11,12]]. The energy produced in the thermonuclear runaways cannot be
dissipated by radiative transfer, and then convection sets in. In the case of neutron stars, surface
patterns known as burst oscillations (for a review see [13]) are observed to develop frequently
during these thermonuclear explosions, motivating an interest in convective patterns [13–15]. Burst
oscillations appear as modulation of the x-ray luminosity in the aftermath of a type I x-ray burst.
Possible explanations of this phenomenon involve flame spreading [16–20] or global modes of
oscillation of the ocean [21,22] (see also [23] in the case of superbursts) but we are still far from
having a complete understanding.

For the above-mentioned reasons many numerical, analytic, and experimental studies are devoted
to this field. Good reviews can be found in the literature; see, for instance, [24] on convection in the
Earth’s outer core, [25] on planetary dynamos, or [26], which focuses on experiments in rotating
spherical geometry. In the case of convective stellar interiors the review [27] gives a fluid dynamics
perspective, focusing on the effect of rotation in solar convection. Finally, the recent review of
[28] describes the state of the art of stellar simulations, covering a wide range of astrophysical
applications.

Current astrophysical hydrodynamical numerical codes, incorporating nuclear burning physics,
are set up in square geometries [14,17–19,29,30] and are thus local in nature. For this reason the
study of patterns of convection in a rotating spherical geometry (global patterns) generated by
nuclear burning, as proposed in this paper, is of importance. The study is restricted to Boussinesq
convection and does not incorporate compositional gradients, which may be a substantial simpli-
fication in the astrophysical context. However, this approximation makes sense when the focus is
to study basic hydrodynamical mechanisms in tridimensional domains, as is commonly adopted in
the context of planetary atmospheres (see, for instance, [3]). This knowledge will provide a starting
point for further global studies incorporating more complex physics, opening the way for a deeper
understanding of stellar processes.

Boussinesq and anelastic thermal convection in rotating spherical shells with differential heating
mechanisms have been studied in considerable detail over the past decades (see, e.g., Refs. [31–34],
among many others), but in the context of planetary cores and dynamos. The secular cooling
of planetary cores is modeled by internal buoyancy sources and the heat flux is assumed to be
nonuniform in the lateral direction of the outer boundary, to mimic the thermal structure of the
lower rocky mantle. The physical characteristics of accreting neutron stars are however quite
different [13]. The internal heat released in thermonuclear burning reactions is strongly dependent
on temperature: helium flashes, which we consider in this paper, are caused by the extremely
temperature-sensitive triple-α reaction [35]. In addition, the flow velocity boundary conditions are
stress-free rather than zero. This is important for the generation of zonal patterns, as has been shown
in studies of planetary atmospheres [2,3,36].

Changing mechanical boundary conditions from nonslip to stress-free, or decreasing the gap
width of the shell (more realistic for convection in atmospheres), results in a strong zonal wind
generation and quasigeostrophic flow, even at supercritical regimes [36]. On the giant planets
(Jupiter and Saturn) the strong equatorial zonal flow is positive (prograde, eastward) [2,3], while
in ice giants (Uranus and Neptune) it is negative (retrograde, westward) [4]. This transition from
prograde to retrograde zonal flow was interpreted in [4] as a consequence of vigorous mixing leading
to a progressive domination of inertial forces with respect to Coriolis forces. The prograde zonal
flow was also found to be quite robust when considering the effect of density stratification [37].

The focus of this study is to investigate thermal convection driven by nuclear burning heat
sources, as occurs in the envelopes of accreting neutron stars, by means of direct numerical
simulations (DNSs) in a rotating spherical shell geometry. The convective patterns and their mixing
properties, arising prior to ignition, are important for the modeling of thermonuclear bursts [13].
Convection tends to mix the fuel and ashes [38], altering nuclear reactions. We chose a setup very
similar to that used for planetary atmospheres [39], although with a different buoyancy driving
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mechanism, allowing a careful comparison. We find that the flows excited by heat released from
nuclear reactions exhibit relevant features typical of planetary atmospheres.

The paper is organized as follows. In Sec. II we introduce the formulation of the problem and
the numerical method used to obtain the solutions. In Sec. III the solutions with increasing Ran

are described and we analyze their physical properties, flow patterns, force balance, and timescales.
Section IV contains a discussion of the application to accreting neutron star oceans. Section V
summarizes the results obtained.

II. MODEL

We consider Boussinesq convection of a homogeneous fluid of density ρ, thermal diffusivity
κ , thermal expansion coefficient α, and dynamic viscosity μ. The fluid fills the gap between two
concentric spheres, rotating about an axis of symmetry with constant angular velocity � = �k, and
it is subject to a radial gravitational field g = −γ r (γ is a constant and r is the position vector). In
the Boussinesq approximation κ , α, and μ are considered constants and the simple equation of state
ρ = ρ0[1 − α(T − T0)] is assumed in just the gravitational term. In the other terms a reference state
(ρ0, T0) is assumed (see, for instance, [40]).

Previous studies have mainly considered two different thermal driving mechanisms [41,42].
Convection may be driven by an imposed temperature gradient on the boundaries and/or by a
uniform distribution of heat sources q. In contrast to this, the present study considers a temperature-
dependent heat source q, and fixed temperature at the boundaries. Heat generation that depends on
temperature (and also on density and nuclear species mass fraction) is used to model thermonuclear
reactions in stellar interiors [35]. In the following, we start by describing the widely used system
of equations without internal heat generation and afterward introduce the system including a
temperature-dependent heat source term.

A. Equations and method

In the absence of internal heat sources and considering perfectly conducting boundaries T (ri ) =
Ti and T (ro) = To (ri and ro being the radius of the inner and outer boundary, respectively), the
purely conductive state, in which the fluid is at rest, is given by v = 0 and Tc(r ) = T0 + ηd�T (1 −
η)−2r−1, where v is the velocity field, η = ri/ro the aspect ratio, d = ro − ri the gap width, �T =
Ti − To the temperature difference, and T0 = Ti − �T (1 − η)−1 a reference temperature. Following
the same formulation as in [43], the mass, momentum, and energy equations are written in the
rotating frame of reference and in terms of the velocity field v and the temperature perturbation
from the conduction state � = T − Tc. With units d = ro − ri for the distance, ν2/γ αd4 for the
temperature, and d2/ν for the time, the equations are

∇ · v = 0, (1)

∂tv + v · ∇v + 2 Ta1/2k × v = −∇p∗ + ∇2v + �r, (2)

Pr(∂t� + v · ∇�) = ∇2� + Raη(1 − η)−2r−3r · v, (3)

where p∗ is the dimensionless pressure containing all the potential forces. The centrifugal force
is neglected since �2/γ � 1 in stellar interiors. The system is governed by four nondimensional
parameters: the aspect ratio η = ri/ro and the Rayleigh Ra, Prandtl Pr, and Taylor Ta numbers.
These numbers are defined by

Ra = γα�T d4

κν
, Ta1/2 = �d2

ν
, Pr = ν

κ
. (4)
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If in addition to the externally imposed temperature gradient we are also interested in considering
internal heat sources, the energy equation (3) becomes

Pr(∂t� + v · ∇�) = ∇2� + Raη(1 − η)−2r−3r · v + γαd6

ν2κ

q

Cp

, (5)

where q is the rate of internal heat generation per unit mass and Cp the specific heat at constant
pressure.

Rather that considering uniform internal heat generation q, the focus of this paper is to study the
effect of considering a temperature dependence. Where this originates in nuclear reactions, there
are different types of temperature dependence, depending on the specific nuclear reaction [35]. We
choose as an illustrative example heat generation coming from the helium-burning triple-α reaction,
which is thought to play a major part in thermonuclear bursts in neutron star oceans. Hydrogen is
also present in the neutron star ocean and can also burn and contribute to heat generation, but in the
interest of simplicity we neglect these points for now. Note that other choices are possible, and the
same procedure could be applied, for instance, to carbon burning in the modeling of superbursts.
For the specific internal heat source that we consider here, the nuclear burning contribution from
the helium triple-α reaction (see [35]) is

q = 5.3 × 1018ρ2
5

(
Y

T9

)3

e−4.4/T9 (6)

in units erg g−1 s−1. In this equation Y is the mass fraction of He and T9 = f9T and ρ5 = f5ρ are
adimensional with f9 = 10−9 K−1 and f5 = 10−5 g−1 cm3. With the scales chosen for the variables
the energy equation [from Eq. (5)] now takes the form

Pr(∂t� + v · ∇�) = ∇2� + Raη(1 − η)−2r−3r · v + qn, (7)

qn = Ran

1

(� + Tc )3
e−Bn/(�+Tc ), (8)

where the two adimensional parameters are

Ran = 5.3 × 1045ρ2
5Y 3γ 4α4d18

ν8κCp

, Bn = 4.4 × 109αγ d4

ν2
, (9)

Ran being the control parameter and the main driver of burning convection.
We are interested in studying changes in convection when Ran is increased from zero and the rest

of the parameters are kept fixed. The variation of Ran could be interpreted physically as a change
in the helium mass fraction Y . The helium mass fraction should decrease significantly over the
course of a burst as it burns to carbon (see the spherically symmetric numerical calculations of a
pure helium flash model in [38]) and assuming that it is not replenished from overlying layers as a
result of convective mixing [44]. Both [38] and [44] also found a radial expansion of the convective
zone within the ocean during the burst. Following unstable helium ignition, convection sets in the
base of the accreted helium layer and radially expands outward, decaying once when the burning
rate becomes sufficiently slow later in the burst. Assuming that this expansion of the extent of the
convective zone is sufficiently slow compared to the convective timescale, one could also associate
the variation of Ran with the variation of the width d of the convective layer. However, in contrast
to varying Y , varying d affects not only Ran but also Ta and Ra [see Eq. (4)]. We believe this is
not a serious inconvenience because the stronger dependence is Ran ∼ d18 (rather than Ta ∼ d4 and
Ra ∼ d4).

When Ran > 0 there is a conductive state (v = 0) which is different from

Tc(r ) = Ra

Pr

(
T0

�T
+ η

(1 − η)2

1

r

)
, (10)
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corresponding to the purely differentially heated case (Ran = 0). Because of the nonlinear temper-
ature dependence of the nuclear heat generation [Eq. (6)], we have been not able to find an analytic
solution for the conductive state. However, as will be shown later on, the burning conductive state
is also found numerically to be spherically symmetric, but with a quite different radial dependence
compared to the differential heating case.

Note that without internal heat sources the equation for the temperature perturbation (3) does not
depend on T0/�T , as this is eliminated when computing ∇T . This is not generally true when
considering temperature-dependent internal heat sources and thus T0/�T should be estimated
according to the problem of interest. For accreting neutron star oceans burning pure helium it is
reasonable to consider T0/�T ∼ O(1) (see, for instance, [22,45]).

The equations are discretized and integrated as described in [46] and references therein. The
solenoidal velocity field is expressed in terms of the toroidal and poloidal potentials and together
with the temperature perturbation are expanded in spherical harmonics in the angular coordinates.
In the radial direction a collocation method on a Gauss-Lobatto mesh is used. The boundary
conditions for the velocity field are stress-free, and perfectly conducting boundaries are assumed
for the temperature. The code is parallelized in the spectral and in the physical space using
OpenMP directives. We use optimized libraries (FFTW3 [47]) for the fast Fourier transforms in ϕ

and matrix-matrix products (dgemm GOTO [48]) for the Legendre transforms in θ when computing
the nonlinear terms.

For the time integration, high-order implicit-explicit (IMEX) backward differentiation formulas
[46,49] are used. In the IMEX method we treat the nonlinear terms explicitly, in order to avoid
solving nonlinear equations at each time step. The Coriolis term is treated fully implicitly to allow
larger time steps. The use of matrix-free Krylov methods (generalized minimal residual method in
our case) for the linear systems facilitates the implementation of a suitable order and time step size
control.

B. Output data

We now introduce the output data analyzed in this study, extracted from the DNS. The data
emerge from the time series of a property P = P (t ). The time average P of the time series, or its
frequency spectrum, can be computed once the solution has saturated (reach the statistically steady
state). The property P may be global (obtained by volume averaging); semiglobal, in which a spatial
average in a certain direction has been carried out; or a purely local property, measured at a point
(r, θ, ϕ) inside the shell.

The volume-averaged kinetic energy density is defined as K = 1
2 〈|v|2〉V , i.e.,

K = 1

V

∫
V

1

2
(v · v)dv.

The axisymmetric (Ka) and the nonaxisymmetric (Kna) kinetic energy densities are defined
by modifying accordingly the velocity field in the previous volume integral. They are based,
respectively, on either the m = 0 or all the m �= 0 modes of the spherical harmonic expansion of
the velocity potentials. Similarly, the kinetic energy density Km (Kl) restricted to a given order m

(degree l) or, alternatively, toroidal (poloidal) KT (KP ) kinetic energy densities can be computed.
The loss of equatorial symmetry can be studied by considering the kinetic energy density contained
in the symmetric part of the flow, denoted by Ks . In some cases, a combination of these kinetic
energy definitions, such as the axisymmetric toroidal component KT

a , will be used. The order
(degree) mmax (lmax) for which Km (Kl) is maximum can be used to infer length scales of the
system. Better estimation n of the latter is provided in [50]: It is defined as the mean spherical
harmonic degree in the kinetic energy spectrum.

The Rossby number Ro, measuring the relative importance of inertial and Coriolis forces,
is defined in the standard fashion, Ro = ReE, with Re = √

2K and E = Ta−1/2 the Reynolds
and Ekman numbers, respectively. Different definitions of Ro arise when considering different
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components of K . For identifying the force balance taking place in different flow regimes, the
volume-averaged nongradient part of the Coriolis ∇ × FC , viscous ∇ × FV , Archimedean (i.e.,
buoyancy) ∇ × FA, and inertial ∇ × F I forces are obtained. They are computed as the kinetic
energy density, but with the corresponding part of the curl of the momentum equation, instead of
using the velocity field. By taking the curl, the pressure gradient disappears from the force balance
[51,52].

An important quantity in geophysical and astrophysical fluid dynamics is the so-called zonal
flow, i.e., the azimuthally averaged azimuthal velocity 〈vϕ〉 which is generically a function of (r, θ ).
Several points inside the shell have been selected to monitor the zonal flow. They are defined
by combining different radial positions r = ri + 0.15d, r = ri + 0.5d, and r = ri + 0.85d with
different colatitudes θ = π/8, θ = π/4, and θ = 3π/8 (which are evenly distributed between the
north pole and the equator). At the same grid of points and ϕ = 0, a probe for the temperature T

has been set.

C. Validation of results and numerical considerations

The differential heating version of the code has been successfully tested in [46] using the
corresponding benchmark data of [53]. The modification of the code to cope with the temperature-
dependent burning heat internal source is straightforward, with minor modifications. This is because
only the evaluation of the burning rate qn is performed at the physical mesh of points, as this term
is strongly nonlinear.

A certain degree of accuracy in the time integration is necessary to capture the right dynamics.
This is especially important in the oscillatory regime, where different attractors may be reached
depending on the tolerances required for the local time integration errors. For this reason a variable-
size and variable-order high-order (up to five) method is used in this study (see [46] for details).
The tolerances are 10−8 for the study of the onset and oscillatory solutions and 10−5 for obtaining
chaotic as well as turbulent attractors. This has been shown to be sufficient in [54] for different
supercritical physical regimes observed in differentially heated convection.

For obtaining time-averaged properties, initial transients, which may be large close to the onset,
are discarded. The number of measurements has been selected to be large enough that the results do
not change significantly if the length of the time series is halved. For the frequency analysis, Laskar’s
algorithm of fundamental frequencies [55] is used, which allows an accurate determination of the
frequencies with larger Fourier amplitudes of the spectrum.

Given an angular discretization, the system is usually believed to be well resolved if the kinetic
energy decays by two orders of magnitude in its spectrum (see [50], for instance). This is satisfied
for all of the DNSs presented in this study obtained with Nr ∈ [40, 60] and L ∈ [64, 192], Nr

and L being the number of radial collocation points and spherical harmonic truncation parameter,
respectively. The spatial resolution was increased from time to time in order to look into spatial
discretization errors. A brief numerical study of the effects of the truncation parameters is reported in
Tables I and II. In the former, some time-averaged properties are listed versus the spatial resolutions
for two different solutions with the parameters Ta = 2 × 105, Pr = 1, η = 0.6, Ra = 6.2 × 103,
and Ti/�T = 1.5. By increasing the resolution, reasonable errors of around 5% are obtained. This
is the maximum threshold that is allowed, and thus solutions from Ran � 1021 are computed with
Nr = 50 and L = 128, while those from Ran � 1026 are computed with Nr = 60 and L = 192.

The basic conductive state radial profile has large derivatives close to the boundaries which
are very sensitive to the number of radial discretization points. This is shown in Table II, where
the temperature at three different radial positions in the equatorial plane, volume-averaged kinetic
density, and surface-averaged radial derivative of the temperature at the outer surface is evaluated at
a specific instant of a certain time. Although the errors for the temperature and kinetic energy density
are small at 1%, errors of 20% are obtained for the temperature radial derivative when increasing
Nr = 40 to Nr = 100. This should be taken into account if some proxy based on this quantity is
going to be analyzed in the future.
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TABLE I. Burning Rayleigh number Ra, number of radial points Nr , spherical harmonic truncation
parameter L, mean Rossby and poloidal Rossby numbers Ro and Rop , respectively, mean ratio of the total to the
nonaxisymmetric kinetic energy densities (KEDs) K/Kna, and time-averaged mean total and poloidal spherical
harmonic degrees n and np , respectively. The parameters are Ta = 2 × 105, Pr = 1, η = 0.6, Ra = 6.2 × 103,
and Ti/�T = 1.5.

Ran Nr L Ro Rop K/Kna n np

1021 40 64 0.1751 0.1030 1.268 9.498 12.816
1021 50 128 0.1706 0.1014 1.200 9.641 12.691
1026 50 128 0.9239 0.6411 1.495 16.093 21.401
1026 60 192 0.9283 0.6346 1.535 15.090 20.625

III. RESULTS

Several studies have pointed out that in stellar interiors, convection is believed to occur in thin
layers of fluids having low Prandtl and large Taylor numbers (see [56] and references therein).
Radiative diffusion dominating viscosity in the Sun’s interior translates into Pr < 10−3 [57] and
the high degree of electron degeneracy gives rise to very low Pr < 10−3 in convective layers of
isolated white dwarfs [7]. For analogous reasons, accreting neutron stars have oceans with very low
Pr < 10−3 as well [56]. Modeling large Ta and low Pr is numerically challenging. According to
[56], the effect of decreasing Pr (or increasing Ta) for the onset of convection results in an increase
of ωc, giving rise to very small timescales. In addition, mc is especially large in the case of thin
shells [56,58] and thus very high spatial resolutions are required for the DNS.

For this study we will consider a moderate Taylor number Ta = 2 × 105, Prandtl number Pr = 1,
and aspect ratio η = 0.6. In this regime the preferred mode of differentially heated convection
(Ran = 0) is spiraling columnar (see, for instance, [59]) with critical Rayleigh number Rac =
6.180 125 × 103, drifting frequency ωc = −23.298 47, and azimuthal wave number mc = 8. The
computational requirements for studying the associated finite-amplitude convection problem are still
reasonably affordable. In addition, most studies of spherical rotating convection are at Pr ∼ O(1)
(see, for instance, [39]), making easier the comparison with previous results.

Because we are interested in studying convection driven by helium-burning heating sources,
rather than by differential heating, we choose a Rayleigh number close to the onset Ra = 6.2 × 103.
The corresponding nonburning (Ran = 0) solution is a weakly nonlinear rotating wave (RW) (also
called a Rossby wave) with m = 8 and frequency ω = −23.260 37. This type of solution arises
when the spherical symmetry of the basic state has been lost via Hopf bifurcations [60]. We have
also performed some tests with subcritical Ra (even negative, i.e., with a stabilizing temperature

TABLE II. Some properties after time stepping t = 0.4317 viscous units of time. The temperatures T1,
T2, and T3 are evaluated at ϕ = 0, θ = 3π/8, and r1 = ri + 0.15d , r2 = ri + 0.5d , and r3 = ri + 0.85d ,
respectively (where d = ro − ri), and K is the volume-averaged kinetic energy. The largest errors lie in the
radial derivative of the temperature at the outer surface, ∂rT (ro ). The parameters are Ta = 2 × 105, Pr = 1,
η = 0.6, Ra = 6.2 × 103, Ti/�T = 1.5, and Ran = 1020. The spherical harmonic truncation parameter is
L = 64; with L = 128 the results are nearly the same.

Nr T1 T2 T3 K ∂rT (ro )

100 52575.287 65007.475 40778.845 1061.1348 −4506586.0
80 52573.245 65009.777 40783.231 1061.1145 −4412121.1
60 52570.995 65013.672 40792.241 1061.1036 −4164847.9
40 52056.756 65106.535 40533.784 1075.9509 −3570169.6
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gradient) to see if convection can be driven when Ran is increased from zero. In all cases we have
found convective solutions for a sufficiently large Ran. Our simulations are performed mainly with
Bn = 1 and T0/�T = 1.5, but other values were considered to check the robustness of the results.

In Sec. III A the onset of burning convection and the first instabilities giving rise to periodic and
oscillatory solutions are studied. Section III B focuses more on the highly supercritical Ran regime,
characterized by highly chaotic and turbulent solutions, and on the description of the physical
properties and patterns of the flow.

A. First instabilities and oscillatory triple-α convection

The intention of this section, rather than accurately and exhaustively performing the linear
stability analysis (as in [56]), is to provide a first estimate of the critical values of Rac

n, frequencies
ωc, and azimuthal wave numbers mc and to describe the patterns and types of weakly supercritical
flows by means of DNS of the fully nonlinear equations. This approach is quite common in previous
studies of this field (see, for instance, [43] for uniform internal heating sources or [2] for differential
heating).

For fixed Ra we first obtain the corresponding differentially heated nonburning solution
(Ran = 0) and then, starting from this initial condition, we obtain a sequence of solutions by
increasing Ran successively by one order of magnitude (keeping the rest of parameters fixed).
We look for the first Ran > 0 at which the solution is different (by measuring some proxy) from
the initial condition, i.e., from the nonburning solution at Ran = 0. An example of this procedure
is shown in Fig. 1(a), where the time series of the volume-averaged kinetic energy density K is
displayed. By starting from the m = 8 RW (differentially heated) corresponding to Ra = 6.2 × 103

and Ran = 0, the burning solution at Ran = 1018 tends (after a long transient) to a RW but with
m = 9. We will describe the differences between these two solutions. Before doing so, however, we
must describe the conductive state when burning heat sources are included.

1. Conductive state and onset of convection

Because Ra = −103, 100, 101, 102, 103 < Rac and Ran = 0, the conductive state given by
Eq. (10) is stable and thus any velocity field perturbation decays to zero. By increasing Ran > 0
the burning conductive state, which is also spherically symmetric, is obtained. Its radial profile is
shown in Fig. 1(b) for Ra = 103 and Ran = 1011, 1012, 1013. For Ran < 1011 the radial profile of
the burning conductive state is very similar to that of the nonburning case. This indicates that very
large Ran is required for convective onset. As will be shown in Sec. IV, large Ran are likely to occur
in burning stellar regions. From Ra > 1012 the radial profile is significantly different from that of
Ran = 0, with an absolute maximum of temperature close to the middle of the shell and very large
(modulus) derivatives close to the boundaries. This is similar to the conductive profile (proportional
to r2) obtained when constant internal heating is considered [41].

For sufficiently large Ran and each different Ra = −103, 100, 101, 102, 103 < Rac explored, the
spherically symmetric burning conductive state becomes unstable to nonaxisymmetric perturba-
tions, giving rise to waves which drift azimuthally in the prograde direction as in the case when
Ran = 0. In all cases, the critical burning Rayleigh number required for convective onset is of order
Rac

n ∼ 1017, with critical azimuthal wave numbers mc ∼ 10 and critical drift frequencies ωc ∼ −50.
For instance, at Ra = −103 and Ran = 1018 an m = 10 RW with ω = 71.5 is found and at Ra = 103

and Ran = 1.3 × 1017 the RW has azimuthal symmetry m = 11 and ω = 48.9. These values should
not differ so much from the critical values, because at Ran = 1017 the conductive state is found to
be stable. These results suggest that the Rac

n required for the onset of burning convection depends
on the particular Ra chosen and thus on the temperature difference between the boundaries.

By increasing Ran up to 1012 and integrating the equations, starting from the differentially heated
nonburning initial condition (RW, m = 8) but also from random fields, the same solution (RW,
m = 8) is obtained. Beyond Ran = 1012 this Rossby wave is progressively lost (decreasing the
magnitude of the velocity field) and at Ran ∈ [1014, 1016] the burning conductive state becomes
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FIG. 1. (a) Time series of the volume-averaged kinetic energy K at Ra = 6.2 × 103 and Ran = 1018. The
initial condition corresponds to Ra = 6.2 × 103 and Ran = 0. From a purely differentially heated convective
flow and after a long transient (t > 20) the burning flow attractor is reached. (b) Conductive temperature
T versus radial coordinate r . The bottom curve corresponds to Ran = 0 with T = Tc given by Eq. (10)
(differentially heated conductive state). From bottom to top, the remaining curves correspond to Ran =
1011, 1012, 1013, all with Ra = 103.

stable again. The latter observation means that in convective systems with internal heat sources,
the onset of differentially heated convection (measured by Rac) depends on the internal heating rate
(measured by Ran). A reasonable physical interpretation of this restabilization is as follows: Because
Ra = 6.2 × 103 is very close to the onset the heat flux is almost conductive, giving a temperature
profile similar to the solid black line in Fig. 1(b); by increasing Ran temperature profiles become
more paraboliclike with heat flux larger at the outer boundary. In between, there exist some Ran

for which heat flux is rather uniform in the fluid layer [short-dashed curve of Fig. 1(b)], making it
difficult to excite convective motions.

At Ran = 1017 neither the burning conductive state nor the thermal m = 8 RW is found. The
solution, which is also a RW with m = 11 and ω = 55.1, is quite different from the thermal wave
found previously. At Ran = 1018 the same type of RW, with azimuthal symmetry m = 9 and ω =
74.6, is obtained after a long transient [see Fig. 1(a)]. These waves, driven by triple-α heating, are
of the same type as that seen at Ra < Rac and Ran � 1017.

The comparison of the flow patterns between the triple-α and differential heating case is shown in
Fig. 2. The latter displays the contour plots of the nonaxisymmetric component of the temperature
T , radial velocity vr , colatitudinal velocity vθ , azimuthal velocity vϕ , and kinetic energy density
v2/2 from top to bottom row, respectively, in spherical, meridional, and equatorial cross sections
(see the figure caption). The left group of three cross sections corresponds to the triple-α heating
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FIG. 2. In the first row, the left three plots are the spherical, equatorial, and meridional cross sections of the
contour plots of the nonaxisymmetric component of the temperature T at Ra = 6.2 × 103 and Ran = 1017; the
right three plots are the same as the left, but for Ra = 6.2 × 103 and Ran = 0. The second to fifth rows show
vr , vθ , vϕ , and v2/2, from top to bottom. All meridional cross sections are selected at a relative maximum. The
spherical cross sections of vθ , vϕ , and v2/2 are taken at the outer boundary. All of them cut a relative maximum
except for vϕ and Ran = 0, where the maximum is close to the inner boundary. The spherical cross sections for
T and vr pass through the maximum, which is located inside the shell.

m = 11 RW (at Ra = 6.2 × 103 and Ran = 1017), while the right group corresponds to the thermal
(Rossby) m = 8 RW (at Ra = 6.2 × 103 and Ran = 0). Thermal (Rossby) waves characteristic
of Pr = 1 have been widely described before for differential as well as internal heating models
[43,56,59], so we comment on these only briefly. These modes have been named spiraling columnar
because the flow is aligned with the rotation axis, forming convective columns that are tangential
(or nearly so) to the inner cylinder (see the right group of plots in Fig. 2). In contrast, convection
in triple-α heating modes is attached to the outer sphere and reaches lower latitudes, including the
equator, similar to the equatorially attached modes characteristic of lower Pr < 1, which are more
localized at equatorial latitudes [56,61,62]. Triple-α convective modes also exhibit a weak vertical
dependence because of the Taylor-Proudman constraint [40], given the moderate, but sufficiently
large, Taylor number Ta = 2 × 105.
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2. Oscillatory burning convection

The time series of the volume-averaged kinetic energy density K and its different components
KT

a , KT
na, KP

a , and KP
na displayed in Figs. 3(a) and 3(b) correspond to the thermal m = 8 RW at

Ra = 6.2 × 103 and the burning m = 11 RW at Ra = 6.2 × 103 and Ran = 1017. They are constant
because azimuthally averaged properties do not change with time, as the flow drifts in that direction.
Both solutions have stronger toroidal components and are almost nonaxisymmetric KP

a < KT
a <

KP
na < KT

na because they are very close to the respective onset. Increasing Ran results in a strong
relative increase of zonal motions measured by KT

a , giving KP
a < KT

a ≈ KP
na < KT

na at Ran = 1018

(not shown in the figure) and KP
a < KP

na � KT
na < KT

a at Ran = 1019 and Ran = 1020 [see Figs. 3(c)
and 3(d)]. In all cases KP

a < 10−3K , meaning that the axisymmetric component is almost purely
toroidal. The time series of Figs. 3(c) and 3(d) exhibits an oscillatory and chaotic dependence with
a strong axisymmetric and toroidal component (zonal wind). All of these features of convection are
typical with stress-free boundary conditions and have been reported before with internal heating
sources [43] as well as externally forced temperature gradients [2]. The description of their flow
patterns is delayed to Sec. III B 3, where turbulent solutions also will be detailed.

The time series of the temperature measured in the middle of the shell (r = ri + 0.5d) at
ϕ = 0 and three different colatitudes, evenly distributed between the equatorial plane and the north
pole, θ = π/8, θ = π/4, and θ = 3π/8 are displayed in Figs. 4(a)–4(d) for the same solutions as
Figs. 3(a)–3(d), respectively. For the m = 8 RW at Ran = 0 and the m = 11 RW at Ran = 1017

the temperature is periodic and the amplitude of the oscillations is around 3% of the mean [see
Figs. 4(a) and 4(b)], meaning that these solutions represent small deviations from the conductive
state. Both the amplitude of the oscillations and the mean decrease with increasing θ and the
temperature in the polar regions (θ = π/8) is almost constant (i.e., conductive). With increasing Ran

the amplitude of oscillations becomes larger [up to around 30% at Ran = 1020; see Fig. 4(d)] and the
temperature in the polar regions becomes more oscillatory. The strongest temperature oscillations
in our model of triple-α burning convection are located near the equatorial region, which may have
observational consequences. In addition, the time series of chaotic solutions shown in Figs. 4(c) and
4(d) exhibits small rapid fluctuations, coexisting with these large oscillations which have a longer
associated timescale. This longer timescale seems not to vary much with Ran and is similar to the
corresponding periodic oscillations at the onset [compare Fig. 4(b) with Fig. 4(d)]. A deeper study
of the timescales associated with burning driven flows is considered in Sec. III B 4.

B. High-Ran convection and mean properties

Time-averaged global and local physical properties, such as volume-averaged kinetic energy
densities or temperature at a point inside the shell, as well as flow patterns, are described and
interpreted in the following section. In addition, some power laws derived from the equations of
motion will be compared to the numerical results, by assuming certain force balances [52,63].
This has been shown to be a successful tool for obtaining estimations of realistic phenomena
[2,64–66] in the geodynamo context. The analysis is restricted to Ra = 6.2 × 103 and comprises
a large sequence of solutions, including those studied in the preceding section, with increasing Ran

up to 1027. This section is focused on high Ran flows and on detailing the associated physical
regimes. By increasing Ran, turbulent convection develops after different transitions from the
laminar regime. We have found that burning-driven convection shares relevant flow features with the
type of convection described for planetary atmospheres [3,4,39] modeled with an externally forced
temperature gradient. In particular, we find the same regimes described in [39] (see the summary in
their conclusions) for both Boussinesq and anelastic approximations.

Table III contains data that give a preliminary description of the route to turbulence occurring
in triple-α burning convection. The Rossby number and its poloidal component measuring vigor
of convective flow [2,65] increase monotonically. For the small Ran, Ro � 1 and Rop ≈ Ro/2
indicates that Coriolis forces are important and the flow is moderately convective. However, by
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FIG. 3. Time series of the kinetic energies K , KT
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na represented by black solid, blue
dashed, light blue dotted, red dash-dotted, and light red dash–double-dotted lines, respectively. The parameters
are Ra = 6.2 × 103 and (a) Ran = 0, (b) Ran = 1017, (c) Ran = 1019, and (c) Ran = 1020.
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TABLE III. Burning Rayleigh number Ran, mean Rossby and poloidal Rossby numbers Ro and Rop ,
respectively, mean ratio of the total to the nonaxisymmetric KEDs K/Kna, leading azimuthal wave numbers
having a relative maximum of Km (the KED considering a single wave number m), leading spherical harmonic
degrees having a relative maximum of Kl , and time-averaged mean total and poloidal spherical harmonic
degrees n and np , respectively.

Ran Ro Rop K/Kna mmax lmax n np

0 0.001 0.0006 1.002 8,0,16 9,11,3 9.44 8.31
1017 0.006 0.003 1.02 11,0,22 12,14,3 11.70 11.14
1018 0.019 0.010 1.32 9,0,18 10,3,1 8.46 9.62
1019 0.047 0.022 1.97 0,8,16 3,1,9 8.47 14.67
1020 0.091 0.044 1.89 0,5,10 3,1,5 8.09 13.63
1021 0.17 0.101 1.20 1,0,3 3,9,12 9.64 12.69
1022 0.32 0.16 2.53 0,2,5 3,1,5 7.06 14.92
1023 0.50 0.25 2.88 0,2,4 3,1,7 7.06 15.81
1024 0.68 0.35 2.74 0,2 3,1,5 8.19 17.41
1025 0.81 0.48 2.06 0,2 3,1,5 11.28 19.52
1026 0.92 0.64 1.50 0,5 3,1,5 16.09 21.40
1027 1.10 0.84 1.20 0,5 1,3,6 21.23 23.07

increasing the nuclear burning rate, Rop � Ro ∼ 1, thus Coriolis forces play a secondary role and
the flow is strongly convective. The ratio K/Kna helps to identify these different flow regimes [39],
decreasing from Ran = 1023 for the largest Ran, and provides useful information. For instance,
K/Kna is also a maximum in the vicinity of Ran = 1019, the regime of oscillatory and chaotic
(but coherent) burning convection studied previously. The spherical harmonic order mmax, in which
max Km is reached, or equivalently lmax for the spherical harmonic degree, is often used for
estimating length scales present in the system. More accurate estimations could be obtained with
(n)−1 [50] [or (np )−1 for convective length scales]. This table points to so-called Rossby-wave
turbulence, i.e., the low-wave-number route to chaos (see [67,68] for examples of routes) in which
the energy is contained at successively lower wave numbers when increasing the forcing (inverse
cascade, because of the shearing produced by differential rotation [69]). Regarding the regimes in
the extremes (rotating waves at Ran = 1017, 1018 or the most turbulent solutions from Ran � 1025),
large length scales that do not change substantially are found and the convective flow develops
smaller-scale structures.

1. Time-averaged properties

The different flow regimes distinguished in Table III are investigated with the help of time
averages displayed in Figs. 5 and 6. The former examines the volume averages of the different
components of the kinetic energy density or the volume-averaged force balance, but also tem-
perature recorded at different points inside the shell. The latter analyzes the zonal flow also at
different colatitude and radial positions (see the figure captions). In the left region of both figures
(up to Ran = 1012) the plotted variables are constant and equal to those corresponding to the
differentially heated nonburning solution at Ran = 0. As mentioned in the preceding section, at
Ran = 1013 the imposed temperature gradient becomes less efficient at maintaining convection and
the kinetic energy density of the solution decreases. At Ran = 1014, 1015, 1016 convection is no
longer sustained and the triple-α conductive state is recovered. This is why these points are missing
in the plots.

In the first burning convective regime 1017 � Ran � 1019, corresponding to oscillatory solutions
(regime I of [39]), the zonal component of the flow grows rapidly [see Fig. 5(a)] and Coriolis
forces are still important [see Fig. 5(c)], helping to maintain the equatorial symmetry of the flow
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(c) time-averaged rms curl of forces integrals ∇ × F I (•, inertial), ∇ × FV (◦, viscous), and ∇ × FC

(∗, Coriolis); and (d) time-averaged temperatures T̄1, T̄2, and T̄3 taken at ϕ = 0, θ = 3π/8, and r = r1 =
ri + 0.15d (∗), r = r2 = ri + 0.5d (◦), and r = r3 = ri + 0.85d (•), respectively (where d = ro − ri), with
the fitting line corresponding to T2 = (1.95 ± 0.15)Ra0.223±0.001

n .
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ri + 0.5d; and •, r = r3 = ri + 0.85d (where ri = 1.5 and ro = 2).

[see Fig. 5(b)]. Zonal circulations are positive near the outer boundary and negative near the inner
boundary [see Fig. 6(c)]. This also occurs at Ran = 1020, 1021, but these solutions are different
because the equatorial symmetry has been broken, the Coriolis forces start to be of second order
[see Figs. 5(b) and 5(c)], and the axisymmetric flow component starts to decrease (see Table III).
These solutions belong to a transition regime across which the structure of the mean zonal flow is
strongly changed. A very similar regime was also found in [39] (where it was called the transitional
regime), but only for strongly stratified anelastic models. According to [39], because of the strong
stratification, different force balances are achieved at different depths in the shell. In this regime

123501-16



THERMAL CONVECTION IN ROTATING SPHERICAL …

buoyancy dominates near the outer boundary while the Coriolis force is still relevant in the deep
interior. This reduces the amplitude of the zonal flow and leads to a characteristic dimple in the
center of the equatorial jet [39]. As will be shown in Sec. III B 3, the signature of this dimple is also
present in our unstratified models.

The second regime (also regime II in [39]) corresponds to flows (1022 � Ran � 1024) which have
the maximum zonal component (see Table III). These solutions are characterized by large-scale
convective cells, volume-averaged kinetic energy growing as Ra1/2

n , and inertial forces becoming
more relevant with respect to Coriolis and viscous forces. In contrast to the previous regime, the
zonal flow pattern is reversed and becomes negative near the outer boundary and positive near the
inner. In this regime, the positive mean zonal flow near the inner boundary is strongly increased at
mid and high latitudes, but also close to equatorial latitudes. In these latitudes the positive mean
zonal flow is weaker. The radial dependence is enhanced with increasing latitude. In addition,
although equatorial symmetry of the nonaxisymmetric flow is clearly broken, this is not the case
of the axisymmetric (zonal) flow.

A third regime (also regime III in [39]) is obtained for the largest Ran � 1025 explored,
corresponding to strongly convective and nonaxisymmetric turbulent flows. In this regime the
balance seems to be between inertial and viscous forces, with volume-averaged kinetic energy
slowly growing as Ra1/8

n and the volume-averaged zonal component of the flow starting to slowly
lose equatorial symmetry while remaining roughly constant. The change of tendency of the
axisymmetric component of the flow is also local, as can be observed in Fig. 6. While in equatorial
regions the zonal flow remains roughly constant, at higher latitudes it decreases quite sharply, which
may be indicative of the progressive loss of equatorial symmetry. In the case of the nonaxisymmetric
flow, its equatorially symmetric and antisymmetric components are balanced, as reflected by the
constant ratio Ks

na/Kna ≈ 0.5. A fourth regime can be guessed by looking at Fig. 5(b). It will
correspond to fully isotropic turbulence characterized by nearly equal equatorially symmetric and
antisymmetric components of the zonal flow (Ks

a/Ka ≈ 0.5).

2. Force balance

For all the Ran explored, the time averages of the temperature are quite similar inside the shell
[Fig. 5(d)]. Figure 5(d) shows that mean temperatures are slightly larger close to the outer boundary,
except for the turbulent solutions where the radial dependence seems to disappear. Mean tempera-
tures close to the equatorial region in the middle of the shell grow as T = (1.95 ± 0.15)Ra0.223±10−3

n

and thus the different flow regimes cannot be clearly identified. Notice that the latter scaling is better
satisfied at the largest Ran. For smaller forcing Ran � 1023, the exponent of the power law is a little
bit larger, around 0.24 ≈ 1/4. As argued in the following, this exponent, as well as Ra1/2

n and Ra1/8
n

found for the kinetic energy density, can be deduced from the equations. The results are compared
with those in [63], an exhaustive and recent study about scaling regimes in spherical shell rotating
convection.

Assuming that in the energy equation (8) the internal triple-α heat generation is balanced with
the temperature Laplacian ∇2T ∼ RanT

−3e−Bn/T , the characteristic length scale remains roughly
constant (of the same order) with Ran (see Table III), and T ∼ Raξ

n with ξ > 0 gives Raξ
n ∼ Ra(1−3ξ )

n ,
because if Ran is large the term e−Bn/T ∼ e−Bn/Raξ

n ∼ 1. Then ξ ≈ 1/4, in very good agreement with
our results. In addition, for Ran � 1023 we have found from the simulations that K ∼ Ra1/2

n , i.e.,
U ∼ Ra1/4

n , with U being the characteristic velocity of the fluid. When viscous and Coriolis forces
are balanced with the Archimedes (buoyancy) force in the momentum equation (the so-called VAC
balance; see [63] and references therein), as Fig. 5(c) suggests, and with the previous assumptions
for the length scales, the characteristic velocity is U ∼ T ∼ Ra1/4

n .
When the VAC balance is lost for the turbulent solutions Ran � 1024, a new power law K ∼

Ra1/8
n , i.e., U ∼ Ra1/16

n , is obtained. This very low exponent may be explained by again making
use of the energy equation and assuming that its inertial term starts to play a role, giving rise
to a new balance. The length scales for the temperature L are no longer constant, modifying
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slightly the ∇2T ∼ RanT
−3e−Bn/T balance to T/L2 ∼ RanT

−3. Because the solutions have very
large velocities we may assume v · ∇T ∼ RanT

−3e−Bn/T , i.e., UT/L ∼ RanT
−3 and thus UT/L ∼

T/L2 or equivalently UL ∼ 1. If T ∼ Raξ
n and U ∼ Raζ

n then ζ = (1 − 4ξ )/2, which is in close
agreement with our results. With ξ = 0.22 we obtain ζ = 0.06 ≈ 1/16.

Very similar scaling regimes have been reported previously in the context of differentially heated
convection [63]. They are the weakly nonlinear regime (VAC balance) and the nonrotating regime
(inertial-Archimedean force balance). This may be an indication that very similar mechanisms
govern both differentially or internally heated systems, even in the case of temperature-dependent
internal sources.

3. Triple-α convective patterns

The variation of the topology of the flow with increasing Ran = 1020, 1021, 1022, 1023, 1026,

1027, i.e., the patterns of triple-α convection, can be analyzed with the help of Figs. 7 and 8. The
former figure displays the contour plots of the temperature (with increasing Ran from the top to the
bottom row) in spherical, equatorial, and meridional cross sections (left group of plots), as well as
those for the azimuthal velocity (right group of plots). The latter figure compares the total kinetic
energy of the flow (first row) with the axisymmetric component of the azimuthal velocity (second
row) on meridional cross sections for the same sequence of Ran as in Fig. 7. As usual, spherical and
meridional cross sections pass through a relative maximum. The azimuthally averaged azimuthal
velocity contour plots shown in the second row of Fig. 8 can be easily compared with Fig. 2 of [39],
showing good agreement.

At Ran = 1020 the solutions belong to the oscillatory regime. Temperature is maximum in the
polar regions and almost conductive (see the spherical cross section). A remarkable characteristic of
the burning convection is that large azimuthally elongated outward plumes coexist with very narrow
inward cold cells. The outward plumes are mushroomlike and correspond to a large outward radial
flow. At lower latitudes, close to the equatorial region, an m = 5 convective pattern develops (see
the equatorial cross section). This m = 5 pattern is clearly distinguished in the contour plots of vϕ .
There is an equatorial belt of positive zonal circulation attached to the outer boundary. At higher
latitudes the zonal circulation is strongly negative, decreasing its amplitude up to the poles. The total
kinetic energy density [see the meridional cross section shown in Fig. 8 (first row, left)] is maximum
just where the negative circulation takes place, while the axisymmetric azimuthal velocity (Fig. 8,
second row, left) is maximum at the positive equatorial belt. This figure reveals also the strong
equatorial symmetry of the flow.

Very narrow downwelling plumes, elongated in the colatitude direction, are clearly observed
in the equatorial region at Ran = 1021 as Coriolis forces are still noticeable (see the temperature
spherical cross sections of Fig. 7). Colatitude directed coherent vortices have been also obtained
in Boussinesq (Fig. 4 of [12]) or anelastic (Fig. 6 of [70]) models, in the contexts of Saturn’s
atmosphere and solar convection, respectively. The latter models considered differential heating
in a regime strongly influenced by rotation. We note however the very different azimuthal and
radial nature of our coherent vortices when considering an additional source of internal heating. The
flow patterns at Ran = 1021 are similar to those at Ran = 1020 but with a weaker zonal component
(see the second plot in the second row of Fig. 8). The positive equatorial belt has been disrupted,
becoming a large convective cell in which the kinetic energy is concentrated (see the second plot
in the first row of Fig. 8). The flow then has strong azimuthal symmetry m = 1 (see the equatorial
cross sections of Fig. 8 and Table III). Convection is spreading to high latitudes and polar zonal
circulations become important (see the second plot in the second row of Fig. 8). The flow is
still equatorially symmetric (Ks > 0.8K), but antisymmetric motions increase noticeably when
compared with solutions at lower Ran. The dimple seen in the equatorial belt of zonal motions
(see the second plot in the second row of Fig. 8) was associated in [39] with a transitional regime.
As we argue at the end of this section, this regime also seems to be valid in our case.
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FIG. 7. Instantaneous contour plots at Ran = 1020, 1021, 1022, 1023, 1026, 1027 (from top row to bottom
row). The left three plots are the spherical, equatorial, and meridional cross sections of the temperature T .
The right three plots are the same cross sections for vφ . Meridional cross sections and the spherical cross
section of T are taken at a relative maximum. The spherical cross section of vφ is at the outer surface.

The corresponding flow topology at Ran = 1022, 1023 is quite different from that at lower Ran.
While large-scale temperature vortices are still present, convection is more vigorous and more
developed, with small-scale motions in the polar regions. The meridional and latitudinal extent
of the convective cells is starting to decrease (see the spherical cross sections of T ) while it remains
large (similar to the gap width) in the radial direction (see the equatorial cross sections of T ). This
gives more support to our assumption of a characteristic length scale of order unity when deriving
the corresponding temperature and velocity scalings in Sec. III B 2. As stated, when studying
time-averaged properties from Ran � 1022, the flow pattern has reversed and now the circulation
occurring in the equatorial belt is negative, while at higher latitudes it is positive. The meridional
extension of the equatorial belt decreases and the motions are more attached to the outer surface
(see the third and fourth plots in the first and second rows of Fig. 8). While the axisymmetric flow

123501-19



F. GARCIA, F. R. N. CHAMBERS, AND A. L. WATTS

FIG. 8. Instantaneous contour plots at Ran = 1020, 1021, 1022, 1023, 1026, 1027 (from left to right) showing
the meridional cross sections of the kinetic energy density v2/2 (first row) and the mean zonal flow (azimuthally
averaged vϕ) (second row). Cross sections of v2/2 pass through a maximum.

(and thus the equatorial belt) is still equatorially symmetric, this symmetry is progressively lost on
the rest of the shell. When comparing to the corresponding differentially heated Boussinesq models
of Fig. 2 in [39], our models exhibit larger steady axially oriented regions (green), which tend to
spread to larger latitudes, i.e., moving radially inward, with increasing Ran.

The two most extreme cases at Ran = 1026, 1027 exhibit very fine temperature structures close
to the outer boundary and of granular type like those observed on the Sun’s surface. Nevertheless,
the large-scale weak temperature vortices still recall the topology of the triple-α conductive state.
The negative and positive circulations become more nonaxisymmetric, the latter nearly reaching the
poles. Although the number of small-scale structures is increasing, negative azimuthal velocity cells,
elongated on the meridional direction, are still present on equatorial latitudes even at Ran = 1027. In
the latter case, these negative meridional cells alternate with very thin positive plumes that connect
positive circulations of both poles (see the spherical cross section of vϕ). Although motions are
concentrated very close to the outer boundary (see the rightmost plots in the first row of Fig. 8),
they are no longer located near equatorial latitudes and may reach high latitudes. In addition, the
equatorial symmetry of the flow is clearly lost, although not that of its axisymmetric component
(see also the rightmost plots in the second row of Fig. 8). The latter is stronger at high latitudes, in
contrast to what happens at lower Ran.

The typical anelastic transitional flows of [39] exhibit quasigeostrophic structures in the interior
of the shell, while they are more buoyancy dominated (radially aligned) near the outer boundary.
The critical radial distance, rmix in [39], separating the two dynamical behaviors within the shell
increases (from the outer boundary to the inner) with the forcing. This also occurs in our Boussinesq
models, as shown in Fig. 9, but with different patterns which are due to the different forcing
mechanisms (differentially heated anelastic versus triple-α internal heating) of the convection. The
figure displays the contour plots of the axial vorticity wz on spherical, meridional, and equatorial
cross sections (the latter are shown in Fig. 13 of [39] for three anelastic models). The positions of
the cross sections are displayed with black lines in the contour plots. Four representative solutions
belonging to regime I, the transitional regime, and regime II, at Ran = 1019, 1020, 1021, 1022, are
shown. In regime I the flow is quasigeostrophic outside the tangent cylinder while convection is
absent in the inner region (see the top left group of plots). At Ran = 1020, a rough critical radius
rmix = ri + 0.8d can be identified (see the top right group of plots, equatorial and meridional cross
sections), becoming larger rmix = ri + 0.3d at Ran = 1021 (see the bottom left group of plots). In
agreement with [39], for r > rmix vorticity is radially aligned (best seen in the meridional cross
sections), while for r < rmix the quasigeostrophic columns can be identified. However, in contrast
to [39], this behavior is more evident in the polar regions (see the spherical cross sections) than
at lower latitudes where axially aligned structures at r > rmix still survive. For flows belonging to
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FIG. 9. Instantaneous contour plots at Ra = 6.2 × 103 and Ran = 1019, 1020, 1021, 1022 (from left to right
and from top to bottom group of plots). Each group of three plots consists of the spherical, equatorial, and
meridional cross sections of the axial vorticity wz. Spherical cross sections are taken at r = ri + 0.95d , r =
ri + 0.8d , r = ri + 0.3d , and r = ri + 0.5d for Ran = 1019, 1020, 1021, 1022, respectively. Meridional cross
sections are taken where wz has a relative maximum.

regime II small convective structures within all r can be found (see the bottom right group of plots)
but they are now quite aligned in the vertical direction because the negative zonal circulations at low
latitudes are becoming stronger.

4. Flow timescales

It is interesting to address which are the relevant timescales present in the different flow
regimes obtained with the DNS. Table IV lists the frequency with larger amplitude f ∗

max, the
interval [f ∗

1 , f ∗
2 ] containing the ten first frequencies with larger amplitude, and the mean frequency

f ∗ of the frequency spectrum of temperature T , azimuthal velocity vϕ , and zonal flow 〈vϕ〉
taken close to the outer boundary and the equatorial plane [at (r, θ, ϕ) = (ri + 0.85d, 3π/8, 0)].
Rotating waves (Ran = 1017, 1018) close to the onset have timescales quite similar to the critical
frequencies 2π/ωc ∼ 10. Usually secondary bifurcations giving rise to oscillatory flows involve
large timescales, as is the case for Ran = 1019, 1020, with relevant frequencies f ∼ 1.

TABLE IV. Burning Rayleigh number Ran, the frequency with larger amplitude f ∗
max, the interval [f ∗

1 , f ∗
2 ]

containing the ten first frequencies with larger amplitude, and mean frequency f ∗ of the frequency spectrum of
temperature T , azimuthal velocity vϕ , and zonal flow 〈vϕ〉 taken close to the outer boundary and the equatorial
plane [at (r, θ, ϕ) = (ri + 0.85d, 3π/8, 0)].

Ran f T
max [f T

1 , f T
2 ] f T f

vϕ
max [f

vϕ

1 , f
vϕ

2 ] f vϕ f
〈vϕ 〉

max [f
〈vϕ 〉

1 , f
〈vϕ 〉

2 ] f 〈vϕ 〉

1017 8.77 [8.77,80.0] 9.21 8.77 [8.77,80.0] 10.6
1018 11.8 [11.8,59.1] 14.8 11.8 [11.8,71.2] 15.0
1019 21.0 [2.50,31.0] 15.9 21.0 [5.29,41.9] 22.1 34.57 [1.23,45.0] 25.2
1020 28.2 [2.17,39.6] 24.4 28.2 [2.54,56.3] 26.5 8.881 [0.73,52.1] 32.8
1021 16.1 [3.81,60.3] 61.1 12.7 [7.00,66.4] 30.1 6.44 [1.99,55.9] 45.8
1022 26.0 [14.7,91.1] 171 12.5 [2.03,57.2] 71.2 2.38 [7.52,80.4] 49.7
1023 16.7 [16.7,235] 345 4.58 [4.58,56.5] 38.4 2.48 [2.48,90.2] 111
1024 82.8 [25.1,287] 375 45.6 [4.22,102] 90.5 31.53 [18.0,66.2] 35.0
1025 54.3 [23.8,360] 270 17.4 [13.9,128] 180 33.80 [5.62,115] 50.5
1026 110 [16.8,372] 402 91.8 [6.70,252] 377 19.91 [19.9,164] 179
1027 42.3 [16.9,509] 948 35.3 [14.1,350] 233 47.48 [10.6,231] 198
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With increasing Ran � 1021, timescales that are several orders of magnitude smaller become
important, but nonetheless larger timescale similar to those at the onset remain relevant: While f ∗

1 ∼
10 remains quite constant f ∗

2 ∼ 102 increases, but not too much. This also occurs in differentially
heated convection with increasing Ra. Thus the study of the onset of convection is of fundamental
importance, because it reveals timescales that are found to be present even at highly supercritical
regimes. Going into more detail on the latter, by comparing f T with f vϕ we see that the flow has
larger timescales than the temperature variations. This is particularly true in the case of the zonal
flow having the smallest f 〈vϕ〉 which are very similar to the conditions corresponding to the onset.
For instance, at 1019 � Ran � 1025 timescales are f 〈vϕ〉 � 50, while at the onset they are 2π/ωc ≈
10. We recall that zonal flow timescales are important because of their observational consequences.

IV. CONVECTION IN ACCRETING NEUTRON STAR OCEANS

Before linking our results to convection occurring in accreting neutron star oceans (see the
Introduction) we should stress that we are still far from realistic modeling. In such environments
the flow is stratified, thus compressible convection should be considered. However, as argued in
[56], Boussinesq convection constitutes the very first step towards the study of convective patterns
in global domains. Some insights into the consideration of compressibility effects are provided in
[39], by means of the anelastic approximation. According to this study, the same flow regimes I, II,
and III, including the transitional regime (between I and II), are obtained with strong stratification.
Retrograde zonal flow amplitudes are decreased with respect to the Boussinesq case in regime II,
but this seems not to happen in regime I. In addition, strongly stratified flows favor the appearance
of the transitional regime and the transition to regime III is delayed.

As mentioned before, this study is focused primarily on the effect of increasing internal heating
via triple-α reactions, so the values chosen for Pr, Ta, and η are not extreme. In addition, in real
stars the fraction of helium would deplete over time as carbon and heavier elements form, while in
this study, for fixed Ran > 0, heat is generated continuously in the ocean. More realistic models,
accounting for nuclear physics as well as hydrodynamics, would require coupling the Navier-Stokes
equation, energy equation, and a nuclear reaction network, which is far outside the scope of this
initial study.

When helium is burning steadily (see [71] for details) heat generated by nuclear reactions is
balanced by radiative cooling (qcool ∝ T 4). When this balance no longer holds, a thermal instability
gives rise to a thermonuclear runaway and the associated type-I x ray burst [71]. In [71] marginal
stability curves for several accretion rates were given as a function of temperature and column
depth; these calculations indicated that unstable burning (bursting) should continue up to accretion
rates a few factors larger than the value inferred from observations. Recent studies (see [45] and the
references in the Introduction) have considered an additional source of heat at the base of the ocean,
to bring the critical accretion rate at which burning stabilizes closer to observational values. Other
studies [72], based on one-zone hydrodynamic stellar evolution models, have achieved a similar
effect by considering an inward diffusion of helium due to the influence of rotation and magnetic
fields. In contrast to these studies, in our study nuclear heating is balanced by both thermal advection
and diffusion. For the latter we are assuming constant density and thermal conductivity (Boussinesq)
and any additional sink of heat is located at the upper boundary. We are thus not taking into account
radiative processes1 but focusing on the heat convective transport on a rotating spherical shell.

There are several numerical studies (local in nature) modeling convection during bursts on
accreting neutron stars (see, for instance, [29,38]). In the former, convection is implemented using

1In stellar interiors the heat flux is also radiative (see, for instance, [73]) giving rise to a total thermal
conductivity ktot = 4acT 3/3κradρ + kcond, with a the radiation density constant, c the speed of light, κrad

the radiative opacity, and kcond the thermal conductivity of Fourier’s law of heat conduction. We have only
considered ktot = kcond in our modeling.
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mixing length theory, while in the latter the momentum equation (advectionlike) for convective
velocity is solved. These studies, i.e., [29,38], but also earlier ones [74] devoted to the study of stellar
evolution of massive stars, rely on the Schwarzschild and Ledoux criteria to compute the onset of
convection (when thermal and compositional buoyancy overcomes gravity). In the Schwarzschild
criterion an instantaneous chemical equilibrium is assumed, which favors the appearance of the
convective instability [75]. This means that the fluid can be Schwarzschild unstable but Ledoux
stable to velocity perturbations, referred to as semiconvection in previous studies [29,38,74]. These
studies (and also [44,76]) have built up the current picture of the role played by convection in
the thermal evolution of a burst. Burning is mainly localized at the base of the accreted layer where
temperature and density are higher. Because the burning timescale is much shorter than the timescale
of radiative processes, nuclear energy is more efficiently dissipated by convection. Fluid motions
spread towards the upper radiative layers of the accreted ocean until the entropy of the convective
layer balances the radiative entropy. Finally, because of the decrease of the burning rate, for instance,
due to fuel consumption in the nuclear reaction chain (see Fig. 9 of [15] or Figs. 22 and 24 of [38]),
or the mixing of fuel with other elements, convection dies away, at which point the radiative flux
starts to transfer the energy out to the photosphere. In some bursts the observed luminosity exceeds
the Eddington limit, giving rise to the phenomenon of photospheric radial expansion in which a
radiation-driven wind pushes the photosphere outward, ejecting both freshly accreted matter and
heavy-element ashes [76].

Using this picture as a guide, we can try to model the convective evolution of a burst by varying
Ran. The physical meaning of varying this parameter was described in Sec. II. Varying Ran could
be associated with a variation in the size d of the convective layer or the variation of helium
mass fraction. For simplicity, we assume the latter and try to mimic the evolutionary history of
the pure helium flash model of [38]. We note that Ra would also change during a burst; however,
because Ra is much less temperature sensitive, its variations are neglected in our model. In the early
stages of the burst we assume that Ran is subcritical and thus nuclear heat is simply transported
by conduction (qn ∼ ∇2T ). Because of accretion, Ran increases, reaching supercritical values, and
convective motions start to contribute to dissipate the heat of the layer [the advection term v · ∇T in
the energy equation (8) increases]. Notice that the advection term plays the same mathematical role
in the energy equation as the additional heating term introduced in the motionless models of [45]. A
heat flux from the bottom surface was assumed and provided better predictions of critical accretion
rates than those using the usual approach of balancing only nuclear heating with radiative cooling
[71].

Because at some point in the rising phase of the burst convection starts to recede inward [38],
some criterion to start decreasing Ran down to subcritical regimes must be assumed. Our criterion
is that the advection term becomes as large as the nuclear burning rate and cooling term in the
energy equation. That is v · ∇T ∼ qn ∼ ∇2T , which is in some sense similar to the entropy balance
assumed in [44] (when computing the radial extent of the convective layer). The model of [44]
neglects compositional changes due to convection and the advection term in the entropy equation
when deriving the thermal state of the convective layer. In our modeling, in flow regimes I and II
(see Sec. III B 2), the advection term can be neglected and our entropy equation becomes similar to
theirs.

The limit v · ∇T ∼ qn ∼ ∇2T is defined by some critical Ran at the boundary between flow
regimes II and III (see Sec. III B 2). These flows have interesting properties similar to those of
the global buoyant r modes which arise from perturbations of the tidal equations [21] and which
have been suggested as good candidates to explain the observed burst oscillations in the cooling
phase (tail) of the burst. According to [21], the buoyant r modes have low wave number, are
retrograde (propagating westward), and span a wide colatitudinal region around the equator. The
flow characteristics shown Sec. III B 3 for regime II are quite similar: strong outer retrograde
circulations near the equator with relatively strong low-wave-number azimuthal symmetry. By
departing from this type of flow and decreasing Ran, our model predicts a decrease in corotating
frame frequency (see Sec. III B 4). This agrees qualitatively with the observed drift of the frequency

123501-23



F. GARCIA, F. R. N. CHAMBERS, AND A. L. WATTS

TABLE V. Estimated physical properties of a pure helium ocean from [13,77,78] (see also [56]).

d (cm) ro (cm) � (s−1) g (cm s−2)
102 106 103 1014

γ (s−2) ν (cm2 s−1) κ (cm2 s−1) α (K−1)
108 100 104 10−7

Cp (cm2 s−2 K−1) �T (K) To (K) ρ (g cm−3)
109 2 × 108 108 107

of burst oscillations. The convergence of burst oscillation frequency towards a value close to the
neutron spin frequency [13] seen in the tail of many bursts might be explained by the fact that as
very low Ran is reached, convection is no longer influenced by burning but is instead differentially
heated, so the limit frequency corresponds to that estimated for differentially heated systems [56].

In the study in [16] of the regimes for the spreading of a nuclear burning front, lateral shear
convection was driven by inhomogeneous radial expansion and rotation was taken into account.
The authors of [16] conjectured that inhomogeneous cooling (from the equator to the poles) might
drive strong zonal currents that could be responsible for burst oscillations. The regimes described in
[16] agree qualitatively quite well with our results for flow regime II. Convection takes the form of
strong lateral shear retrograde zonal flows and inhomogeneous cooling is present.

Here we are trying to simulate the progress of convection during a type I x-ray burst by
changing the value Ran. Helium burning due to accretion is modeled with an increase of Ran, while
this parameter is strongly lowered when a thermonuclear runaway develops. This means that our
convective models saturate (reach the statistically steady state) faster than the rate of change we are
assuming for Ran. In other words, flow saturation timescales should be significantly shorter than
the timescales associated with accretion processes and the time to reach peak luminosity (seen in
the x-ray light curves) after helium has ignited. Because the arguments above are quite speculative
and our model does not incorporate much of the relevant physics that occurs in accreting neutron
star oceans, we are quite far from a realistic application of the results. However, some qualitative
behavior is reproduced, motivating more in-depth research.

Some predictions for the dimensionless modeling parameters and flow properties of an accreting
neutron star ocean are provided in the following. Estimates for the physical properties of a pure
helium ocean (see Table V) give rise to Pr = 10−4, Ta = 1014, and 1 − η = 10−4 (see also [56]).
The estimated Rayleigh numbers Ra and Ran and the estimated exponent Bn in the triple-α heat
source are listed in Table VI for ρ = 107 g cm−3. The density corresponds to column depth
y = p/g = 109 g cm−2 shown in Fig. 1 of [71], which displays the helium ignition conditions
(temperature and column deep) for several accretion rates on a typical neutron star. The estimated
Ra ∼ 1013 is strongly supercritical. At Pr = 10−4, Ta = 1012, and 1 − η = 10−1, the parameters
closest to the values estimated for neutron stars currently reached in the linear stability analysis of
[56], the critical Ra for the onset of convection is of order 103. Then the influence of temperature
gradients (imposed between the boundaries) on the flow dynamics becomes quite strong and very
large Ran (i.e., triple-α heat sources) will be needed to have convection driven effectively by burning
and to reach flow regime III, from which the thermonuclear runaway transfers the energy to the
photosphere. According to Table VI, larger Ran seems to be likely, with Ran > 1077 (in part because
of the large prefactor 1045 in its definition), but it is not clear if the transition between regimes II and

TABLE VI. Some estimations for a helium accreting neutron star ocean.

ρ (g cm−3) y (g cm−2) Ra Ran Bn T2 (K) U ∗ (m s−1)

107 109 4 × 1013 9 × 1077 9 × 1018 2 × 108 7 × 101
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III will persist and further research is required. Our preliminary numerical explorations (not shown
in this study) have revealed that the onset of burning convection (Rac

n) depends on the imposed
temperature gradients, i.e., on Ra, particularly if they are supercritical. Hence the critical Ratran

n for
the transition between flow regimes II and III may also depend on Ra. The numerical estimation of
this dependence Ratran

n (Ra) and that of Rac
n(Ra) is then relevant for the knowledge of flow regimes

(such as those described in our study) that may occur in accreting neutron star oceans.
With the estimations for the parameters given in Table VI, the characteristic temperature T ∗ and

velocity U ∗ can be estimated assuming the power laws T2 = 1.95Ra0.223
n and K = 50 Ra1/8

n derived
in the preceding section for the time averages of the temperature near the equator in the middle of
the shell and the volume-averaged kinetic energy density, specifically T ∗ = ν2γ −1α−1d−4T2 K and
U ∗ = νd−1

√
2K cm s−1. Their estimated values are reasonable when compared with the neutron

star scenario in Fig. 1 of [71]. Our estimated value T ∗ = 2 × 108 K at y = 109 g cm−2 lies in the
region in which the ocean is thermally unstable. Although flow velocities are large, U ∗ = 70 m s−1,
this is still well below the sound speed for a neutron star ocean [79]. Our simulations suggest that
zonal motions in the case of developed burning convection would be smaller than this.

V. SUMMARY

This paper has carefully investigated several flow regimes of Boussinesq convection in rotating
spherical shells, driven by a temperature-dependent internal heating source. This constitutes a
step in the understanding of convection driven by triple-α nuclear reactions occurring in rotating
stellar oceans. Stress-free boundary conditions are imposed and the parameters (η = 0.6, Ta =
2 × 105, and Pr = 1) have been chosen since they are numerically reasonable. They are similar,
allowing comparisons, to those of several previous studies [39] of convection driven by an imposed
temperature gradient used to model planetary atmospheres. The three-dimensional simulations
presented here, which have neither symmetry constraints nor numerical hyperdiffusivities, provide
numerical evidence for a notable similarity between planetary atmospheric flows and those believed
to occur in rapidly rotating stellar oceans, which are driven by different heating mechanisms.

For small rates of internal (nuclear-burning) heat sources (modeled by a dimensionless parameter
Ran), a spherically symmetric conductive state is stable. Its radial dependence differs strongly from
the differentially heated basic state. By increasing Ran, convection can be driven even with negative
imposed temperature gradients. In contrast to the well-known thermal Rossby waves (spiraling
columnar) preferred at moderate Prandtl numbers [56,59] with differential heating, the onset of
burning convection takes place in the form of waves attached to the outer boundary in the equatorial
region. These waves are equatorially symmetric, with a very weak z dependence. The frequencies
do not change substantially, nor do azimuthal wave numbers, when compared with the differentially
heated case.

By increasing Ran beyond a very large critical value Ran ∼ 1017, a sequence of transitions
leading to turbulence is observed. This sequence takes place in a fashion quite similar to the way
that differentially heated convection changes when the usual Rayleigh number is increased [2]. First
traveling-wave solutions, periodic in time, are obtained. Subsequent bifurcations lead to oscillatory
convection in which the axisymmetric (zonal) component of the flow is enhanced and large-scale
motions (low mean azimuthal wave number) are favored. By increasing Ran further, the equatorial
symmetry of the solutions is broken, leading to nearly poloidal flows where the zonal motions
become less relevant.

The three different regimes of [39] have been identified. In the first regime, corresponding to
oscillatory solutions, the zonal component of the flow (positive near the outer and negative near
the inner boundaries) grows rapidly and Coriolis forces are still important in helping to maintain
the equatorial symmetry of the flow. A second regime corresponds to solutions which have the
maximum zonal component. These solutions are characterized by large-scale convective cells and
the volume-averaged kinetic energy grows as K ∼ Ra1/2

n . In this regime inertial forces start to
become relevant with respect to Coriolis and viscous forces. The spatial structure of the zonal flow
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is reversed, becoming negative near the outer boundary and positive near the inner. In addition,
equatorial symmetry of the nonaxisymmetric flow is clearly broken, but not in the case of the
axisymmetric (zonal) flow. A third regime, obtained for the largest Ran, was also explored. In this
regime the scaling K ∼ Ra1/8

n is valid and the balance is between inertial and viscous forces, with
the Coriolis force playing a secondary role. The zonal flow starts to slowly lose equatorial symmetry
and remains roughly constant. Our results point to a fourth regime. This would correspond to
fully isotropic turbulence characterized by nearly equal equatorially symmetric and antisymmetric
components of the zonal flow (Ks

a/Ka ≈ 0.5).
Large timescales (small corotating frequencies), reminiscent of those at the onset of burning

convection, still prevail at the largest Ran explored, coexisting with faster timescales. This also
seems to happen when convection is driven only by differential heating [54]. In this case timescales
from the onset of convection have been revealed as quite robust to supercritical changes in Ra
and Ran. This gives us some more confidence in, and motivates further study of, the estimates of
timescales of several astrophysical scenarios provided in [56] from the linear stability analysis of
differentially heated convection.

We have also considered how our results may help our understanding of the role played by
convection in the evolution of type-I x-ray bursts on accreting neutron stars. We have described the
limitations of our type of modeling and explored a scenario that suggests interesting consequences.
Following previous studies, e.g., [38], we modeled the early convective phases of a burst by
an increase of Ran. As the burst evolves, convective patterns corresponding to larger Ran are
successively preferred. When convective heat transport becomes of the same order of nuclear
heating and dissipative cooling, i.e., at the boundary between flow regimes II and III, we assume
energy is transferred out to the photosphere and start to decrease Ran as would occur as helium
is exhausted. At this point the flow patterns have small wave number, are retrograde (propagating
westward), and span a wide colatitudinal region around the equator. These characteristics, which
are also exhibited by buoyant r modes [21], have led to these modes being suggested as a possible
mechanism for burst oscillations. By decreasing Ran, our quite different model also predicts a
decrease of corotating frame frequencies, in agreement with the observed drift of the frequency of
burst oscillations. Finally, on the basis of standard estimations of physical properties of an accreting
neutron star ocean, some reasonable predictions of temperature and velocities are provided.

Further research should include a comparison of our results for temperature-dependent internal
heating (Ran) with a model considering uniform internal heating (Rai), both with an imposed
temperature gradient (Rae) at the boundaries. Our preliminary explorations show that the onset
of convection is very similar when one removes the temperature dependence of the internal heating.
However, one should also investigate the question of whether the temperature dependence is relevant
when convection is fully developed. Finally, as argued above, the determination of the transition (at
certain critical internal heating) between flow regimes II and III for stronger externally enforced
temperature gradients will help to shed light on fluid flow regimes more relevant to neutron star
oceans.
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