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Nonlinear harmonic generation by internal waves in a density staircase
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Recent work has explored linear internal wave transmission and reflection across a
density staircase. Here, weakly nonlinear theory is used to extend previous linear internal
wave solutions to include nonlinear effects at density interfaces within the staircase.
Near-resonant forcing of freely propagating modes of the staircase by weakly nonlinear
incident internal waves is shown to occur for some wavelength-frequency combinations. In
some cases, this results in the staircase radiating double-frequency, double-wave-number
harmonic waves. In others, incident waves excite one or more interfacial waves which
propagate along the density interfaces within the staircase. This nonlinear effect is expected
to be significant for internal waves of realistic amplitude incident on oceanic thermohaline
staircases.
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I. INTRODUCTION

Double-diffusive convection in the oceans can lead to the formation of a thermohaline staircase
(also called double-diffusive layering) if cool fresh water lies over warmer saltier water [1–3].
The necessary conditions for staircase formation are commonly found in polar oceans [2] and
observations have been reported in the Arctic [4–7] and Antarctic [8,9]. These observations indicate
that the staircases typically consist of layers of well-mixed water a few meters thick but kilometers
wide, separated by sharp density jumps. The layers are typically found at depths between ∼100
and ∼400 m in waters with a mean buoyancy frequency of a few cycles per hour. Staircases have
also been observed in the Black Sea [10], the Mediterranean Sea [11], the tropical Atlantic Ocean
[12–14], and the Red Sea [15].

In the Arctic, internal waves may play an important role in ocean dynamics [16]. Decreasing ice
cover may increase internal wave activity, resulting in renewed interest in the interaction of internal
waves with the thermohaline staircase. Theoretical and laboratory studies have shown that linear
internal wave transmission through a staircase is strongly affected by constructive and destructive
interference within the layers, resulting in transmission peaks [17,18].

In astrophysics, a similar double-diffusive layering phenomenon occurs in the interior of stars
and gas giant planets, where it is known as semiconvection [19]. In this context, recent studies have
explored the modes of a density staircase surrounded by convecting fluid [20] and have extended
the calculation of [18] to include the full Coriolis effect on internal wave transmission through a
staircase [21].

Recent work has shown that internal waves passing through a sharp density jump, as occurs at
staircase layer boundaries, generate double-frequency and double-wave-number harmonics. This
effect has been demonstrated in both the laboratory [22–24] and numerical simulations [25–27].
The harmonic was shown theoretically to arise due to self-interaction of the internal wave in
regions where the density gradient is changing [27,28] and is a special case of resonant triads in
nonuniform stratifications [29]. For incident internal wave frequencies exceeding half the far-field
buoyancy frequency, the harmonic takes the form of an interfacial wave propagating horizontally
along the density interface. Since the mixed-layer boundaries of the thermohaline staircase have
sharp changes in the density gradient, nonlinear harmonic generation is expected to occur there.
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In the thermohaline staircase, the possibility of energy transfer from incident internal waves to
interfacial waves has been suggested as a possibility based on the dispersion relation [17]. Here,
weakly nonlinear theory, analogous to that of [27,30], is used to extend the previous linear internal
wave solution of [18] for a density staircase to include nonlinear harmonic generation at the density
jumps. This leads to a weakly nonlinear theory for interfacial waves generated from incident waves
as conjectured in [17]. It also describes radiated harmonic waves generated by incident waves with
frequencies less than half the far-field buoyancy frequency.

The theoretical background for harmonic generation is presented in Sec. II, followed by the linear
and weakly nonlinear solutions for the staircase density profile in Sec. III. The linear solution is a
generalization of that of [18] but reduces to it in the appropriate limit. Results and implications for
oceanic thermohaline staircases are presented in Secs. IV and V, respectively.

II. WEAKLY NONLINEAR THEORY

Using a standard theoretical framework for a Boussinesq fluid with buoyancy frequency N (z) and
rotation frequency f , the weakly nonlinear solution is constructed in terms of the stream function
ψ (x, z, t ) (u ≡ ∂zψ and w ≡ −∂xψ). Fully three-dimensional effects are neglected, so there are no
gradients in the y direction, but the y component of velocity v is nonzero due to rotation. Using the
standard approximation for rotational effects (neglecting the horizontal component of the Coriolis
acceleration), the governing equations are

∂2
t ∇2ψ + N2∂2

xψ + f 2∂2
z ψ = −∂tJ (∇2ψ,ψ ) − g

ρ0
∂xJ (ρ,ψ ) − f ∂zJ (v,ψ ), (1)

∂tρ + J (ρ,ψ ) + ρ

g
N2∂xψ = 0, (2)

∂tv + J (v,ψ ) + f ∂zψ = 0, (3)

where ∇2 ≡ ∂2
x + ∂2

z and the Jacobian is J (a, b) ≡ (∂xa)(∂zb) − (∂xb)(∂za), as given by [29,31].
The mean fluid density is ρ0, and ρ is the density change due to the velocity field. Gravity is aligned
with the vertical (z) axis. Viscosity and diffusion are neglected. If the Jacobian terms are neglected,
these equations reduce to the standard linear equations solved for a density staircase by [18].

Following the approach of [30], weakly nonlinear theory is used to calculated the perturbation to
a single plane internal wave due to the variations in buoyancy frequency. The solution is decomposed
into a linear solution ψ0, with frequency ω and horizontal wave number k, and a (smaller amplitude)
perturbation δψ , as

ψ (x, z, t ) = [ψ0(z)ei(kx−ωt ) + c.c.] + δψ (x, z, t ), (4)

where ψ and δψ are real, ψ0 is complex, and c.c. denotes complex conjugate. The density ρ and
velocity component v are similarly decomposed. Inserting Eq. (4) into Eq. (1), the primary solution
obeys the standard linear equation

∂2
z ψ0 + k2 N2 − ω2

ω2 − f 2
ψ0 = 0. (5)

As shown in [30], the perturbation δψ obeys

∂2
t ∇2δψ + N2∂2

x δψ + f 2∂2
z δψ = −k3

ω

4ω2 − f 2

ω2 − f 2
(∂zN

2)
[
ψ2

0 e2i(kx−ωt ) + c.c.
]

+ 2f 2k3

ω(ω2 − f 2)
[2(N2 − ω2)∂z|ψ0|2 − (∂zN

2)|ψ0|2] (6)

to lowest order in ψ0. In uniform stratification (∂zN
2 = 0), there is no forcing for δψ (note

that ∂z|ψ0| = 0 for a plane wave in this case) and the primary wave is an exact solution [32].
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Equation (6) shows that any internal wave refracting in vertically varying stratification (nonzero
∂zN

2), such as a density staircase, generates harmonics. These may be bound harmonics of the
incident wave or freely propagating waves. Mathematically, Eq. (6) is analogous to a system of
forced simple harmonic oscillators with forcing frequency 2ω and wave number 2k.

The focus here will be on the steady-state forced (or bound) harmonic solution of Eq. (6). The
steady-state bound harmonic solution is found by substituting δψ = δψs (z) exp[2i(kx − ωt )] + c.c.
into Eq. (6):

∂2
z δψs + (2k)2 N2 − (2ω)2

(2ω)2 − f 2
δψs = k3

ω

∂zN
2

(ω2 − f 2)
ψ2

0 . (7)

Solutions to Eqs. (5) and (7) will be calculated for a density staircase in Sec. III. Such solutions could
be realized if a distant source generates the linear solution ψ0 for a long period of time, allowing the
steady-state harmonic solution within the staircase to emerge from any initial transients. It is also
assumed that the linear solution amplitude is small enough that higher-order nonlinear effects can
be neglected. The amplitude of the steady-state harmonic depends on the proximity of the forcing
frequency and wave number (double the incident wave values) to the freely propagating internal
wave solutions of the staircase. Incident waves whose harmonic forcing is sufficiently close to a
freely propagating wave will elicit a significant harmonic response (analogous to a forced oscillator),
while nonlinear effects will be negligible for those which are not. Such near-resonant conditions
are a special case of triadic resonances in nonuniform stratifications [29], with the linear wave
comprising two components of the triad and the harmonic response being the third. This possibility
of nonlinear dynamics within the staircase will, in some cases, complicate the linear picture of wave
reflection and transmission found in [18].

III. STAIRCASE SOLUTION

The oceanic thermohaline staircase is represented here with an idealized stratification profile.
Outside the density staircase, the buoyancy frequency is N0. The step spacing is L and each step
consists of a mixed layer (N = 0) with thickness L − δ and a thin layer boundary with thickness δ

and buoyancy frequency Np. The top and bottom boundary layers have thickness 1
2δ, so the mean

buoyancy frequency across the staircase is N0, as in [18]. The top of the staircase is arbitrarily
defined as z = 0 and the full profile for a staircase with J mixed layers is given by

N (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

N0, z > 0

Np, − 1
2δ < z < 0

0, −jL + 1
2δ < z < −(j − 1)L − 1

2δ, j = 1, . . . , J

Np, −jL − 1
2δ < z < −jL + 1

2δ, j = 1, . . . , J − 1

Np, −JL < z < −JL + 1
2δ

N0, z < −JL.

(8)

The mean density gradient across the staircase corresponds to the undisturbed stratification N0,
which yields the constraint N2

pδ = N2
0 L. Figure 1 illustrates this profile for a staircase with J = 3

mixed layers. In the limit δ → 0 with N2
pδ finite, the staircase profile reduces to that of [18]. Here

the finite-thickness layer boundaries are used to accurately calculate the harmonic perturbation, but
the limit δ → 0 will ultimately be taken.

A. Linear solution

The solution of Eq. (5) for a linear plane wave incident from above was previously found in [18]
for the density staircase of Eq. (8) with δ → 0. Here the equivalent solution for finite δ is obtained
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FIG. 1. Example stratification profile (8) and linear solution (10) for J = 3.

using the same matching conditions at the layer boundaries

�[ψ0] = �[∂zψ0] = 0, (9)

where �[· · · ] denotes the change in the bracketed quantity across the layer boundary. These
correspond to the requirements that pressure and vertical velocity be continuous [18]. Because
finite-thickness layer boundaries are used, these matching conditions do not involve density changes
across the boundaries (unlike [18]).

For f < ω < N0, the plane-wave solution takes the form

ψ0(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ainc exp(imz) + Aref exp(−imz), z > 0

C0 exp(impz) + D0 exp(−impz), − 1
2δ < z < 0

ψj cosh γ zj + γ −1ψ ′
j sinh γ zj , 0 < zj < L − δ, j = 1, . . . , J

Cj exp(impzj ) + Dj exp(−impzj ), −δ < zj < 0, j = 1, . . . , J − 1

CJ exp[imp(z + JL)] + DJ exp[−imp(z + JL)], −JL < z < −JL + 1
2δ

Atrans exp[im(z + JL)], z < −JL,

(10)

where the vertical coordinate within each layer is defined as

zj ≡ z + jL − 1
2δ. (11)

Here Ainc gives the complex amplitude of the incident plane wave (assumed without loss of
generality to be incident from above), Aref the reflected wave, and Atrans the transmitted wave.
The structure of the solution segments is illustrated along with the stratification profile in Fig. 1 for
J = 3. The vertical wave numbers m and mp and the evanescent decay scale γ are given by

γ 2 ≡ k2 ω2

ω2 − f 2
, (12)

m2 ≡ k2 N2
0 − ω2

ω2 − f 2
, (13)

m2
p ≡ k2

N2
p − ω2

ω2 − f 2
. (14)
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The remaining (complex) coefficients in Eq. (10) are determined by the matching conditions (9).
At boundaries between layers within the staircase (j �= 0 or J ), these conditions at z = −jL + 1

2δ

(or zj = 0) yield

ψj = Cj + Dj, (15)

ψ ′
j = imp(Cj − Dj ), (16)

while z = −jL − 1
2δ (or zj = −δ and zj+1 = L − δ) gives

cψj+1 + sγ −1ψ ′
j+1 = Cj exp(−impδ) + Dj exp(impδ), (17)

sγψ ′
j+1 + cψ ′

j+1 = imp[Cj exp(−impδ) − Dj exp(impδ)], (18)

c ≡ cosh γ (L − δ), (19)

s ≡ sinh γ (L − δ). (20)

These equations can be combined to eliminate the coefficients Cj and Dj , yielding the relationship
between the stream function coefficients ψj and ψ ′

j within each layer:(
ψj

1
γ
ψ ′

j

)
= M

(
ψj+1
1
γ
ψ ′

j+1

)
,

M ≡
(

c cos(mpδ) + s
γ

mp
sin(mpδ) s cos(mpδ) + c

γ

mp
sin(mpδ)

s cos(mpδ) − c
mp

γ
sin(mpδ) c cos(mpδ) − s

mp

γ
sin(mpδ)

)
. (21)

Similar conditions are obtained from the matching conditions for the layers at the top (j = 0)
and bottom (j = J ) of the staircase. Solving these for j = 0 yields

Ainc = Vinc

(
ψ1
1
γ
ψ ′

1

)
, (22)

Vinc ≡ 1

2

((
c − i

sγ

m

)
cos 1

2mpδ + (
s

γ

mp
+ ic

mp

m

)
sin 1

2mpδ(
s − i

cγ

m

)
cos 1

2mpδ + (
c

γ

mp
+ is

mp

m

)
sin 1

2mpδ

)
, (23)

Aref = Vref

(
ψ1
1
γ
ψ ′

1

)
, (24)

Vref ≡ 1

2

((
c + i

sγ

m

)
cos 1

2mpδ + (
s

γ

mp
− ic

mp

m

)
sin 1

2mpδ(
s + i

cγ

m

)
cos 1

2mpδ + (
c

γ

mp
− is

mp

m

)
sin 1

2mpδ

)
. (25)

Likewise, the matching conditions at z = −JL give(
ψJ

1
γ
ψ ′

J

)
= VtransAtrans, (26)

Vtrans ≡
(

cos
(

1
2mpδ

) + i m
mp

sin
(

1
2mpδ

)
−mp

γ
sin

(
1
2mpδ

) + i m
γ

cos
(

1
2mpδ

)
)

. (27)

Combining these results relates the incident and transmitted wave amplitudes

Ainc = VT
incMJ−1VtransAtrans. (28)
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This is equivalent to the plane-wave solution of [18], except that the matrices have been generalized
for finite layer boundary thicknesses δ. As in [18], the relationship between the (known) incident
wave amplitude Ainc and the transmitted wave Atrans can be found from the eigenvalues of the
matrix M.

B. Harmonic perturbation

Assuming N0 < 2ω < Np, the steady-state harmonic perturbation takes the form

δψs (z)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δA0 exp(−mHz), z > 0

δC0 exp(impHz) + δD0 exp(−impH z), − 1
2δ < z < 0

δψj cosh γHzj + γ −1
H δψ ′

j sinh γHzj , 0 < zj < L− δ, j = 1, . . . , J

δCj exp(impHzj ) + δDj exp(−impHzj ), −δ < zj < 0, j = 1, . . . , J − 1

δCJ exp[impH (z + JL)] + δDJ exp[−impH (z + JL)], −JL < z < −JL + 1
2δ

δAJ+1 exp[mH (z + JL)], z < −JL.

(29)

Here δA0 and δAJ+1 are the amplitudes of the evanescent waves (for 2ω > N0) above and below
the staircase, respectively. The vertical wave numbers and evanescent decay scale are given by

γ 2
H ≡ (2k)2 (2ω)2

(2ω)2 − f 2
, (30)

m2
H ≡ (2k)2 (2ω)2 − N2

0

(2ω)2 − f 2
, (31)

m2
pH ≡ (2k)2

N2
p − (2ω)2

(2ω)2 − f 2
. (32)

Although written for 2ω > N0, it is straightforward to generalize to 2ω < N0 by allowing mH to be
complex. In this case, δA0 and δAJ+1 represent the amplitudes of harmonic waves radiating away
from the staircase.

The matching conditions for the harmonic solution at the layer boundaries (z = −jL) are given
by [30]

�[δψs] = 0, (33)

�[∂zδψs] = k3

ω(ω2 − f 2)
�[N2]ψ2

0 . (34)

The second requirement is obtained by integrating Eq. (7) across the layer boundary. The forcing of
the harmonic by the primary wave occurs on the layer boundaries, where N2 changes. The amplitude
of the forcing is determined by the value of ψ2

0 on each boundary within the staircase.
As in the linear solution, the matching conditions (33) and (34) at layer boundaries within

the staircase (j �= 0 or J ) yield relations between the harmonic amplitudes (δψj and δψ ′
j ) of
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neighboring layers(
δψj

1
γH

δψ ′
j

)
= MH

(
δψj+1

1
γH

δψ ′
j+1

)
+ Fj ,

MH ≡
(

cH cos(mpHδ) + sH
γH

mpH
sin(mpHδ) sH cos(mpHδ) + cH

γH

mpH
sin(mpHδ)

sH cos(mpHδ) − cH
mpH

γH
sin(mpHδ) cH cos(mpHδ) − sH

mpH

γH
sin(mpHδ)

)
,

Fj ≡ k3N2
p

ω(ω2 − f 2)

( sin(mpH δ)
mpH

(
cos(mpδ)ψj − sin(mpδ)

mp
ψ ′

j

)2

γ −1
H cos(mpHδ)

(
cos(mpδ)ψj − sin(mpδ)

mp
ψ ′

j

)2 − γ −1
H ψ2

j

)
,

cH ≡ cosh γH (L − δ),

sH ≡ sinh γH (L − δ). (35)

This result is analogous to Eq. (22) for the linear solution, except for the nonzero forcing term. For
F = 0, this reduces to Eq. (22) but the wave number and frequency are 2k and 2ω. Solutions for the
harmonic will therefore be resonant if (2k, 2ω) is a freely propagating mode of the system (i.e., it
lies on the linear wave dispersion curve). The harmonic forcing depends on the change in buoyancy
frequency at the layer boundaries and the value of the primary wave stream function ψj and ψ ′

j on
the layer boundaries. Equation (35) gives a total of 2J − 2 constraints for the 2J unknowns: δψj

and δψ ′
j (1 � j � J ).

The two remaining constraints needed to determine the harmonic solution are found by con-
sidering the matching conditions at j = 0 and j = J , which also determine the evanescent wave
amplitudes δA0 and δAJ+1. These constraints are((

cH + sH
γH

mH

)
cos 1

2mpHδ + (
sH

γH

mpH
− cH

mpH

mH

)
sin 1

2mpH δ(
sH + cH

γH

mH

)
cos 1

2mpHδ + (
cH

γH

mpH
− sH

mpH

mH

)
sin 1

2mpH δ

)(
δψ1

1
γH

δψ ′
1

)

= k3N2
p

ω(ω2 − f 2)mH

[
(Ainc + Aref )2 − (cψ1 + sγ −1ψ ′

1)2

(
cos

1

2
mpHδ + mH

mpH

sin
1

2
mpHδ

)]

− k3N2
0

ω(ω2 − f 2)mH

(Ainc + Aref )2 (36)

and (
cos 1

2mpHδ − mpH

mH
sin 1

2mHδ

− γH

mH
cos 1

2mpH δ − γH

mpH
sin 1

2mpH δ

)(
δψJ

1
γH

δψ ′
J

)

= k3N2
0

ω(ω2 − f 2)mH

A2
trans + k3N2

p

ω(ω2 − f 2)mH

×
[
ψ2

J

(
cos

1

2
mpHδ + mH

mpH

sin
1

2
mpHδ

)
− A2

trans

]
. (37)

The evanescent wave amplitudes (radiated for 2ω < N0) outside the staircase are

δA0 =
(

cH cos
1

2
mpHδ + sH

γH

mpH

sin
1

2
mpHδ

)
δψ1

+
(

sH cos
1

2
mpHδ + cH

γH

mpH

sin
1

2
mpHδ

)
γ −1

H δψ ′
1
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+ 1

mpH

sin

(
1

2
mpHδ

)
k3N2

p

ω(ω2 − f 2)
(cψ1 + sγ −1ψ ′

1)2, (38)

δAJ+1 = cos

(
1

2
mpδ

)
δψJ − 1

mpH

sin

(
1

2
mpHδ

)(
1

γH

δψ ′
J + k3N2

p

ω(ω2 − f 2)
ψ2

J

)
. (39)

Given the primary wave solution (ψj ,ψ
′
j ), the linear set of algebraic equations (35)–(37) can

be inverted to yield the harmonic solution (δψj , δψ
′
j ). The harmonic amplitudes on the staircase

boundaries are then given by the auxiliary conditions of Eqs. (38) and (39).

C. Thin interface (δ → 0) limit

The general solutions for finite-thickness layer boundaries given in the preceding section simplify
greatly in the limit δ → 0. This reduces the parameter space to be explored and is relevant to
oceanic staircases because double-diffusive convection tends to maintain thin boundaries. However,
it typically will not apply to laboratory experiments such as [17] for which the layer boundaries are
not thin compared to L. For δ → 0, with the constraint N2

pδ = N2
0 L, the following limits apply:

cos mpδ → 1,

1

mp

sin mpδ → δ → 0,

mp sin mpδ → m2
pδ → N2

0 Lk2

ω2 − f 2
.

(40)

Using these in the primary wave solution, the matrix M in Eq. (22) reduces to

M →
(

c s

s − 2c� c − 2s�

)
,

� ≡ N2
0 L

2γ

k2

ω2 − f 2
,

(41)

while the vectors for computing the incident, reflected, and transmitted wave amplitudes are given
by

Vinc → 1

2

(
c − i

γ

m
(s − c�)

s − i
γ

m
(c − s�)

)
,

Vref → 1

2

(
c + i

γ

m
(s − c�)

s + i
γ

m
(c − s�)

)
,

Vtrans →
(

1

−� + i m
γ

)
.

(42)

Inserting these in Eq. (28) yields the primary wave solution in the limit δ → 0. The solution is
equivalent to that found by [18], as shown in the Appendix.

The harmonic solution uses limits analogous to Eq. (40), but with mpH replacing mp. Using these
limits, the constraints within the staircase are given by Eq. (35), with the matrix MH and forcing Fj

114803-8



NONLINEAR HARMONIC GENERATION BY INTERNAL …

given by

MH →
(

cH sH

sH − 2cH �H cH − 2sH�H

)
,

Fj → 2kγ�

ω
ψj

(
ψj

− 2
γH

ψ ′
j

)
,

�H ≡ N2
0 L

2γH

4k2

4ω2 − f 2
.

(43)

The harmonic solution is analogous to the linear solution, except for the forcing terms given by the
values of the linear solution on the interfaces (ψj ,ψ

′
j ). Likewise, the constraints at the top (36) and

bottom (37) reduce to[
cH

(
mH

γH

− �H

)
+ sH

]
δψ1 +

[
sH

(
mH

γH

− �H

)
+ cH

]
1

γH

δψ ′
1

= − 2kγ�

ωγH L
(cψ1 + sγ −1ψ ′

1)

{[
c

(
1 + 1

2
mHL

)
− sγL

]
ψ1+

[
s

(
1 + 1

2
mHL

)
− cγL

]
γ −1ψ ′

1

}
,

(44)(
mH

γH

− �H

)
δψJ − 1

γH

δψ ′
J = kγ�

ωγHL
(2 + mHL + 2imL)ψ2

J . (45)

The harmonic solution in the limit δ → 0 is obtained by inverting the linear algebraic set of
equations (43)–(45). Once this solution has been found, the harmonic wave amplitudes outside the
density staircase are given by

δA0 = cH δψ1 + sHγ −1
H δψ ′

1 + k�γ

ω
(cψ1 + sγ −1ψ ′

1)2, (46)

δAJ+1 = δψJ − k�γ

ω
ψ2

J . (47)

For 2ω > N0 these waves outside the density staircase are evanescent; otherwise they are radiating
waves with double the incident wave frequency and wave number.

IV. RESULTS

The weakly nonlinear harmonic generated by an incident plane wave depends on the frequency
and wave number of the incident wave. These quantities are expressed here in dimensionless terms
as kL and ω/N0, respectively. In addition, the number of steps J in the staircase and the rotation
frequency f/N0 are also factors in the dynamics. The amplitude of the harmonic response is
proportional to the amplitude squared |Ainc|2 of the incident wave, as is typical for weakly nonlinear
effects. Here, all results presented are for the δ → 0 solution found in the preceding section; finite
δ is not considered.

Harmonic solutions differ qualitatively depending on whether the incident wave energy is mostly
transmitted through the density staircase, or mostly reflected. The linear solution of [18] yields an
approximate threshold wave number kL for transmission, which depends on ω/N0. Smaller wave
numbers (larger wavelengths) generally have linear transmission coefficients T which approach one,
while larger wave numbers are mostly reflected (T → 0). There are exceptions due to constructive
and destructive interference within the staircase, as described in [18]. Details of the vertical
structure of the harmonic solution, as well as its amplitude, are explored below as a function of
the characteristics of the incident wave and the density staircase.
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FIG. 2. Stream function profiles for the steady-state harmonic perturbation δψs (z) (solid lines) and primary
(linear) wave ψ0(z) (dotted lines) in a staircase with J = 4 and incident wave amplitude |Ainc| = 0.05N0L

2.
The harmonic perturbation is trapped in the staircase for this incident frequency (ω = 0.6N0). There is no
rotation (f = 0).

A. Example profiles for 2ω > N0

Figure 2 presents example stream function profiles for a staircase with J = 4 layers. (This value
of J was selected as it is large enough to yield examples representative of staircases with many
steps, but small enough for concise graphical representation.) In all cases the incident frequency is
ω = 0.6N0, so the harmonic mode is evanescent outside the staircase. There is no rotation (f = 0).
Dashed lines denote the primary wave solution, while solid lines indicate the harmonic perturbation.
Black curves show the absolute value of the stream function, while blue and red show the real
and imaginary parts, respectively. In all cases the incident wave amplitude |Ainc| is 0.05N0L

2, a
value selected to be representative of small-scale oceanic internal waves. Oceanic stratifications
are typically on the order of 0.002 rad/s (one to three cycles per hour, in standard oceanographic
units) and typical staircase layer sizes are a few meters [1–3]. The value of Ainc used in Fig. 2
(0.05N0L

2) corresponds to an oceanic wave with a stream function amplitude of ∼5 × 10−4 m2/s.
The corresponding vertical velocities (kAinc) are on the order of 1 mm/s and vertical displacements
(kAinc/ω) are on the order of 10 cm (much less than the layer size L). The harmonic amplitude is
proportional to the square of the incident amplitude, so the relative amplitudes of the primary and
harmonic waves depend on the value of Ainc.
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Profiles for four incident wave numbers kL are shown. The title of each panel indicates the value
of kL and the linear transmission coefficient T for that case. (Complete reflection has T = 0, while
complete transmission has T = 1, neglecting nonlinear effects.) The top row shows two examples of
incident wavelengths which are �3 times the mixed-layer thickness (kL � 2) and the incident wave
is completely reflected (|ψ0| � 0 for z < −JL). In the top left panel, the harmonic perturbation
consists of an interfacial wave confined to the upper boundary of the staircase (z = 0). In this case,
the dynamics are approximately equivalent to the pycnocline harmonics previously investigated in
the laboratory experiments of [22–24] and the numerical simulations of [25–27]. The lower steps
of the staircase have no significant effect on the harmonic. In the top right panel, the incident wave
(dashed lines) partially penetrates into the staircase, although it does not completely tunnel through
it. This excites a second interfacial wave propagating along the next layer boundary (z = −L),
along with the wave on the top of the staircase (z = 0). This illustrates the qualitatively different
nonlinear feature of the density staircase, compared to a single interface: the richer structure of
harmonic modes allowed by the primary wave interacting with the many layers of the staircase. It is
also worth noting that the phase of the harmonic mode (indicated by the relative values of the real
and imaginary parts) differs between the two cases shown in the top row by nearly 180◦ (solid red
and blue lines).

The bottom row of Fig. 2 presents example profiles for cases in which the incident wave is mostly
transmitted through the staircase (T → 1). In the bottom left panel, the harmonic amplitude within
the density staircase consists of several interfacial waves, the strongest of which is found on the
z = −3L interface. The harmonic stream function (solid lines) is an order of magnitude larger than
the primary wave (dashed lines) for the chosen incident wave amplitude. This occurs because the
harmonic forcing frequency and wave number lie in close proximity to a freely propagating mode
of the density staircase. Although the weakly nonlinear assumption fails for this particular incident
wave amplitude, the solution profile shown could be realized for a weaker incident wave. The bottom
right panel shows a case with nearly complete transmission. The harmonic profile shape is similar
to that of the bottom left panel, but the amplitude is reduced by more than an order of magnitude.
This amplitude reduction occurs because the forcing wave number has moved away from the freely
propagating staircase mode.

B. Example profiles for 2ω < N0

Figure 3 presents example profiles for incident waves with a frequency ω = 0.3N0. Since 2ω �
N0 in this case, the harmonic perturbation is not confined to the staircase, but can radiate away in
either direction. As in Fig. 2, the incident wave amplitude is |Ainc| = 0.05N0L

2 and there is no
rotation (f = 0). The line types are the same as in Fig. 2 and the incident horizontal wave number
kL and corresponding transmission coefficient T are indicated at the top of each panel. The top
row presents two cases in which the incident wave is completely reflected (T � 0). In the top left
panel, a harmonic wave radiates above the staircase, along with the reflected primary wave. For this
incident wave amplitude, the two waves are comparable in amplitude. In the top right panel, the
incident wavelength is longer and it partially penetrates into the staircase (but is not transmitted).
The radiated harmonic is much weaker than in the top left panel, but the harmonic is stronger within
the staircase (at z � −J ) because of the deeper incident wave penetration.

The bottom row of Fig. 3 presents two examples in which most of the incident wave energy is
linearly transmitted through the staircase (T � 1). In both cases, the harmonic amplitude is largest
within the staircase, but radiated harmonics are also present both above and below the staircase. In
the bottom left panel, the radiated harmonic above the staircase has an amplitude about triple that
of the radiated harmonic below the staircase. In the bottom right panel, the two radiated harmonics
have nearly identical amplitudes.
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FIG. 3. Stream function profiles for the steady-state harmonic perturbation δψs (z) (solid lines) and linear
solution ψ0(z) (dotted lines) in a staircase with J = 4 and incident wave amplitude |Ainc| = 0.05N0L

2. The
harmonic perturbation radiates away from the staircase for this incident frequency (ω = 0.3N0). There is no
rotation (f = 0).

C. Parameter dependence of the harmonic solution

Figures 2 and 3 illustrate the richness and complexity of the harmonics than may be generated
by internal waves incident on a density staircase. However, they do not provide a systematic
understanding of the complete parameter space of possible nonlinear harmonic excitations. Figure 4
presents one measure of the harmonic amplitude as a function of incident wave number kL and
frequency ω/N0 for four different staircase sizes (J = 1, 2, 4, and 10) without rotation. The color
scale shows the logarithm (base 10) of the dimensionless harmonic amplitude at the top of the
staircase, log10( ω|δA0|

|kAinc|2 ). This quantity gives the ratio of the harmonic stream function amplitude
to the square of the incident wave stream function amplitude. For this weakly nonlinear process,
this ratio is independent of |Ainc|. Also shown in Fig. 4 are two curves. The dashed black line
cutting diagonally across each panel indicates the approximate boundary between linear reflection
and transmission found in [18],

(
ω

N0

)2

= 1

2
kL tanh

1

2
kL. (48)
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FIG. 4. Dimensionless steady-state harmonic amplitude at the staircase top (ω|δA0|/|kAinc|2) on a loga-
rithmic (base 10) scale as a function of incident wave frequency ω/N0 and wave number kL for staircases with
one, two, four, and ten steps. The dashed black line shoes the approximate linear wave transmission boundary
(reflection above, transmission below), while the dotted black line shows the pycnocline interfacial harmonic
resonance criteria from [27].

Incident waves with kL above this line are predominantly reflected in linear theory, while those with
longer wavelengths (below the dashed black line) are predominantly transmitted. The other curve is
the nonlinear harmonic interfacial wave resonance curve derived in [27] for a plane wave incident
on a pycnocline above an infinite-thickness mixed layer:

kL = 4ω

N0

(
ω

N0
+

√
ω2

N2
0

− 1

4

)
. (49)

This curve is indicated by a dotted black line, which originates at the linear reflection-transmission
boundary for ω = 0.5N0 and extends upward. The interfacial wave does not exist for ω < 0.5N0.
In the limit kL → ∞, the staircase dynamics studied here reduces to the infinite-mixed-layer case
investigated in [27].

The case of a single layer (J = 1) is presented in the top left panel. In this case, the harmonic
response is largest for three distinct regions. One can be found along along the linear reflection-
transmission boundary (indicated by the dashed black line) for ω < 0.5N0. For these solutions,
the harmonic is a radiated wave. Another is found along the interfacial harmonic resonance curve
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of [27]. Here the harmonic is an interfacial wave propagating along the upper boundary of the
staircase and the dynamics are essentially identical to the previously studied case of harmonic
generation on an isolated pycnocline. The third region of harmonic activity is found at very small
ω/N0 for wavelengths longer than the step size (kL < ∼ 2) and also consists of radiated waves.

The harmonic modal structure increases in complexity as more layers are added to the staircase,
as illustrated in the other panels of Fig. 4. Adding additional layers increases the amplitude of
the radiated harmonic generated by waves near the linear reflection-transmission boundary (dashed
black line). The single interfacial harmonic mode corresponding to the solution of [27] (dotted black
line) is not altered significantly by additional layers, because the incident wave does not penetrate
deeply into the staircase, nor are the radiated harmonics for very small ω/N0 altered. Adding layers
to the staircase allows new harmonic modes to occur in the transmission region near ω � 0.5N0.
These correspond to collective excitations of interfacial waves on multiple layers of the staircase,
as illustrated in Fig. 2. These modes occur only for incident waves which penetrate the staircase
(necessary to generate waves on interior interfaces) and only for trapped wave frequencies. The
complexity of this modal structure increases as layers are added. Above the linear transmission
boundary, there is a second region of harmonic activity which lies to the right of the single
interfacial wave curve (dotted black line). These modes correspond to an interfacial wave on the
upper boundary (as in [27]) but with a dispersion relation that is altered by interaction with weaker
waves traveling along interior interfaces. An example stream function profile for these modes is
shown in the top right panel of Fig. 2. The number of allowed modes in this regime increases as
layers are added to the staircase, but they are closely packed in kL-ω/N0 space.

To put the color scale used in Fig. 4 in an oceanic context, note that the harmonic amplitude can
be expressed in terms of the plotted ratio as

|δA0|
|Ainc| = (kL)2

ω/N0

|Ainc|
N0L2

(
ω|δA0|
|kAinc|2

)
. (50)

For oceanic internal waves, |Ainc|
N0L2 is typically of order 0.01 to 0.1, as stated above. Since kL and ω/N0

are both of order unity over most of Fig. 4, this implies that the yellow and red regions (ratios greater
than �30) would have |δA0| ∼ |Ainc| for typical internal waves incident on an oceanic density
staircase. For these parameter values, weakly nonlinear theory indicates that harmonic generation
will have a significant impact on steady-state wave dynamics in a density staircase.

The amplitude ratio presented in Fig. 4 is only one measure of the harmonic response to a plane
wave incident on a density staircase. For ω < 0.5N0, it gives the amplitude of the harmonic wave
radiated upward, while for larger ω it gives the amplitude of the interfacial wave on the upper
boundary. However, in either case it provides no information on the dynamics in the interior of the
density staircase. This is especially important if the harmonic solution is confined to the staircase
(ω > 0.5N0). To better explore the harmonic response across the full staircase, consider the mean
kinetic energy density of the harmonic solution within the density staircase. This is given by

〈δK〉 ≡ 1

2JL

∫ 0

−JL

(|kδψs |2 + |∂zδψs |2)dz. (51)

This is evaluated using Eq. (29) for δ → 0, yielding

〈δK〉 = k2 8ω2 − f 2

4ω2 − f 2

sinh 2γHL

γHL

1

J

∑
j

(|δψj | + ∣∣γ −1
H δψ ′

j

∣∣)2

− 2k2f 2

4ω2 − f 2

1

J

∑
j

(|δψj |1 + ∣∣γ −1
H δψ ′

j

∣∣1)
. (52)

The harmonic kinetic energy density is compared to that of the incident wave

〈Kinc〉 ≡ (k2 + m2)|Ainc|2 (53)
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FIG. 5. Dimensionless steady-state staircase kinetic energy ratio RK as a function of incident wave
frequency ω/N0 and wave number kL for staircases with one, two, four, and ten steps. The dashed black
line shoes the approximate linear wave transmission boundary (reflection above, transmission below), while
the dotted black line shows the pycnocline interfacial harmonic resonance criteria from [27].

by defining the ratio

RK ≡ ω
√〈δK〉

k2〈Kinc〉 . (54)

Like the amplitude ratio at the top of the staircase presented in Fig. 4, this ratio is independent of
the incident wave amplitude Ainc.

Figure 5 presents the mean kinetic energy density ratio RK on a logarithmic scale, over the same
parameter space as in Fig. 4. Comparing the two figures, there is a striking difference at low ω.
Although there can be a significant harmonic radiated from the upper boundary, Fig. 5 shows that
there is very little harmonic energy within the density staircase. This is because the incident wave
does not penetrate into the staircase. The trapped interfacial harmonic mode on the upper staircase
boundary (found along the dotted black line) also becomes less prominent as the number of steps
increases, compared to Fig. 4. Again, this is because the primary wave does not penetrate into the
staircase, so harmonic energy is confined to the uppermost interface, which represents a decreasing
fraction of the total staircase as the number of steps increases. On the other hand, the area along and
below the transmission boundary (dashed black line) for ω > 0.5N0 has significant kinetic energy
in the harmonic mode, exceeding what was indicated in Fig. 4. In this case, much of the harmonic
energy is found in the interior of the density staircase.
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FIG. 6. Dimensionless steady-state harmonic amplitude at the staircase top (ω|δA0|/|kAinc|2) on a loga-
rithmic (base 10) scale as a function of incident wave frequency ω/N0 and wave number kL for four different
rotation frequencies f/N0 in a staircase with J = 5 steps.

The effect of rotation on the harmonic solution, which may be important for Arctic density
staircases, is presented in Fig. 6 for a staircase with J = 5 steps. Incident waves only exist for
ω > f . For small values of f/N0, rotation has little effect for values of ω which are more than
about 0.1N0 larger than f . Rotation does alter the low-ω radiated harmonic, enhancing it for
near-inertial waves (ω � f ). As the rotation frequency f approaches 0.5N0, the structure of the
trapped harmonic modes is noticeably altered by the rotation. For f > 0.5N0, the effect of rotation
on the trapped harmonic modes is significant.

V. DISCUSSION

The linear solution of [18] for plane internal waves incident on a density staircase has been
extended into the weakly nonlinear regime. The resulting steady-state perturbation to the linear
solution consists of a forced harmonic with double the incident wave frequency and wave number.
Forcing occurs on the interfaces separating mixed layers within the staircase, due to the gradients
in buoyancy frequency found there. Two qualitatively distinct types of harmonic responses were
found. For incident wave frequencies ω < 0.5N0, harmonic plane waves radiate away from the
density staircase. In cases where the linear solution is completely reflected, the harmonic wave
radiates in the same direction, since forcing is limited to one side of the staircase. If the incident
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wave is transmitted through the staircase, forcing occurs on both the upper and lower staircase
boundaries, resulting in radiated harmonic waves in both directions. For ω > 0.5N0, the harmonic
solution is confined to the density staircase and consists of one or more interfacial waves traveling
along the boundaries between staircase mixed layers. As the number of steps within the staircase
increases, the number and complexity of these coupled harmonic interfacial wave modes increase.
This is especially true when the incident wave is transmitted through the staircase so that forcing
occurs on all interfaces.

In all cases, the magnitude of the harmonic response to an incident plane wave depends
strongly on the proximity of the forcing frequency and wave number to the freely propagating
modes of the system. Incident waves which are nearly resonant with a freely propagating wave
can generate a harmonic with significant amplitude. In some cases, the steady-state solution
derived here may fail because the harmonic amplitude is too large for the weakly nonlinear
approximation to be valid. Incident waves with a forcing frequency and wave number which do
not fall in the vicinity of a freely propagating wave generally do not generate harmonics of any
consequence, and in those cases the linear steady-state solution of [18] is not altered by nonlinear
effects.

For oceanic internal waves, the results presented indicate that a significant harmonic response
could plausibly occur for some incident wave numbers and frequencies. Interfacial wave harmonics
with steady-state amplitudes that are a significant fraction of the incident wave amplitude are found
along multiple bands, primarily with incident wave numbers in the range ∼0.5 < kL < ∼ 1 and
frequencies in the range 0.5 < ω/N0 < ∼ 0.7. These ranges correspond to horizontal wavelengths
of tens of meters and wave periods on the order of an hour. The strongest radiated harmonics (ω <

0.5N0) are found along the linear wave transmission boundary calculated in [18], given by Eq. (48).
However, for horizontal wavelengths longer than ∼100 m (kL < ∼ 0.1), the ocean surface would
alter both the linear and weakly nonlinear solutions for real oceanic thermohaline staircases, which
are typically found at depths of a few hundred meters or less.

Thermohaline staircases in the ocean might provide a mechanism for converting some internal
wave energy to higher frequencies and wave numbers, through radiated harmonic waves. Some
internal wave energy could also be trapped within the staircase in the form of interfacial waves.
An internal wave which in linear theory would be transmitted through the staircase without loss
might instead lose some energy to its harmonic. Increased internal wave energy incident on Arctic
staircases, as has been suggested due to decreasing sea ice cover [17], could alter the dynamics of
the staircase. It is perhaps conceivable that trapped interfacial wave modes could achieve sufficiently
large vertical displacements to impact the stability of Arctic thermohaline staircases.

The present results are limited to single plane waves in steady state (i.e., continuously forced).
The transient development of the forced harmonic modes requires either an extension of the present
approach, analogous to that of [30], or fully nonlinear numerical simulations, analogous to those of
[33]. For near-resonant forcing, rapid growth of the harmonic is plausible, based on similar weakly
nonlinear results for low-mode internal tides with a single interface [30], although a full analysis is
needed to determine this.

The present results also apply only to a single plane wave and neglect nonlinear wave-wave
interactions which would occur when a spectrum of internal waves is incident upon a staircase.
Previous studies of an internal wave beam incident on a single thin interface have suggested that
wave-wave interactions may be more important than the harmonic forcing mechanism considered
here for radiated harmonics (ω < 0.5N0), but that the harmonic forcing mechanism is dominant for
interfacial wave generation (ω > 0.5N0) [24,26,27]. In those studies, for ω > 0.5N0 the incident
beam excited only the harmonic wave number which was resonant with an interfacial wave. By
analogy, one might expect a spectrum of internal waves incident on an ocean staircase to excite
the freely propagating modes found by the present analysis for ω > 0.5N0, with the steady-state
amplitude of each harmonic determined by the amplitude of the incident forcing wave number and
frequency.
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APPENDIX: LINEAR SOLUTION

The linear solution presented here differs in form from that of [18]. This was done to conveniently
express the harmonic forcing in terms of the values of the primary (linear) solution on the interfaces,
ψj and ψ ′

j . Here it is shown that the present solution is equivalent to that of [18] for δ → 0. The
linear solution in the interior of the staircase is expressed here as(

ψj

1
γ
ψ ′

j

)
= M

(
ψj+1

1
γ
ψ ′

j+1

)
, (A1)

M =
(

c s

s − 2c� c − 2s�

)
, (A2)

where c ≡ cosh γL and s ≡ sinh γL.
In [18], the solution is written as (

Aj

Bj

)
= C

(
Aj+1

Bj+1

)
, (A3)

C =
(

eγL(1 − �) −�

� e−γL(1 + �)

)
. (A4)

The solution ψ0 within each layer is written as

ψ0(zj ) = ψj cosh γ zj + γ −1ψ ′
j sinh γ zj = Aj exp

[
γ
(
zj − 1

2L
)] + Bj exp

[ − γ
(
zj − 1

2L
)]

,

(A5)

where the first expression (in terms of ψj and ψ ′
j ) is used in the present paper, while the second

expression (in terms of Aj and Bj ) is used in [18]. The two sets of parameters are related by

(
Aj

Bj

)
= T

(
ψj+1

1
γ
ψ ′

j+1

)
, (A6)

T = 1

2

(
exp

(
1
2γL

)
exp

(
1
2γL

)
exp

( − 1
2γL

) − exp
( − 1

2γL
)
)

. (A7)

By substitution, the solution of [18] can be written in terms of the present variables as(
ψj

1
γ
ψ ′

j

)
= T−1CT

(
ψj+1

1
γ
ψ ′

j+1

)
, (A8)

where the inverse of T is

T−1 =
(

exp
(− 1

2γL
)

exp
(

1
2γL

)
exp

(− 1
2γL

) − exp
(

1
2γL

)
)

. (A9)

After some straightforward but tedious algebra, the matrix multiplication yields

T−1CT = M, (A10)

demonstrating that the two solutions are equivalent. The same can be shown for the conditions on
the top (j = 0) and bottom (j = J ) of the staircase.

114803-18



NONLINEAR HARMONIC GENERATION BY INTERNAL …

[1] R. W. Schmitt, Double diffusion in oceanography, Annu. Rev. Fluid Mech. 26, 255 (1994).
[2] D. E. Kelly, H. J. S. Fernando, A. E. Gargett, J. Tanny, and E. Ozsoy, The diffusive regime of double-

diffusive convection, Prog. Oceanogr. 56, 461 (2003).
[3] J. Carpenter and M.-L. Timmermans, Temperature steps in salty seas, Phys. Today 65(3), 66 (2012).
[4] R. A. Woodgate, K. Aagaard, J. H. Swift, W. M. Smethie, and K. K. Falkner, Atlantic water circulation

over the Mendeleev Ridge and Chukchi Borderland from thermohaline intrusions and water mass
properties, J. Geophys. Res. 112, C02005 (2007).

[5] L. Rainville and P. Winsor, Mixing across the Arctic Ocean: Microstructure observations during the
Beringia 2005 Expedition, Geophys. Res. Lett. 35, L08606 (2008).

[6] M.-L. Timmermans, J. Toole, R. Krishfield, and P. Winsor, Ice-tethered profiler observations of the
double-diffusive staircase in the Canada Basin thermocline, J. Geophys. Res. 113, C00A02 (2008).

[7] M.-L. Timmermans, S. Cole, and J. Toole, Horizontal density structure and restratification of the Arctic
Ocean surface layer, J. Phys. Oceanogr. 42, 659 (2012).

[8] T. D. Foster and E. C. Carmack, Temperature and salinity structure in the Wedell Sea, J. Phys. Oceanogr.
6, 36 (1976).

[9] R. D. Muench, H. J. S. Fernando, and G. R. Stegen, Temperature and salinity staircases in the Northwesten
Wedell Sea, J. Phys. Oceanogr. 20, 295 (1990).

[10] E. Ozsoy, U. Unluata, and Z. Top, The Mediterranean water evolution, material transport by double
diffusive intrusions, and interior mixing in the Black Sea, Prog. Oceanogr. 31, 275 (1993).

[11] O. M. Johannessen and O. S. Lee, A deep stepped thermo-haline structure in the Mediterranean, Deep-Sea
Res. 21, 629 (1974).

[12] P. A. Mazeika, Subsurface mixed layers in the northwest tropical Atlantic, J. Phys. Oceanogr. 4, 446
(1974).

[13] R. B. Lambert and W. Sturges, A thermohaline staircase and vertical mixing in the thermocline, Deep-Sea
Res. 24, 211 (1977).

[14] R. W. Schmitt, H. Perkins, J. D. Boyd, and M. C. Stalcup, C-SALT: An investigation of the thermohaline
staircase in the western tropical North Atlantic, Deep-Sea Res. 34, 1655 (1987).

[15] J. C. Swallow and J. Crease, Hot salty water at the bottom of the Red Sea, Nature (London) 205, 165
(1965).

[16] L. Rainville, C. M. Lee, and R. A. Woodgate, Impact of wind-driven mixing in the Arctic Ocean,
Oceanography 24, 136 (2011).

[17] S. J. Ghaemsaidi, H. V. Dosser, L. Rainville, and T. Peacock, The impact of multiple layering on internal
wave transmission, J. Fluid Mech. 789, 617 (2016).

[18] B. R. Sutherland, Internal wave transmission through a thermohaline staircase, Phys. Rev. Fluids 1,
013701 (2016).

[19] W. J. Merryfield, Hydrodynamics of semiconvection, Astrophys. J. 444, 318 (1995).
[20] M. A. Balyaev, E. Quataert, and J. Fuller, The properties of g-modes in layered semiconvection,

Mon. Not. R. Astron. Soc. 452, 2700 (2015).
[21] Q. André, A. J. Barker, and S. Mathis, Layered semiconvection and tides in giant planet interiors. I.

Propagation of internal waves, Astron. Astrophys. 605, A117 (2017).
[22] M. J. Mercier, M. Mathur, L. Gostiaux, T. Gerkema, J. M. Magalhaes, J. C. B. da Silva, and T. Dauxois,

Soliton generation by internal tidal beams impinging on a pycnocline: Laboratory experiments, J. Fluid
Mech. 704, 37 (2012).

[23] S. Wunsch and A. Brandt, Laboratory experiments on internal wave interactions with a pycnocline,
Exp. Fluids 53, 1663 (2012).

[24] S. Wunsch, I. Delwiche, G. Frederick, and A. Brandt, Experimental study of nonlinear harmonic
generation by internal waves incident on a pycnocline, Exp. Fluids 56, 87 (2015).

[25] N. Grisouard, C. Staquet, and T. Gerkema, Generation of internal solitary waves in a pycnocline by an
internal wave beam: a numerical study, J. Fluid Mech. 676, 491 (2011).

[26] S. Wunsch, H. Ku, I. Delwiche, and R. Awadallah, Simulations of nonlinear harmonic generation by an
internal wave beam incident on a pycnocline, Nonlin. Process. Geophys. 21, 855 (2014).

114803-19

https://doi.org/10.1146/annurev.fl.26.010194.001351
https://doi.org/10.1146/annurev.fl.26.010194.001351
https://doi.org/10.1146/annurev.fl.26.010194.001351
https://doi.org/10.1146/annurev.fl.26.010194.001351
https://doi.org/10.1016/S0079-6611(03)00026-0
https://doi.org/10.1016/S0079-6611(03)00026-0
https://doi.org/10.1016/S0079-6611(03)00026-0
https://doi.org/10.1016/S0079-6611(03)00026-0
https://doi.org/10.1063/PT.3.1485
https://doi.org/10.1063/PT.3.1485
https://doi.org/10.1063/PT.3.1485
https://doi.org/10.1063/PT.3.1485
https://doi.org/10.1063/PT.3.1485
https://doi.org/10.1029/2005JC003416
https://doi.org/10.1029/2005JC003416
https://doi.org/10.1029/2005JC003416
https://doi.org/10.1029/2005JC003416
https://doi.org/10.1029/2008GL033532
https://doi.org/10.1029/2008GL033532
https://doi.org/10.1029/2008GL033532
https://doi.org/10.1029/2008GL033532
https://doi.org/10.1029/2008JC004829
https://doi.org/10.1029/2008JC004829
https://doi.org/10.1029/2008JC004829
https://doi.org/10.1029/2008JC004829
https://doi.org/10.1175/JPO-D-11-0125.1
https://doi.org/10.1175/JPO-D-11-0125.1
https://doi.org/10.1175/JPO-D-11-0125.1
https://doi.org/10.1175/JPO-D-11-0125.1
https://doi.org/10.1175/1520-0485(1976)006<0036:TASSIT>2.0.CO;2
https://doi.org/10.1175/1520-0485(1976)006<0036:TASSIT>2.0.CO;2
https://doi.org/10.1175/1520-0485(1976)006<0036:TASSIT>2.0.CO;2
https://doi.org/10.1175/1520-0485(1976)006<0036:TASSIT>2.0.CO;2
https://doi.org/10.1175/1520-0485(1990)020<0295:TASSIT>2.0.CO;2
https://doi.org/10.1175/1520-0485(1990)020<0295:TASSIT>2.0.CO;2
https://doi.org/10.1175/1520-0485(1990)020<0295:TASSIT>2.0.CO;2
https://doi.org/10.1175/1520-0485(1990)020<0295:TASSIT>2.0.CO;2
https://doi.org/10.1016/0079-6611(93)90004-W
https://doi.org/10.1016/0079-6611(93)90004-W
https://doi.org/10.1016/0079-6611(93)90004-W
https://doi.org/10.1016/0079-6611(93)90004-W
https://doi.org/10.1016/0011-7471(74)90047-3
https://doi.org/10.1016/0011-7471(74)90047-3
https://doi.org/10.1016/0011-7471(74)90047-3
https://doi.org/10.1016/0011-7471(74)90047-3
https://doi.org/10.1175/1520-0485(1974)004<0446:SMLITN>2.0.CO;2
https://doi.org/10.1175/1520-0485(1974)004<0446:SMLITN>2.0.CO;2
https://doi.org/10.1175/1520-0485(1974)004<0446:SMLITN>2.0.CO;2
https://doi.org/10.1175/1520-0485(1974)004<0446:SMLITN>2.0.CO;2
https://doi.org/10.1016/S0146-6291(77)80001-5
https://doi.org/10.1016/S0146-6291(77)80001-5
https://doi.org/10.1016/S0146-6291(77)80001-5
https://doi.org/10.1016/S0146-6291(77)80001-5
https://doi.org/10.1016/0198-0149(87)90014-8
https://doi.org/10.1016/0198-0149(87)90014-8
https://doi.org/10.1016/0198-0149(87)90014-8
https://doi.org/10.1016/0198-0149(87)90014-8
https://doi.org/10.1038/205165a0
https://doi.org/10.1038/205165a0
https://doi.org/10.1038/205165a0
https://doi.org/10.1038/205165a0
https://doi.org/10.5670/oceanog.2011.65
https://doi.org/10.5670/oceanog.2011.65
https://doi.org/10.5670/oceanog.2011.65
https://doi.org/10.5670/oceanog.2011.65
https://doi.org/10.1017/jfm.2015.682
https://doi.org/10.1017/jfm.2015.682
https://doi.org/10.1017/jfm.2015.682
https://doi.org/10.1017/jfm.2015.682
https://doi.org/10.1103/PhysRevFluids.1.013701
https://doi.org/10.1103/PhysRevFluids.1.013701
https://doi.org/10.1103/PhysRevFluids.1.013701
https://doi.org/10.1103/PhysRevFluids.1.013701
https://doi.org/10.1086/175607
https://doi.org/10.1086/175607
https://doi.org/10.1086/175607
https://doi.org/10.1086/175607
https://doi.org/10.1093/mnras/stv1446
https://doi.org/10.1093/mnras/stv1446
https://doi.org/10.1093/mnras/stv1446
https://doi.org/10.1093/mnras/stv1446
https://doi.org/10.1051/0004-6361/201730765
https://doi.org/10.1051/0004-6361/201730765
https://doi.org/10.1051/0004-6361/201730765
https://doi.org/10.1051/0004-6361/201730765
https://doi.org/10.1017/jfm.2012.191
https://doi.org/10.1017/jfm.2012.191
https://doi.org/10.1017/jfm.2012.191
https://doi.org/10.1017/jfm.2012.191
https://doi.org/10.1007/s00348-012-1387-0
https://doi.org/10.1007/s00348-012-1387-0
https://doi.org/10.1007/s00348-012-1387-0
https://doi.org/10.1007/s00348-012-1387-0
https://doi.org/10.1007/s00348-015-1954-2
https://doi.org/10.1007/s00348-015-1954-2
https://doi.org/10.1007/s00348-015-1954-2
https://doi.org/10.1007/s00348-015-1954-2
https://doi.org/10.1017/jfm.2011.61
https://doi.org/10.1017/jfm.2011.61
https://doi.org/10.1017/jfm.2011.61
https://doi.org/10.1017/jfm.2011.61
https://doi.org/10.5194/npg-21-855-2014
https://doi.org/10.5194/npg-21-855-2014
https://doi.org/10.5194/npg-21-855-2014
https://doi.org/10.5194/npg-21-855-2014


SCOTT WUNSCH

[27] P. J. Diamesses, S. Wunsch, I. Delwiche, and M. P. Richter, Nonlinear generation of harmonics through
the interaction of an internal wave beam with a model oceanic pycnocline, Dyn. Atmos. Oceans 66, 110
(2014).

[28] S. A. Thorpe, Nonlinear reflection of internal waves at a density discontinuity at the base of a mixed layer,
J. Phys. Oceanog. 28, 1853 (1998).

[29] D. Varma and M. Mathur, Internal wave resonant triads in finite-depth non-uniform stratifications, J. Fluid
Mech. 824, 286 (2017).

[30] S. Wunsch, Harmonic generation by nonlinear self-interaction of a single internal wave mode, J. Fluid
Mech. 828, 630 (2017).

[31] P. H. LeBlond and L. A. Mysak, Waves in the Ocean (Elsevier, Amsterdam, 1981).
[32] A. Tabaei, T. R. Akylas, and K. G. Lamb, Nonlinear effects in reflecting and colliding internal wave

beams, J. Fluid Mech. 526, 217 (2005).
[33] B. R. Sutherland, Excitation of superharmonics by internal modes in a non-uniformly stratified fluid,

J. Fluid Mech. 793, 335 (2016).

114803-20

https://doi.org/10.1016/j.dynatmoce.2014.02.003
https://doi.org/10.1016/j.dynatmoce.2014.02.003
https://doi.org/10.1016/j.dynatmoce.2014.02.003
https://doi.org/10.1016/j.dynatmoce.2014.02.003
https://doi.org/10.1175/1520-0485(1998)028<1853:NROIWA>2.0.CO;2
https://doi.org/10.1175/1520-0485(1998)028<1853:NROIWA>2.0.CO;2
https://doi.org/10.1175/1520-0485(1998)028<1853:NROIWA>2.0.CO;2
https://doi.org/10.1175/1520-0485(1998)028<1853:NROIWA>2.0.CO;2
https://doi.org/10.1017/jfm.2017.343
https://doi.org/10.1017/jfm.2017.343
https://doi.org/10.1017/jfm.2017.343
https://doi.org/10.1017/jfm.2017.343
https://doi.org/10.1017/jfm.2017.532
https://doi.org/10.1017/jfm.2017.532
https://doi.org/10.1017/jfm.2017.532
https://doi.org/10.1017/jfm.2017.532
https://doi.org/10.1017/S0022112004002769
https://doi.org/10.1017/S0022112004002769
https://doi.org/10.1017/S0022112004002769
https://doi.org/10.1017/S0022112004002769
https://doi.org/10.1017/jfm.2016.108
https://doi.org/10.1017/jfm.2016.108
https://doi.org/10.1017/jfm.2016.108
https://doi.org/10.1017/jfm.2016.108



