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Steady two-dimensional free-surface flow over semi-infinite and finite-length
corrugations in an open channel
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Free-surface flow past a semi-infinite or a finite-length corrugation in an otherwise
flat and horizontal open channel is considered. Numerical solutions for the steady flow
problem are computed using both a weakly nonlinear and fully nonlinear model. The new
solutions are classified in terms of a depth-based Froude number and the four classical
flow types (supercritical, subcritical, generalized hydraulic rise, and hydraulic rise) for flow
over a small bump. While there is no hydraulic fall solution for semi-infinite topography,
we provide strong numerical evidence that such a solution does exist in the case of a
finite-length corrugation. Numerical solutions are also found for the other flow types for
either semi-infinite or finite-length corrugation. For subcritical flow over a semi-infinite
corrugation, the free-surface profile is found to be quasiperiodic downstream.

DOI: 10.1103/PhysRevFluids.3.114804

I. INTRODUCTION

Corrugated topography naturally arises in the flow of water over erodible beds in tidal estuaries,
beaches, streams, and rivers [1–6]. Such flows have been studied experimentally using engineered
corrugated topographies in rectangular open channels [7–11]. An important finding was that
including a corrugation over part of the channel can provoke a hydraulic rise, which assists in
slowing down the stream velocity and also enhances energy dissipation. Both of these outcomes
may be advantageous in applications where it is desired to protect hydraulic infrastructures such
as weirs, spillways, and gates [7–11]. Flow past corrugated topography is therefore an important
problem for study.

In this work we investigate steady potential flow past semi-infinite and finite-length corrugations
with a particular focus on computing the shape of the free surface. This extends the work of Binder
et al. [12], who determined the free-surface response in the case of an infinite corrugation. We
assume that there is uniform flow far upstream where the topography becomes flat (see Fig. 1).
Under these conditions the radiation condition is satisfied, and the flow can be characterized by the
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FIG. 1. Sketch of semi-infinite corrugation flow problem. The flow is from left to right with uniform flow
as x → −∞.

upstream depth-based Froude number

F = U√
gH

, (1)

where U and H are the constant velocity and depth far upstream, respectively, and g is the
acceleration due to gravity. We work assuming that quantities have been made dimensionless using
H as the length scale and U as the velocity scale. The location of the free surface is given by
y = 1 + η(x), where η is the elevation of the free surface above the constant unit depth far upstream,
and the topography is denoted by y = σ (x).

Both weakly nonlinear and fully nonlinear solutions to the problem are classified using the
Froude number, F , and the qualitative flow features far downstream as x → ∞. Specifically, to
classify our results we generalize the descriptions for the classical problem of flow over a small
bump for which there are four basic flow types for F �= 1 (see Fig. 2). For the semi-infinite
topography depicted in Fig. 1 the free surface is not expected to be flat downstream even in the
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Generalized hydraulic and hydraulic rise

FIG. 2. Sketch of the four basic flow types for flow over a bump. (a) Supercritical flow. The solutions are
nonunique with two types of solution for a given value of F > 1 and a given bump. The solution with the
largest value of η is called a perturbation of a solitary wave. The other solution is referred to as a perturbation
of a uniform stream. (b) Subcritical flow. The solution is unique for a given value of F < 1 and a given bump.
(c) Generalized hydraulic rise (solid curve). There is an infinite number of solutions for a given value of F > 1
and a given bump. Hydraulic rise (broken curve). There is a unique solution for a given bump; the Froude
number, F > 1, cannot be chosen independently and comes as part of the solution.
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case of supercritical flow. Nevertheless it will be helpful to attribute to it a characteristic elevation;
for example, if the solution approaches a periodic state far downstream, this might be taken to be
the average value of η over one wavelength. The four flow types used to categorize our results are
described as follows.

(1) Supercritical flow with F > 1 and a characteristic free-surface elevation of η = 0 as x → ∞
[13,14].

(2) Subcritical flow with F < 1 and a characteristic free-surface elevation of η = 0 as x → ∞
[15,16].

(3) Generalized hydraulic rise with F > 1 and a characteristic free-surface elevation of η > 0
as x → ∞ [17].

(4) Hydraulic rise with F > 1, and uniform flow with a characteristic free-surface elevation of
η > 0 as x → ∞ [14,18].

Note that because of the reversibility of the flow types 3 and 4 may also be interpreted as
hydraulic falls [19,20]. We calculate steady solutions corresponding to flow types 1–3 for both semi-
infinite and finite-length corrugation, but are able to find solutions only of type 4 for finite-length
corrugation.

II. FORMULATION

We consider the steady, two-dimensional, irrotational, inviscid, and incompressible fluid flow
over both semi-infinite and finite-length corrugated topography. The semi-infinite corrugated
topography is given by

σ (x) = ε

2
cos(kx)[1 + tanh(λx)], (2)

where ε and k correspond to the amplitude and wave number of the corrugation, and λ is a constant.
The finite-length corrugation is taken to be of the form

σ (x) = ε

2
cos(kx){tanh[λ(x + γ )] − tanh[λ(x − γ )]}, (3)

where γ is a measure of the length of the corrugation. The boundary conditions far upstream for the
semi-infinite and finite-length corrugation are

η → 0 and ηx → 0 as x → −∞. (4)

Further details on the boundary conditions will be given in Sec. IV.
Written in terms of the velocity potential φ, the fully nonlinear problem is to solve Laplace’s

equation

∇2φ = 0 in −∞ < x < ∞, σ (x) < y < 1 + η(x), (5)

subject to the dynamic and kinematic boundary conditions on the free surface,

1
2 |∇φ|2 + 1

F 2 y = 1
2 + 1

F 2

ηxφx = φy

}
on y = 1 + η(x), (6)

along with the no-penetration condition on the bottom,

σxφx = φy on y = σ (x), (7)

and the far-field conditions (4) together with φ → x as x → −∞.
In the limit of small-amplitude waves Refs. [21–25] showed that the fully nonlinear problem

(5)–(7) reduces to the forced Korteweg-de Vries equation (fKdV),

ηxx + 9
2η2 − 6(F − 1)η = −3σ (x). (8)
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The advantage of using this model equation over the full system is that a much more expansive
exploration of the possible solution space is practical within a reasonable computational time frame.
For the most part we present solutions obtained by solving the fKdV equation numerically using
finite differences and Newton iterations. These weakly nonlinear results are complemented by a few
fully nonlinear calculations for comparison. The fully nonlinear computations are done numerically
using the boundary integral method of Refs. [26,27] and others. With this method the dimensionless
quantities are given parametrically in terms of φ. As long as the amplitude of the corrugation is not
too large, as will be assumed here, the flow is close to a uniform stream and so φ ≈ x. In this case
it is more convenient to prescribe σ as a function of φ instead of x. It has been found that doing this
makes a minimal difference to the results [28].

III. LINEARIZED ANALYSIS

It is illuminating to consider the solutions of the fKdV equation when the amplitude of the
topography is small. Working on this basis we assume that ε � 1 and seek a solution to (8) in
the form η(x) = εN (x), where N = O(1). Substituting into (8) and taking the limit as ε tends to
zero, we obtain the linearized form

ηxx ± μ2η = −3σ (x), (9)

where we have written F = 1 ± μ2/6 for constant μ, and where the ± sign refers to sub- or
supercritical flow, respectively. We focus on the case of a semi-infinite corrugation, and for the
sake of the present analysis we take in place of (2)

σ (x) = εH (x) cos(kx). (10)

For subcritical flow the solution to (9) which satisfies condition (4) is

η = − 3ε

(μ2 − k2)
[cos(kx) − cos(μx)] if x > 0; η = 0 if x � 0. (11)

Evidently for a bounded solution we must insist that μ �= k so that there is no resonance between
the wall forcing frequency, k, and the natural frequency of the linearized system, μ. For supercritical
flow the solution to (9) which satisfies η → 0 as x → −∞, and which is bounded as x → ∞, is

η = 3ε

k2 + μ2

[
cos(kx) − 1

2
e−μx

]
if x > 0; η = 3ε

2(k2 + μ2)
eμx if x � 0. (12)

As x → ∞ this matches to the small amplitude periodic solution obtained for an infinite sinusoidal
corrugation by Ref. [12]. The comparison between the linearized and weakly nonlinear results will
be examined in the next section.

IV. NUMERICAL RESULTS

The manner in which the boundary conditions are imposed in our numerical schemes for both
the fKdV equation (8) and the fully nonlinear system (5)–(7) differs between the subcritical flow
case and the supercritical flow case. In either case we must truncate the domain. For subcritical flow
we set η = ηx = 0 at the upstream truncation point. This ensures that no small amplitude cnoidal
waves are picked up upstream and the surface profile tends to be flat. We then solve as an initial value
problem, integrating (8) forwards in x from the upstream truncation point. For supercritical flow,
we set η = 0 at the upstream truncation point. As we require that η remains bounded as x → ∞
we truncate the problem on a domain sufficiently wide and demand that the free surface reaches a
local maximum at the downstream truncation point, which itself is found as part of the solution. In
practice by taking the downstream truncation point at a sufficiently large value of x we find that the
local maximum on the free surface almost coincides with a local maximum on the topography in
line with the linearized solution (12).
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FIG. 3. The solid curves are weakly nonlinear solutions for supercritical flow with F = 1.10, ε = 0.1,
k = 3, and λ = 1. (a)-(e) Semi-infinite corrugation. (f) Finite-length corrugation, γ = 50. The dotted curve in
panel (a) is the linearized solution (12).

We compute both weakly nonlinear and fully nonlinear solutions for flow past semi-infinite and
finite-length corrugations. Only the response of the free surface is shown in the following profiles,
with a point of transition from a corrugated section to a flat section of the topography indicated by
a vertical broken line. By necessity the surface profiles are shown on a scale where the oscillations
appear to be high frequency but in fact are slowly varying, and this should be borne in mind
when interpreting the figures. The solutions are classified using the flow types 1–4. We begin our
discussion with flow type 1, or supercritical flow.

A. Supercritical flow

Figure 3(a) shows a weakly nonlinear solution for the semi-infinite corrugation (solid curve)
with the linearized approximation (12) superimposed (dotted curve). As ε decreases the agreement
between the two solutions improves. This solution can be viewed as a perturbation of a uniform
stream since, if we were to incrementally reduce ε, the free surface profile would continuously
approach that for a uniform flow, i.e., it would become flat. In contrast, the solution shown in
Fig. 3(b) we classify as a perturbation of a solitary wave because in this case as ε is incrementally
reduced to zero we recover an unforced solitary wave. The perturbation of a solitary wave solution
is not unique; indeed, in Figs. 3(b)–3(e) the solitary wave part of the profile is located in different
places, and, moreover, in Fig. 3(e) there is more than one solitary wave part. These results are
broadly similar to those found by Binder et al. [12] for an infinite corrugation, and the nonuniqueness
can be explained as follows. For flat topography there are an uncountable number of solitary waves
which can be obtained by taking arbitrary shifts, xs , of the well-known free solitary wave solution

η(x) = 2(F − 1) sech2

[√
3(F − 1)

2
(x − xs )

]
. (13)
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FIG. 4. Fully nonlinear solutions for supercritical flow over finite-length corrugation with F = 1.10, ε =
0.1 k = 3, λ = 1, and γ = 10.

For corrugated topography the nonautonomous theory of Balasuriya et al. [29] can be adapted to
characterise the solitary waves. As shown in Binder et al. [12], there are exactly two possible types
of solitary waves on the corrugated portion of the topography: (1) those centered around crests
and (2) those centered around troughs of the topography. Solitary waves within each of these two
families are simple shifts of each other by multiples of kπ , and therefore there are only a countable
number of such solitary wave solutions.

In practice we use the form given in (13) as an initial guess in the computations. Figures 3(b)–3(d)
show typical one-humped solitary wave solutions for increasing values of xs . Furthermore, multiple-
humped solitary wave solutions can be obtained in both the case of semi-infinite and finite-length
topography by taking a linear combination of the form given in (13) with different values of xs as
the initial guess in the numerical computations [e.g., see Figs. 3(e) and 3(f)]. Similar results are
found in the fully nonlinear problem (e.g., see Keeler [30]). A sample case is shown in Fig. 4.

It is worth contrasting these results with those found for a bump sketched in Fig. 2(a), where the
solitary wave part of the solution is located immediately above the bump.

B. Subcritical flow

Our findings indicate that for a fixed set of parameter values the solutions for subcritical flow are
unique. This is in line with what is found for a bump in Fig. 2(b).

In the case of a semi-infinite corrugation, for fixed Froude number and corrugation amplitude, the
effect of decreasing the wavelength of the corrugation is examined for the weakly nonlinear model
in Figs. 5(a)–5(d). The dotted curve in Fig. 5(a) is the linearized approximation (11). In general
there are irregular waves on the downstream free surface which become more regular as the value
of k is increased (in fact, all of the solutions become quasiperiodic downstream as will be discussed

FIG. 5. The solid curves are weakly nonlinear solutions for subcritical flow with F = 0.90, ε = 0.05, and
λ = 1. (a)–(d) Semi-infinite corrugation with (a) k = 2, (b) k = 3, (c) k = 5, (d) k = 7. The dotted curve in
panel (a) is the linearized solution (11).
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FIG. 6. Subcritical flow solutions for a semi-infinite corrugation. Comparison between weakly (a), (c) and
fully nonlinear (b), (d) results for F = 0.90, ε = 0.005, λ = 10. (a, b) k = 0.2; (c, d) k = 0.1.

below). The same qualitative behavior is found for the fully nonlinear problem, as is illustrated
in Fig. 6. This is different from what is found for a bump where only regular, periodic waves are
observed downstream on the free surface.

To further examine these features in the weakly nonlinear problem for a semi-infinite corrugation,
we reformulate Eq. (8) as the first-order system

(η, ηx )x = (ηx,−3σ − (9/2)η2 + 6(F − 1)η), (14)

and integrate numerically backwards in x starting from the condition (η, ηx ) = (0, 0). The numer-
ical integration is done using the fourth order Runge-Kutta method with a fixed step length. As
diagnostic tools, in addition to the wave profile we also plotted Poincaré sections in the (η, ηx )
plane by strobing every 2π/k units in x up to a large and negative value (typically −104), as well
as constructing power spectra for the wave profiles.

The power spectra exhibit peaks at the forcing frequency k and at the natural frequency
of the unforced system

√
6(1 − F ). In general these two frequencies are incommensurate, and,

consequently, we expect the solutions to be quasiperiodic. This is supported by the computed
Poincaré sections. For example, the Poincaré sections associated with the wave profiles in Figs. 6(a)
and 6(c) are found to resemble closed loops, a classic hallmark of a quasiperiodic state (see, for
example, Strogatz [31]). The strong resemblance between the weakly nonlinear results and the fully
nonlinear results in Fig. 6 suggests that the fully nonlinear solutions will also be quasiperiodic
downstream.

Figure 7 shows exemplar weakly nonlinear results for a finite-length corrugation. An irregular
packet of waves is trapped over the topography. For a general value of the corrugation length γ the

FIG. 7. Weakly nonlinear solutions for subcritical flow over a finite-length corrugation with k = 3 for
F = 0.90, ε = 0.05, and λ = 1. (a) γ = 8, (b) γ = 8.42.
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z

FIG. 8. Generalized hydraulic and hydraulic rise with F = 1.10, ε = 0.1, and k = 3. (a) Weakly nonlinear
generalized hydraulic rise over a semi-infinite corrugation with λ = 10. (b) Fully nonlinear generalized
hydraulic rise over a semi-infinite corrugation with λ = 1. (c) Weakly nonlinear generalized hydraulic rise over
a finite-length corrugation with γ = 10 and λ = 10. (d) Weakly nonlinear hydraulic rise over a finite-length
corrugation, γ = 10 and λ = 10.

downstream profile (over the flat part of the topography) is regular and periodic, as can be seen, for
example, in Fig. 7(a). However, for a discrete set of γ values (which can be found by trial and error)
the downstream surface is flat. One example is shown in Fig. 7(b). Similar results, but with regular
trapped waves, are seen for flows over multiple bumps [20,32] and in electrified flows [33].

C. Hydraulic rise and generalized hydraulic rise

For a semi-infinite topography the free surface cannot be flat downstream, and so flow type 4,
namely, a hydraulic rise, is not possible. Indeed, it seems reasonable to suppose that there exist
minimum and maximum downstream free surface wave amplitudes which can be attained on a
given corrugation. In Figs. 8(a) and 8(b) we present generalized hydraulic rises (flow type 3) for
the weakly nonlinear and fully nonlinear models. It is important to emphasize that for a given
corrugation (fixed k, ε) and for a fixed Froude number, F , there is an infinite family of generalized
hydraulic rise solutions, each with a different wave profile. This is similar to the case of flow over a
bump [17] apart from the important distinction that it is possible to have a hydraulic rise for a bump.

For a finite-length corrugation both generalized hydraulic and hydraulic rises are possible. A
generalized hydraulic rise is shown in Fig. 8(c). In contrast to the case of a semi-infinite corrugation,
the downstream wave train is regular and periodic. By demanding that the free surface is flat
downstream, it is possible to obtain a hydraulic rise. An example is shown in Fig. 8(d).

D. Hybrid solutions

Solutions of the different flow types can be combined to construct new solutions, which are
referred to as hybrid solutions [32,34]. These match two or more different flow types 1–4 in the
same flow. In Fig. 9(a) we show a matching between flow types 1 and 3 (viewed as a whole, the
flow is overall of type 3). Figure 9(b) matches a flow of type 1 and a flow of type 4 (globally the
flow is of type 4). In both Figs. 9(c) and 9(d) there is a matching between flow type 3, a generalized
hydraulic fall, and a generalized hydraulic rise, which can be viewed as a flow type 3 with a reversal
of the flow direction (viewed globally, this flow is of type 1). The profiles in Figs. 9(c) and 9(d)
are also referred to as table-top solitons (for this terminology see, for example, Ref. [35], which
considered flow over two bumps).
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FIG. 9. Hybrid solutions on a finite-length corrugation with F = 1.10, ε = 0.1, k = 3, and λ = 10. (a)–(c)
Weakly nonlinear solutions with (a) a match between flow types 1 and 3 for γ = 20 (globally the flow is
type 3), (b) a match types 1 and 4 for γ = 20 (globally the flow is type 4), and (c) a match between a type
3 generalized hydraulic rise and a type 3 generalized hydraulic fall for γ = 20 (globally the flow is type 1).
(d) Fully nonlinear solution for γ = 8, λ = 1 showing a type 3-type 3 match as in panel (c).

V. DISCUSSION

We have examined steady free-surface flow over corrugated topography with a particular
emphasis on semi-infinite and finite-length corrugations. We have categorized our solutions into
four basic flow types 1–4 and have compared the results with the case of flow over a bump. We have
also found hybrid solutions which are combinations of these flow types. Our main results are, first,
that it is possible to compute type 1–3 solutions for both semi-infinite and finite-length corrugations,
but type 4 solutions are possible only for corrugations of finite length, and, second, that in general
subcritical flow over semi-infinite topography will pick up a quasiperiodic solution downstream and
not one of the periodic solutions found in Ref. [12]. Last, for supercritical flow over a corrugated
topography there is one solution which can be viewed as a perturbation of a uniform stream but
an infinite number of solutions which can be categorized as perturbations of a solitary wave. In
contrast, for flow over a bump it is well established that there is only one solution in each case.

Although we have focused on the basic flow types 1–4, there is also the case of critical flow
for which F �= 1. Typically these flows are intrinsically unsteady and are sometimes referred to
as transcritical flows [36–38]. However, in recent work, the present authors have demonstrated
that steady flows over topography are possible under certain constraints and, moreover, they can
be stable [39]. Binder et al. [40] considered the case of a finite-length corrugation for critical
flow, F = 1, using an inverse method. For an infinite (or semi-infinite) sinusoidal corrugation, it is
straightforward to show that steady weakly nonlinear solutions are not possible under critical flow
conditions. Setting F = 1 and taking σ = cos(kx) in (8), we have ηxx + (9/2)η2 = −3 cos(kx).
Integrating this equation over one period of the topography we obtain

A + 9

2

∫ 2π/k

0
η2 dx = 0, (15)

where A = ηx (2π/k) − ηx (0). This forces A < 0 and therefore ηx must decrease monotonically in
steps of one period of the topography; hence ηx → −∞ as x → ∞ and a bounded solution is not
possible. Given this failure for the weakly nonlinear model, it seems unlikely that steady solutions
at F = 1 exist for the fully nonlinear problem.

The hydraulic rise solutions we have computed may have practical relevance to hydraulic
infrastructures, for example, in dams and sluice gates as was discussed in the Introduction. Of
particular practical interest in these applications is the jump length and tailwater depth and how
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to reduce these. In such applications there may be a region of turbulent water across the jump,
with a concomitant dissipation of energy [7–11]. Nevertheless, it is important to emphasize that
we have shown that steady solutions do exist with a smooth, nonturbulent transition from one level
to another. The issue of the stability of our solutions is an open question and is the subject of our
ongoing investigations.
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