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We study experimentally, in a large-scale basin, the propagation of unidirectional
deep water gravity waves stochastically modulated in phase. We observe the emergence
of nonlinear localized structures that evolve on a stochastic wave background. Such a
coexistence is expected by the integrable turbulence theory for the nonlinear Schrödinger
equation (NLSE), and we report the first experimental observation in the context of
hydrodynamic waves. We characterize the formation, the properties, and the dynamics
of these nonlinear coherent structures (solitons and extreme events) within the incoherent
wave background. The extreme events result from the strong steepening of wave train
fronts, and their emergence occurs after roughly one nonlinear length scale of propagation
(estimated from the NLSE). Solitons arise when nonlinearity and dispersion are weak, and
of the same order of magnitude as expected from the NLSE. We characterize the statistical
properties of this state. The number of solitons and extreme events is found to increase all
along the propagation, the wave-field distribution has a heavy tail, and the surface elevation
spectrum is found to scale as a frequency power law with an exponent −4.5 ± 0.5. Most
of these observations are compatible with the integrable turbulence theory for the NLSE
although some deviations (e.g., power-law spectrum, asymmetrical extreme events) result
from effects proper to hydrodynamic waves.
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I. INTRODUCTION

When many random and weakly nonlinear dispersive waves propagate and interact with one
another, several statistically stationary states are theoretically predicted, such as weak wave
turbulence, statistical equilibrium, or integrable turbulence. Weak wave turbulence describes an
ensemble of nonlinear waves undergoing resonant interactions. These energy transfers between
spatial and temporal scales lead generally to a cascade of wave energy from a large (forcing) scale
to a small (eventually dissipative) one. This phenomenon occurs in various situations ranging from
spin waves in solids, internal or surface waves in oceanography, to plasma waves in astrophysics
(for reviews, see [1–4]). The theory of weak wave turbulence, developed in the 1960s [5–7], leads
to analytical predictions on the wave energy spectrum in a stationary state, and has since been
applied in almost all domains of physics involving waves [2,3]. In the past decade, an important
experimental effort has been devoted to test the domain of validity of weak turbulence theory
on different wave systems (e.g., hydrodynamics, optics, hydroelastic or elastic waves) [8]. In the
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absence of an inverse cascade, it also predicts the equipartition of energy at scales larger than the
forcing one, which was recently observed experimentally [9].

The theory of integrable turbulence combines the above statistical approach together with
the property of integrability of an equation showing soliton solutions [e.g., the Korteweg–de
Vries equation (KdVE) or the nonlinear Schrödinger equation (NLSE)] [10,11]. Even though no
dissipation or forcing term is part of such equations, random initial conditions generally do not
relax toward thermal equilibrium [12]. Instead, the emergence and the dynamics of a large number
of nonlinear coherent structures (such as solitons or breathers) from the incoherent waves forms a
statistical state, called integrable turbulence. It has been encountered in various situations ranging
from plasma waves [13] to optical waves [14–18]. This state is different from the wave turbulence
one, since no resonant wave interaction occurs, and no constant flux of a conserved quantity
cascades through the scales [11].

In the context of surface waves on a fluid, the KdVE describes unidirectional long waves in
shallow water, whereas the NLSE describes unidirectional nonlinear wave packets of arbitrary depth
(although the nature of the solutions in the shallow and deep water limits strongly differs; see,
e.g., [19]). In the shallow water regime, beyond numerical confirmations [20], direct experimental
verifications of integrable turbulence were obtained recently in field experiments [21,22] and in the
laboratory [23,24]. For deep water gravity waves, the development of modulational instability is
predicted to generate a state intermediate between weak turbulence and the superposition of weakly
interacting solitons [11]. The statistics of such state have been the subject of several experiments, in
which the waves are forced with noise. Non-Gaussian statistics of the wave height were observed
to emerge from such a random forcing [25–29] as predicted theoretically from the NLSE with
random initial conditions [30]. Direct numerical simulations of random waves with the NLSE have
been reported also [31,32]. Time series from field measurements in the ocean were compared to
the NLSE to search for solitons and their possible link with extreme wave appearance [33]. The
highest waves that may appear in a chaotic wave field, called rogue waves, are indeed a question
of intense debate [25,31,33–36]. Although not all of these experimental studies were explicitly
compared against the predictions of integrable turbulence, the NLSE roughly captures the reported
wave statistics of unidirectional random waves. However, neither the identification of the coherent
structures involved in the integrable turbulence regime, nor the deviation of real systems from these
predictions, have been experimentally studied. Such deviations should be more easily highlighted
in hydrodynamics than in nonlinear optics, since more approximations are needed to reduce the
dynamics to the NLSE.

Here, we study experimentally the propagation of a unidirectional deep water carrier wave
stochastically modulated in phase. Waves of narrow spectral bandwidth are generated at one end
of the tank, and the evolution of the statistical properties of the wave field is measured along
the propagation. The range of parameters and the design of the experiment are set to observe
solitons governed by the NLSE, the linear (dispersive) and nonlinear timescales of propagation
being controllable experimentally and chosen to be of the same order of magnitude. We show
that a spontaneous formation of coherent localized structures, such as solitons and extreme events,
occurs from the initial incoherent waves. We characterize the emergence, the properties, and the
dynamics of these solitons and extreme events immersed in a sea of smaller stochastic waves. Such
a coexistence between erratic waves and coherent structures is expected from NLSE integrable
turbulence [11], and has been reported in optics [18]. After one and a half times the nonlinear
length scale of propagation, we observe a heavy-tailed (distance independent) distribution of the
wave field statistics, as expected by integrable turbulence, and the emergence of extreme events.
The experimental wave spectrum is then found to follow a frequency power law with an exponent
−4.5 ± 0.5, and we show that this feature traces back to the strong steepening of the waves.
This power-law spectrum, as well as the occurrence of highly asymmetrical extreme events, is not
described by the NLSE but comes from the specific features of hydrodynamics waves. For instance,
the spectrum exponent is probably related to the random modulation of the harmonics (bound waves)
of the wave field.
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The article is organized as follows. We first recall some theoretical results of the one-dimensional
(1D) NLSE for deep water waves. Then, we give estimates of the typical propagation timescales of
the problem. We describe the experimental setup, then the experimental results, before discussing
our results with respect to the integrable turbulence theory.

II. 1D NONLINEAR SCHRÖDINGER EQUATION FOR DEEP WATER WAVES

In a deep water regime (kh � 1), the dispersion relation of linear gravity waves reads

ωlin(k) =
√

gk, (1)

with the fluid depth h, the acceleration of gravity g, the wave number k = 2π/λ, the angular
frequency ω = 2πf , the frequency f , and wavelength λ of the wave.

Assume a linear monochromatic wave of wave number k0 and angular frequency ω0 ≡ ωlin(k0).
Its phase velocity c = ω0/k0 = √

g/k0 thus increases as the square root of its wavelength, the
group velocity being cg = dω0/dk0 = c/2. When the wave amplitude a is not much smaller than
λ, nonlinear terms in the Euler equations have to be taken into account. The dispersion relation of a
progressive periodic wave (the so-called Stokes wave) then reads [37]

ω(k) = ωlin(k)

[
1 + k2a2

2
+ O(k4a4)

]
. (2)

Consider a 1D nonlinear wave train with a complex envelope A slowly varying in time T and
space X with respect to the carrier wave (ω0, k0), i.e.,

η(x, t ) = 1
2 [A(X, T )ei(ω0t−k0x) + c.c.]. (3)

Here, X = εx and T = εt , where ε � 1 is a dimensionless parameter enforcing the slow space and
time modulation, and c.c. denotes the complex conjugate. The small parameter ε is chosen to also
be the steepness of the carrier, i.e. ε = k0

√
〈|A|2〉, with 〈·〉 a time average. Substituting a by A in

the dispersion relation of the Stokes wave leads to

ω(k) = ωlin(k)

(
1 + k2|A|2

2

)
. (4)

Now, expanding Eq. (4) into a Taylor series expansion about k0, and about the initial amplitude
A0 ≡ A(0, 0) = 0, leads to [38]

ω(k, |A|2) − ω0 = ∂ω

∂k

∣∣∣∣
k0

(k − k0) + 1

2

∂2ω

∂k2

∣∣∣∣
k0

(k − k0)2 + ∂ω

∂|A|2
∣∣∣∣
|A0|2

(|A|2 − |A0|2). (5)

Using the notations � = ω − ω0 and K = k − k0, the dispersion relation of the modulated wave
reads

�(K, |A|2) = cgK + PK2 − Q|A|2, (6)

valid in the vicinity of ω0 and k0, with cg ≡ ∂ω/∂k|k=k0 , P ≡ ∂2ω/2∂k2|k=k0 , and Q ≡
−∂ω/∂|A|2 |A0=0. All these parameters are known using the nonlinear dispersion relation (4).
Following [38], we use the properties of the Fourier transforms for the envelope (K = −iε∂/∂X,
� = −iε∂/∂T ), substitute these relationships in Eq. (6), and apply the resulting operator to A. At
order O(ε2) in dispersive and nonlinear terms, the wave train envelope A is then governed by the
NLSE [39,40]

i

(
∂A

∂t
+ cg

∂A

∂x

)
− P

∂2A

∂x2
− Q|A|2A = 0, (7)
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FIG. 1. Left: Theoretical envelope soliton ηsol (t ) of Eq. (8) with f0 = 0.9 Hz, x = 10 m, and Asol = 5 cm.
The red solid line shows the envelope of the solution. Right: Dimensionless growth rate of the Benjamin-Feir
instablility, σ/σm, versus dimensionless wave number K/Km. Unstable modes are found below the solid line.

with cg = ω0/(2k0) the group velocity of the wave packet, P = −ω0/(8k2
0 ) the dispersive parame-

ter, and Q = −ω0k
2
0/2 the nonlinear one. Note that the variables X and T have been put in lower

case in Eq. (7) for easier reading thereafter. This equation is integrable, and an inverse scattering
transform (IST) can solve Eq. (7) [40].

In the deep water regime, the product of the dispersive and nonlinear terms, PQ, is always
positive. This regime, called the focusing or anormal regime in optics, selects a type of solutions
of Eq. (7). The latter admits an envelope soliton solution (a sech-shaped pulse), spatially localized,
and the corresponding wave profile is of the form [38,41]

ηsol(x, t ) = Asol sech
[√

2k2
0Asol(x − cgt )

]
cos

[
ω0

(
1 + k2

0A
2
sol

4

)
t − k0x

]
. (8)

Asol being the maximum of the envelope soliton. Its full width at half maximum (FWHW) is then

Lsol =
√

2 arcsech(1/2)/
(
Asolk

2
0

)
. (9)

This envelope soliton is shown in Fig. 1(left). It was first observed in deep water [42] and then
in nonlinear electrical transmission lines [43]. Since then, others soliton solutions of the focusing
NLSE, localized in both the space and time domains, have been derived [44] (such as the Peregrine
soliton [45], Kuznetsov-Ma breathers [46,47], and Akmediev breathers [48,49]) and observed
experimentally [50,51]. For instance, the Peregrine soliton reads [50]

ηp(x, t ) = Re

{
Ap exp

(
− ik2

0A
2
pω0t

2

)[
1 − 4

(
1 − ik2

0A
2
pω0t

)
1 + [

2
√

2k2
0Ap(x − cgt )

]2 + k4
0A

4
pω

2
0t

2

]

× exp[i(k0x − ω0t )]

}
, (10)

Ap being the maximum of the Peregrine soliton. Its maximum amplification, which occurs at x = 0
and t = 0, is a factor of 3 higher than the background carrier wave. Its dynamics was first reported in
nonlinear fibers [52], then in water wave tanks [50] and plasmas [53]. Moreover, Eq. (7) also admits
constant envelope solutions which correspond to uniform sinusoidal wave train solution of constant
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amplitude a0 with the leading order correction to the angular frequency introduced in Eq. (2),

η(x, t ) = a0 cos

[
ω0

(
1 + k2

0a
2
0

2

)
t − k0x

]
, (11)

which may be modulationally unstable if �2 = (K2 − 2a2
0Q/P )P 2K2 < 0, that is for 0 < |K| <

|Kc| ≡ a0
√

2Q/P = 2
√

2a0k
2
0 . The maximum growth rate of the instability is achieved when

∂�2/∂K = 0, that is for Km = a0
√

Q/P = Kc/
√

2 = 2a0k
2
0 [38]. The growth rate σ = −�2

is maximum for σm = a2
0Q = ω0(a0k0)2/2. Figure 1(right) shows the theoretical growth rate

of the instability σ/σm vs K/Km. In frequency space, with the use of the group velocity, the
instability occurs for 0 < � <

√
2ω0a0k0 [54]. The quasiplane wave instability with respect to

slowly modulating perturbation is due to the interplay between nonlinearity and dispersion. It was
first discovered by Lighthill [55], and called modulation instability, but it is often referred to as
the Benjamin-Feir instability since it was Benjamin and Feir who first applied it to surface waves
in the limit of vanishing steepness (a0k0 → 0) [56]. Several experiments performed in deep water
have successfully verified this instability prediction [56–60]. In the Fourier space, the modulation
instability consists of a pair of sideband components growing around the angular frequency of the
carrier wave ω0.

Let us now introduce the linear and nonlinear propagation timescales. Balancing the first and last
terms of Eq. (7), the nonlinear timescale reads

Tnl = 1

QA2
0

= 2

ω0ε2
, (12)

where ε ≡ k0|A0| corresponds to the steepness of the carrier. Balancing the first and third terms of
Eq. (7), the linear or dispersive timescale reads

Tlin = �L2

2P
= 4 k2

0
�k2

ω0
, (13)

where �L is the typical size of a modulation (i.e., the half-width of a Gaussian envelope at
an amplitude of |A0|/

√
e); �k = 1/�L thus stands for the typical spectral bandwidth of the

modulation. The factor 1/2 in Eq. (13) comes from the dispersion-induced spreading of a Gaussian
pulse governed by Eq. (7) with Q = 0 [61]. Using Eqs. (12) and (13), the ratio of both times thus
reads

Tlin

Tnl

= 2ε2

(�k/k0)2
. (14)

This ratio gives the degree of nonlinearity of the wave propagation. It is also related to the
Benjamin-Feir index (BFI) of the modulation instability, defined as BFIk ≡ 2ε/(�k/k0) for random
waves of narrow spectral bandwidth [62]. It quantifies the ratio between the wave steepness to the
normalized spectral width of the initial condition. When BFIk > 1/

√
2, the modulation instability

at the most unstable wave number occurs. Indeed, in this case one has �k < 2
√

2A0k
2
0 , as found

above for a monochromatic wave. In the frequency space, the BFI reads BFIω = ε/(�ω/ω0) [63],
and the instability occurs for BFIω > 1/

√
2, that is �ω < 2ω0A0k0. For narrow spectral bandwidth

processes and from Eq. (3), the relation between the random surface elevation η and its envelope is
〈|A|2〉 = 2〈η2〉 ≡ 2σ 2

η , with ση the rms value of η(t ), and 〈·〉 an average over time. This leads to the

use of ε = √
2εη in the above definitions of BFI, as used in experiments [25,30], with εη ≡ k0ση the

initial steepness.
The characteristic length scales of the problem are related to the typical timescales by the

group velocity: Llin = cgTlin = 2k0/�k2 and Lnl = cgTnl = 1/(k0ε
2). Finally, note that the typical

timescale of the carrier modulation is related to the nonlinear timescale of the problem. Indeed, one
has �m = 1/Tnl , with �m the modulation frequency at the maximum growth rate of the modulation
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FIG. 2. Sketch of a vertical section of the wave basin facility at Ecole Centrale de Nantes and locations of
the resistive probes.

instability. The corresponding wave number Km is also related to the inverse of the width of the
envelope soliton of Eq. (8).

III. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 2 and is similar to the one described in Ref. [64].
Experiments are carried out in a large-scale wave basin (50 m long × 30 m wide × 5 m deep)
at Ecole Centrale de Nantes. At one end of the basin is a wavemaker made of 48 independently
controlled flaps, whereas an absorbing sloping beach strongly reduces wave reflections at the
opposite end. We mechanically generate a 1D monochromatic carrier wave randomly modulated in
phase and in amplitude. The carrier frequency is set to f0 = 0.9 Hz corresponding, using Eq. (1), to
a wavelength of λ0 = 1.9 m in a deep water regime (k0h ≈ 16). The period of the carrier, T0 = 1/f0,
is 1.1 s. The modulation of this carrier is slow compared to T0, i.e., of narrow frequency spectral
bandwidth �f (with �f/f0 < 0.26). More precisely, the wavemaker is driven to reproduce the
wave profile η(x = 0, t ) = η0(t ) in front of it (x = 0) with the prescribed wave steepness using the
Fourier modes

η0(t ) =
N∑

n=1

an cos(2πfnt + φn), (15)

where fn = n/θ is the frequency of the nth Fourier mode and φn is a phase chosen randomly from
a uniform distribution in the interval [0, 2π ]. The fundamental period of the Fourier series is θ =
2048 s and N is the number of wave components. The Fourier mode amplitude spectrum an is
chosen to be a narrow-banded Gaussian spectrum centered on f0 given by

an = A exp

[
−1

2

(
fn − f0

�f/(2
√

2 ln 2)

)2
]
, (16)

where �f is the full width of this spectrum at half maximum and A a scale factor. The latter is
adjusted so the standard deviation wave elevation η0(t ) is εη/(

√
2k0).

The control parameters are the initial carrier wave steepness εη ∈ [0.08, 0.14] and the bandwidth
�f ∈ [0.047, 0.24] Hz that are varied in these ranges. A linear frame supports an array of 12
resistive wave probes at distance x from the wavemaker with x = 3.4, 5.2, 7, 8.9, 10.7, 12.6, 14.5,
16.3, 18.2, 20.1, 24.9, and 29.8 m. Their vertical resolution is approximately 0.1 mm and their
frequency resolution is close to 20 Hz, the sampling frequency being 250 Hz. A few additional
probes are also present normal to the basin length to check that the wave field presents no significant
evolution along the transverse direction. The surface elevation, η(t ), is recorded at each probe
during T = 2000 s. We checked that the computed wave spectrum has converged statistically by
computing it over the first and second halves of the signal duration T . Note also that T is much
greater than the autocorrelation time of the noise, T � (�f )−1. Typically, the wave amplitudes
are of the order of few cm. Viscous dissipation is weak at these frequencies, the main damping
mechanism being the beach, which absorbs more than 90% of the incident energy. In a first
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approximation, our experimental setup can be thus considered to satisfy the conservative hypothesis
of the NLSE. Note that the NLSE hypothesis of slow time modulation is also verified experimentally
(0.05 � �f/f0 � 0.26).

IV. TIMESCALE ESTIMATIONS

Before describing the results, let us compute some typical timescales of this experiment. Consider
first the parameters involved in the NLSE (7): The group velocity is cg = ω0/(2k0) = 0.87 m/s, the
dispersive parameter is P = −0.06 Hz m2, and the nonlinear one is Q = −30 Hz/m2. Second,
we estimate the dispersive and nonlinear propagation times. Using Eq. (12), and ε = √

2εη, the
nonlinear propagation time reads

Tnl = 1/
(
ω0ε

2
η

) ∈ [9, 27.6] s, (17)

corresponding to a nonlinear length of Lnl ∈ [7.8, 24] m. Using Eq. (13), �ω/ω0 = �k/(2k0), and
�ω = 2π�f , the dispersive timescale reads

Tlin = ω0/(�ω)2 ∈ [2.5, 64.6] s, (18)

corresponding to a dispersive length of Llin ∈ [2.2, 56] m. Both Lnl and Llin fit the length of
the basin. Note that, for a fixed carrier wave frequency ω0, varying the initial wave steepness εη

modifies Tnl , whereas varying the spectral bandwidth �ω ≡ 2π�f modifies Tlin. Using Eq. (14),
the propagation time ratio is inferred as Tlin/Tnl = ε2

η/(�ω/ω0)2. In the following, we define the
square root of this quantity as the parameter quantifying the nonlinearity-to-dispersion ratio,

τ ≡
√

Tlin/Tnl = εη/(�ω/ω0). (19)

The nonlinearity (εη) and dispersion (�ω/ω0) are controllable parameters in this experiment. To
observe coherent structures such as solitons governed by the NLSE, nonlinear and dispersive effects
have to be balanced (i.e., τ ∼ 1). The parameter ranges are thus similar, as evidenced by the values
of τ ∈ [0.3, 2.6].

Since τ = BFIω/
√

2, the modulation instability, at the most unstable wave number, occurs
for a pure monochromatic wave when τ > 1/2. The instability occurs when �f < 2f0εη ∈
[0.14, 0.25] Hz. Note that the amplitude of the most unstable perturbation grows, during its
propagation over a distance L, at most by a factor exp[(ω0εη )22L/g] � 3 [56,59]. Finally, balancing
directly the dispersive and nonlinear terms (i.e., the third and fourth ones) in Eq. (7) leads to the
typical length Lsol of envelope solitons [65]

Lsol =
√

2 arcsech (1/2)

k0εη

, (20)

as found in Eq. (9), Lsol being the full width at half maximum of a sech pulse. This leads to solitons
of typical length of 5 m (Lsol ∈ [4, 7.2] m) and duration of 5 s (Tsol = Lsol/cg ∈ [4.6, 8.3] s).
Solitons have thus typically 4 to 8 carrier periods. The distance between the first and last probes
in the basin is Lmax = 26.5 m. It is thus possible to follow such structures on propagation distances
up to roughly 7 times its size, at best. To sum up, Table I shows the different scales of the problem
for parameter sets used in the experiments.

V. EXPERIMENTAL RESULTS

We generate unidirectional sinusoidal waves (of frequency f0) subject to a slow and random
phase modulation of the carrier (�f/f0 < 0.26). Figure 3 shows the temporal evolutions of the
wave height, η(t ), recorded by the probes located at different distances x from the wavemaker.
Close to the wavemaker, the signal η(t ) is reminiscent of the forcing one standing for propagating
wave packets of gentle amplitudes. As the distance increases, two main observations are reported.
First, fronts of some wave packets steepen strongly leading to extreme events of large amplitude
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TABLE I. Theoretical time and length scales for three different εη at fixed �f = 0.05 Hz. Carrier wave:
T0 = 1.1 s, λ0 = 1.9 m.

Tlin (s) Tnl (s) τ Llin (m) Lnl (m) Lsol (m)

εη

ω0

(�ω)2

1

ω0ε2
η

εη

(�ω/ω0)

g

2(�ω)2

1

2k0ε2
η

1.86

2k0εη

Lmax

Lnl

0.08 10.3 27.6 0.61 9 24 7.14 1.10
0.12 10.3 12.3 0.92 9 10.6 4.76 2.48
0.14 10.3 9 1.07 9 7.8 4.08 3.38

in the signal (see the top curve in Fig. 3). To quantify this strong steepening of the wave front,
we arbitrarily define an event to be extreme when its local slope |dη/dt | > 4σdη/dt , with σdη/dt ≡√

〈(dη/dt )2〉 being the rms value of the wave slope (see Sec. V B). During their propagation, other
wave packets develop into solitons and then propagate with no deformation (see the two top curves).
These pulses are found to be well described by the envelope soliton profile of Eq. (8) with no fitting
parameter (once its maximum amplitude is fixed); see the superimposed dashed lines in Fig. 3.
Finally, other wave packets in the signal spread gently during their propagation due to dispersion.
All these wave packets propagate with the linear group velocity cg (see the red dashed line), the
nonlinear correction being less than 1% for this chosen wave steepness in Fig. 3. In Fig. 4(left),
we report all the experimental runs in a phase diagram showing the coexistence of stochastic waves
with envelope solitons and/or extreme events as a function of the nonlinearity-to-dispersion ratio τ

and the dimensionless distance x/Lnl . The emergence of extreme events occurs after roughly one
nonlinear length scale of propagation. Envelope solitons arise only in an area where nonlinearity
and dispersion are weak (but finite), and of the same order of magnitude as expected from the
NLSE. Indeed, when the steepness is too weak, or the modulation spectral width too large, no
solitons are observed. Note that, according to the value of εη, the last probe is located in this diagram
at different values of x/Lnl , since Lnl depends on εη. Superimposed symbols, for the same set
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FIG. 3. Experimental evolution along the basin length x of the wave height η(t ) recorded at different probe
locations (from bottom to top: x = 0, 3.4, 7, 12.6, 16.3, 20.1, 24.9, and 29.8 m). τ = 0.44 (εη = 0.08 and
�f = 0.16 Hz). Dashed (red) lines have a slope corresponding to the group velocity cg . The dashed (black)
line on top of the two upper curves is the theoretical shape of the envelope soliton of Eq. (8).
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FIG. 4. Phase diagram of stochastic waves (white area) coexisting with envelope solitons (violet area)
and/or extreme events (orange area) as a function of the nonlinearity-to-dispersion ratio τ and the dimensionless
distance x/Lnl . Each performed run is displayed by a symbol corresponding to the observation of (�) only
stochastic waves, (◦) envelope solitons, and (×) extreme events coexisting with stochastic waves. � indicates
the coexistence with few spilling breakers (less than 10%) in time series. Right: Typical envelope soliton
detected at x = 29.8 m (zoom in of a part of the top curve in Fig. 3), τ = 0.44 (εη = 0.08, �f = 0.16 Hz).
(—) Detected envelope. (- - -) Theoretical shape of NLS envelope soliton from Eq. (8).

of parameters, mean that different coherent structures coexist in a same time series. Two nearby
symbols obtained for two different sets of parameters mean that different behaviors are detected in
the two corresponding time series. For τ > 1.5, extreme events are no longer observed since the
spectral width is too small to significantly modulate the carrier wave [not shown in Fig. 4(left)].
Note also that after 3Lnl of propagation few spilling breakers occur in time series (less than 10%
of extreme events). Thus, when nonlinearity and dispersion are weak and of the same order, we
observe a superposition of many interacting coherent structures such as solitons and extreme events
within a sea of random wave packets. We characterize below in detail these coherent structures.

A. Solitons

A typical profile of a soliton within the signal η(t ) is shown in Fig. 4(right) for the same
experimental parameters as in Fig. 3. Its profile is found to be in good agreement with the envelope
soliton profile of Eq. (8) with no fitting parameter (once its maximum amplitude is given). These
solitons are observed with almost no deformation at least over two or three consecutive probes.
To automatically detect the presence of envelope solitons within the temporal signal, we use a
Hilbert transform and a thresholding method. The local maxima of the signal envelope are then
detected and compared with the theoretical soliton profile, the fit being considered successful when
the correlation is better than 80%. The widths Lsol of the solitons detected within a single temporal
signal are shown in Fig. 5(left) as a function of their maximum amplitude Asol. We found that the
taller the soliton is, the narrower it is, with the data being well described by the NLSE prediction of
Eq. (9) with no fitting parameter.

Figure 5(right) shows the number Nsol of detected envelope solitons as a function of the
dimensionless distance x/Lnl for different nonlinearity-to-dispersion ratios τ . Regardless of this
value, Nsol is found to increase with the distance, showing thus that solitons are not present within
the forcing, but emerge from the evolutions of wave packets during their propagation. Fewer solitons
are detected as τ increases since the wave steepness εη has to be weak enough for the NLSE to be
valid. Note that ten solitons are typically detected within a temporal signal, corresponding thus to a
cumulated duration of 4% of the latter.
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FIG. 5. Left: Full width (at half maximum) of detected solitons as a function of their maximum amplitude,
Asol. x = 29.8 m. τ = 0.55 (εη = 0.1, �f = 0.16 Hz). (—) Theoretical prediction from Eq. (9) with no
fitting parameter. Right: Number of detected solitons as a function of the dimensionless distance x/Lnl for
different ratios τ = (�) 0.30 (εη = 0.08, �f = 0.24 Hz), (�) 0.44 (εη = 0.08, �f = 0.16 Hz), (◦) 0.55
(εη = 0.1, �f = 0.16 Hz), and (×) 0.65 (εη = 0.12, �f = 0.16 Hz).

Another type of solitonic structure may appear in our time series. Indeed, Fig. 6(right) shows
a pulse with a profile in good agreement with the Peregrine soliton of Eq. (10), both for its phase
and envelope, with no fitting parameter (once its maximum amplitude is given). Although occurring
much more rarely than the envelope soliton in our time series, this structure similar to a Peregrine
breather can be observed on a single probe emerging spontaneously from the noisy background.
This structure, localized in time and space, is naturally not visible close to the wavemaker [see
Fig. 6(left)]. Once it has been observed [see Fig. 6(right)], its amplitude recorded at the next probe
decreases significantly. A signature of the Peregrine soliton is the π jump of its phase across the
zero amplitude domains separating the “wings” and the central lobe of the Peregrine soliton [66].
We indeed report in Fig. 6(right) this characteristic π -phase jump at times where the amplitude falls
to zero. As far as we know, this striking signature of the Peregrine soliton has been reported only in
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FIG. 6. Left: Wave height signal recorded close to the wavemaker at the first probe (x = 3.4 m). τ = 0.3
(εη = 0.08, �f = 0.24 Hz). Top: Rescaled phase φ/π of the signal. Right: Same part of the signal recorded
at the second last probe (x = 24.9 m) showing a structure similar to a Peregrine soliton. Theoretical temporal
profile (- - -) and envelope (—) of a Peregrine soliton from Eq. (10) with f0 = 0.9 Hz, x = 0, and k0Ap = εη.
Top: (—) Rescaled phase of the signal showing a π jump at times where the envelope falls to zero as predicted
(- - -) by Eq. (10).
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FIG. 7. Left: Wave height signal recorded close to the wavemaker at the first probe (x = 3.4 m). τ = 0.55
(εη = 0.1, �f = 0.16 Hz). Right: Same part of the signal recorded at the last probe (x = 29.8 m) showing
coexistence of two envelope solitons (see full arrows) and three extreme events (see dashed arrows). (- - -)
Theoretical shape of the soliton from Eq. (8).

optics [66], but not for water waves. In hydrodynamics, the Peregrine breather was observed when
the wavemaker is forced by deterministic initial conditions (i.e., injecting the asymptotic Peregrine
solution [50,67,68] that can be perturbated by an applied wind [69]), by a periodic forcing (Stokes
wave field) randomly noised [70], or with a forcing consisting in the Peregrine solution embedded
in a stochastic wave field [71]. To our knowledge, the emergence of a Peregrine soliton occurring
from a fully stochastic forcing, as observed here, has been reported only in optics [17,18]. It is clear
that further detailed investigations are needed to fully characterize this emerging localized structure,
e.g., performing nonlinear spectral analysis [72], and to track it in a longer basin to reach a statistical
quantification of its evolution and occurrences.

In the future, a local IST processing will be applied to our time series to precisely identify and
classify the different types of coherent structures [73]. Note that other methods could be applied
to find hierarchic solutions of the NLSE such as the direct method (Hirota method), the Bäcklund
transformations, or the Darboux transformations [74,75].

Let us now have a look at the temporal evolution of the wave height, recorded at the first and
the last probes, in the reference frame moving with the group velocity cg . Close to the wavemaker
[Fig. 7(left)], the wave amplitude is slowly modulated, leading to wave trains of erratic amplitudes
and widths. Far from the wavemaker, steep events of large amplitude have emerged (see dashed
arrows) as well as envelope solitons (see solid arrows) well described by the prediction of Eq. (8).

B. Extreme events

We characterize now the extreme events detected above. By zooming in on such a structure as
in Fig. 8(left), one observes a very steep gravity wave front of very high amplitude [more than 6ση

here]. This very steep propagative pulse followed by a slow decrease of the envelope, is thus highly
asymmetrical with respect to time. This observation is magnified by superimposing on the same
figure the wave local slope dη/dt [computed from the differential of η(t )]. It shows an intense and
short peak occurring on the forward face of the wave close to the maximum. After the main peak, a
radiative tail follows over typically 5 to 10 periods. These steep events are found to occur randomly
in the signal and have erratic amplitudes (see below). The short oscillations of very small amplitudes
visible on the wave slope signal is an experimental artifact due to the probe mechanical resonance
(∼20 Hz) after the passage of the front. Finally, note that for high enough wave steepnesses
(εη � 0.12), less than 10% of extreme events correspond to the early stage of gentle spilling breakers
(the formation of a bulge in the profile on the forward face of the wave) [76,77]. However, most
of the results presented here are related to the dynamics of wave train steepening and solitons,
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FIG. 8. Left: A typical extreme event as function of time at x = 29.8 m. The wavefront is the left-hand
side. The normalized wave height η(t )/ση is on the left-hand-side axis, and the normalized wave local slope
(dη/dt )/ση̇ is on the right-hand-side axis. τ = 0.44 (εη = 0.08, �f = 0.16 Hz). ση = 2.1 cm. Right: Number
Ne of extreme events detected as a function of the dimensionless distance x/Lnl for different ratios τ (same
symbols as in Fig. 5). Inset: Typical temporal signal of the wave local slope for τ = 0.65 (εη = 0.12, �f =
0.16 Hz) at x = 29.8 m. Solid lines correspond to ±4σdη/dt .

for which dispersion and nonlinearity are of the same order of magnitude and weak enough to be
described by the NLSE.

In order to quantify the number of extreme events, we arbitrary choose a criterion on the
local wave slope, |dη/dt | > 4σdη/dt , instead of the usual one on the amplitude (4ση or twice the
significant wave height). Indeed, we want to characterize quantitatively the extreme events with
very steep fronts, such as the one in Fig. 7(left), that contribute significantly to the high frequency
part of the wave spectrum (see below). Note that 100% of these detected events have an amplitude
larger than 3ση, and 70% to 85% (depending on the forcing parameters) larger than 4ση. As shown
in the inset of Fig. 8(right), peaks of very high amplitudes occur randomly in the wave slope signal,
most of them being larger than ±4σdη/dt . Typically, the cumulated duration of these extreme events
is 10% of the signal duration. The number Ne of extreme events detected with this thresholding
method is shown in Fig. 8(right) as a function of the distance for different nonlinearity-to-dispersion
ratios τ . Ne is found to increase from zero with the distance, showing thus that these extreme events
result from the steepening and merging of the wave trains during their propagation. Ne is also
found to be independent of τ within our range, when rescaling the propagating distance x by the
nonlinear length scale Lnl , based on the NLSE. The onset of occurrence of such steep coherent
structures seems thus to be well described by the NLSE. Moreover, Ne increases linearly with this
rescaled distance once the wave field has propagated more than roughly one nonlinear propagation
length scale. Finally, we checked that the same qualitative results are found when varying the above
thresholding criterion in the range (±3σdη/dt ,±6σdη/dt ).

C. Wave spectrum

When dispersive and nonlinear effects are of the same order of magnitude, the above experi-
mental results show the presence of solitons (solutions of the NLSE), emerging from the initial
random forcing conditions, as well as strong steepening of some wave train fronts, both coherent
structures occurring randomly in the incoherent wave field. To quantify the spectral content of such
an erratic signal η(t ) as displayed in the top inset of Fig. 9, we compute its time-frequency spectrum
Sη(f, t ). To wit, a short-time Fourier transform of η(t ) is computed by fast-Fourier transforms of
overlapping windowed signal segments (using the Spectrogram function from MATLAB software).
The wave spectrum is thus reached at each time over a short time interval. The wave spectrum
as a function of time and frequency is shown in Fig. 9. As expected, its main contributions are
related to the random forcing band near f0 and its corresponding harmonics (nf0 with n = 2 and
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FIG. 9. Top: Temporal wave height signal for τ = 0.44 (εη = 0.08, �f = 0.16 Hz). x = 29.8 m. Bottom:
Time-frequency spectrum Sη(f, t ) of the corresponding wave height η(t ). The color bar is a logarithmic scale
of the spectrum amplitude. Large amplitude events of the wave signal correspond to maxima of the spectrum
at high frequencies (see solid lines).

3). More interesting is the spectral signature of extreme events. Each intense peak within the wave
signal gives a continuous high frequency contribution to the spectrum. Some of these similarities
are emphasized by solid lines in Fig. 9. Extreme events thus contain high frequencies due to their
steep profile.

Figure 10(left) shows the spectra averaged over time of a wave field recorded at the first
probe, close to the wavemaker, and also at the last probe far from the wavemaker [see insets of
Fig. 10(left)]. Here again, close to the wavemaker, a discrete spectrum with main contributions
related to the forcing domain near f0 and its corresponding harmonics (nf0 visible up to n = 5). Far
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FIG. 10. Left: Power spectrum density of η(t ) recorded close to [x = 3.4 m (blue)] and far from [x =
29.8 m (red)] the wavemaker. Dashed lines have slopes α = −6.4 (blue) and α = −4.5 (red). τ = 0.44.
Vertical dashed lines correspond to theoretical satellites of the Benjamin-Feir instability, ±cgKc/(2π ) �
±0.1 Hz. Insets show the corresponding temporal wave height signals close to (bottom) and far from (top)
the wavemaker. Right: Dimensionless width W/�f of the main peak of the spectrum (at one hundredth of its
maximum amplitude) as a function of x/Lnl . �f = (◦) 0.1, (×) 0.07, (�) 0.04, and (�) 0.02 Hz. εη = (blue)
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FIG. 11. Left: Exponent α of the wave spectrum in f α as a function of dimensionless distance x/Lnl for
different ratios τ (same symbols as in Fig. 5). Right: Exponent α as a function of the wave steepness for
different modulation bandwidths �f = 0.09 (◦), 0.16 (

�
), 0.24 (�) Hz at x/Lnl > 1.2. Dashed lines show the

1D wave turbulent prediction −9/2.

from the wavemaker, the high frequency components of the spectrum, as well as frequency domains
between successive harmonics, have strongly increased, to the detriment of harmonics amplitudes.
It thus leads to a monotonic spectrum that is found to decrease as a frequency power law of the form
f −4.5. Extreme events emerging during the propagation [see top inset of Fig. 10(left)] thus populate
the high frequencies of the spectrum. Consequently, far enough from the wavemaker (x/Lnl > 1.5),
nonlinear effects are sufficient to generate extreme events (resulting from the front steepening) that
significantly contribute to the building of the high frequency part of the spectrum. Indeed, steep
extreme events are known to be rich in harmonics. In the low-frequency part, the spectrum develops
a visible asymmetry and a broadening of the main peak near f0 with the propagation distance,
as also observed in Ref. [26]. Indeed, the width W of the main peak increases linearly with the
distance x as shown in the inset of Fig. 10(right). These data roughly collapse on a single curve by
plotting the dimensionless width W/�f vs the dimensionless distance x/Lnl [see Fig. 10(right)].
This broadening is known to be well described by the NLSE, in contrast to the asymmetry that
is captured by a higher (fourth) order extension of the NLSE (Dysthe model) to account for finite
spectrum width [27].

Let us now further characterize the high-frequency part of the spectrum. A frequency-power
law spectrum ∼f α is observed regardless the values of our parameters (εη and �f ) except for a
too slow modulation (�f � 0.05). The evolution of the spectrum exponent α with the distance
for different τ ratios is shown in Fig. 11(left). α is found to be independent of τ in this range of
parameters, when rescaling the propagating distance x by the nonlinear length scale Lnl , based on
the NLSE. At short distances, random steepenings of wave trains and solitons do not have enough
time to emerge in the wave field, and the high frequency part of the spectrum is very steep in order
to connect the noise level. When the wave field propagates over more than one and a half times the
nonlinear propagation length scale (x/Lnl > 1.5), the exponent is roughly found to be constant near
α � −4.2 as a result of the wave steepening as underlined above. Note that this power-law spectrum
could be also ascribed as a signature of a 1D gravity wave turbulence phenomenon. Indeed, the
prediction of 1D unidirectional gravity wave turbulence is α = −9/2 [78–80]. However, the use of
a beach as an efficient damping mechanism inhibits the occurrence of resonant interactions driven
by reflected waves. Moreover, the carrier wave propagates during roughly 40 periods until it reaches
the beach, which is too short to develop nonlinear interactions required by wave turbulence. Besides,
the high-frequency part of the experimental spectrum has been shown above to be a consequence
of the strong steepening of wave trains that are not taken into account by either weak turbulence or
by the NLSE. Indeed, the numerical spectrum of a 1D random wave field described by the NLSE
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FIG. 12. Probability density function (PDF) of normalized wave height η/ση recorded at the first (left) and
last (right) probes (x = 3.4 m and x = 29.8 m, respectively). τ = 0.55 (εη = 0.1, �f = 0.16 Hz). Solid lines
display a Gaussian of zero mean and unit standard deviation. Dashed lines show a Tayfun distribution for a
wave steepness of 0.1.

is exponential near the carrier frequency and display peaks near its harmonics [27]. Here, the 1D
random wave field has a continuous power-law spectrum. The detected extreme events resulting
from strong wave steepening carry intrinsically numerous harmonics. The observed power-law
scaling thus arises probably from the slow random frequency modulation of the harmonics (bound
waves) of the wave field, that is known to generate a continuous power-law spectrum between f −5

and f −4 [81]. In a limit case, if the extreme events tend to display very sharp wave crests (cusps),
and are assumed to propagate without deformation (i.e., ω ∼ k), the spectrum of such singularities
is predicted to scale as f −4 [82], not far from the experimental results. Finally, the exponent α is
shown in Fig. 11(right) as a function of the forcing strength (the initial wave steepness εη). α is
found to be roughly constant, −5 < α < 4, with respect to εη within the experimental estimation
accuracy, showing thus its independence from εη for our range. To sum up, this power-law spectrum
not described by the NLSE arises probably from the random modulation of the harmonics (bound
waves) of the carrier wave.

D. Wave field statistics

The statistical properties of wave fields in integrable turbulence governed by the focusing
NLSE have been experimentally studied recently in optics, and show the emergence of heavy-
tailed statistics [12,17,18]. In hydrodynamics, non-Gaussian wave statistics have been observed
experimentally during the propagation of unidirectional gravity waves forced with random initial
conditions in a deep water regime [25–29], as predicted theoretically by using the NLSE with
random initial forcing [30]. However, it has not been related to the integrable turbulence in the
hydrodynamics case. Here, we discuss the wave field statistics obtained in our experiment.

Figure 12 shows the typical probability density function (PDF) of normalized wave height η/ση,
recorded at the first and last probes. Close to the wavemaker, the PDF is found to be asymmetric
since large crests are more probable than deep troughs as a consequence of the nonlinear effects
that are well described by the Tayfun distribution (the first nonlinear correction to a Gaussian) [83]
(see dashed lines). This PDF asymmetry is routinely observed in laboratory experiments [25,84]
and in oceanography [85]. Far from the wavemaker, the PDF departs from the Tayfun distribution
near 3ση, meaning that high amplitude events are more probable. Such a heavy-tailed distribution
was already reported experimentally [24–28] and could be related to rogue wave formation in ocean
[25,31,33–36].

In optics, the statistics of the power fluctuations of light are measured (i.e., the square of the wave
envelope) instead of the wave displacement. To be able to compare with these results, we compute

114802-15



A. CAZAUBIEL et al.

0 2 4 6 8 10

A2 /  A2 

10-5

10-4

10-3

10-2

10-1

100
P

D
F

 [ 
A2

 / 
 A

2
 

 ]

0 0.5 1 1.5 2 2.5 3
x / L

nl

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

K
ur

to
si

s

FIG. 13. Left: Probability density function (PDF) of the square of the wave envelope, A2/〈A2〉, at different
distances x/Lnl = 0.22, 0.58, 0.82, 1.62, and 1.94 (from bottom to top). Lnl = 15.34 m. τ = 0.55 (εη =
0.1, �f = 0.16 Hz). Dashed line: Exponential (Rayleigh) distribution. Right: Kurtosis of η(t ) as a function
of the dimensionless distance x/Lnl for constant εη = 0.12 and different �f = 0.05 (×), 0.09 (◦), 0.16 (�),
and 0.24 Hz (�) (i.e., τ = 2.29, 1.15, 0.65, and 0.46 respectively). The dashed line displays Gaussian value
(K = 3).

the Hilbert transform of η(t ) to obtain the envelope A(t ). Note that if the statistics of random
independent fluctuations, say η(t ), follows a normal law, then an exponential (Rayleigh) distribution
results for the wave envelope A(t ) = |η(t )| or for the “power” A2 [86]. The PDF of the square of the
wave envelope, A2/〈A2〉, is plotted in Fig. 13(left) at different propagation distances. 〈·〉 stands for
a temporal average. As the wave field moves away from the wavemaker, the PDFs evolve from an
exponential distribution (plotted as a dashed line) to a heavy-tailed distribution. For instance, power
fluctuations ten times greater than the mean power have a probability, far from the wavemaker,
30 times greater than that close to the wavemaker. More precisely, we find that for x/Lnl > 1.6 the
wave system reaches a statistical stationary state in which the PDF no longer changes with distance
[see the top two curves in Fig. 13(left)], the power spectrum of waves being also independent of the
distance [see Fig. 11(left)]. Similar results for the distance independent PDF have been observed
in experiments with optics fibers governed by the focusing NLSE (7) as well as in numerical
simulations of this equation in the context of integrable turbulence [12,17,18]. This statistical
stationary state is stated to be determined by the interaction of coherent nonlinear structures [12].
However, the mechanisms in integrable turbulence that lead to the establishment of this stationary
state with such statistical properties independent of distance (or time) are an open question.

We compute now the skewness, S ≡ 〈η3〉/〈η2〉3/2, and the kurtosis, K ≡ 〈η4〉/〈η2〉2, of the wave
height statistics, quantifying its asymmetry and its flatness, respectively. For a Gaussian distribution,
one has S = 0 and K = 3. At small distance, S is nonzero, confirming the asymmetry observed on
the PDFs. This asymmetry S � 0.3 is found to be roughly constant regardless of the propagation
distance x and the nonlinearity-to-dispersion ratio τ . Figure 13(right) shows the Kurtosis as a
function of the dimensionless distance x/Lnl for different modulation bandwidths �f (i.e., different
τ ) at fixed initial steepness εη. Consistently with the PDF observations, K is found to increase
with the distance regardless of the forcing parameters [either increasing �f or εη (not shown
here) and keeping the other one constant]. Similar observations have been done in Ref. [25]. K

increases strongly once one nonlinear propagation distance is reached. This is consistent with the
fact that, during the wave propagation, more and more coherent structures (such as strong steepening
of the wave trains) are generated [see Fig. 8(right)] and interact with the residual random wave
field. However, when the nonlinearity-to-dispersion ratio τ is of the order of 0.5–0.6 (a value for
which solitons and extreme events coexist [see Fig. 4(left)]), a beginning of saturation of K is
observed with distance for x/Lnl > 2 [see the top curves in Fig. 13(right)]. This regime in which

114802-16



COEXISTENCE OF SOLITONS AND EXTREME EVENTS IN …

statistical properties of waves become independent of the distance is consistent with the above PDF
observations, and is also in agreement with experiments performed in a much longer basin showing
that the NLSE reproduces well this kurtosis behavior [26,27,29]. The most efficient initial condition
of the random wave field to form a sea state with numerous and intense extreme events (i.e., large
K) is thus a weak enough (but finite) dispersion (i.e., dimensionless spectral width) of the order of
twice the nonlinearity (steepness) of the wave field.

VI. CONCLUSION

In nonlinear physics, when nonlinearity is comparable to or exceeds dispersion, different
structures may appear, such as conservative (like solitons) or dissipative structures resulting from
finite-time singularities of the nondissipative equations (such as shocks or wave-breaking) [87].
Identifying such structures and the role they play in determining different stationary statistical states
remains to be investigated in most turbulent systems.

Here, we report the experimental observation of a statistical state for unidirectional propagation
of gravity waves in a deep water regime where coherent structures coexist with smaller stochastic
waves. Such a state is predicted theoretically by NLSE integrable turbulence [11], but had never been
observed before in this context. The nonlinearity (εη) and dispersion (�ω/ω0) are controllable in
our experiment, and are chosen to be similar in order to observe solitons governed by the NLSE. The
nonlinearity-to-dispersion ratio τ ≡ εη/(�ω/ω0) is varied from 0.3 to 2.6. We have characterized
the emergence, the properties, and the evolution of these nonlinear coherent structures (solitons
and extreme events) within the incoherent wave background. The emergence of extreme events
resulting from the strong steepening of wave train fronts occurs after roughly one nonlinear length
scale of propagation (estimated from the NLSE). Envelope solitons and Peregrine solitons are also
observed emerging from the stochastic background. Solitons arise when nonlinearity and dispersion
are weak (but finite), and of the same order of magnitude, as expected from the NLSE. The numbers
of envelope solitons and extreme events are found to increase all along the propagation. When the
nonlinear distance of propagation is reached, the wave spectrum is found to scale at high frequencies
as ω−4.5±0.5. This scaling is robust regardless of the variation of our parameter ranges. Although, this
spectrum scaling could be compatible with the prediction of 1D gravity wave turbulence in ω−9/2

[78–80], the transfer mechanism toward small scales is not due to wave interactions, but is shown
in the spectrogram to be ascribed to the strong wave steepening leading to the presence of extreme
events. Since the latter carry numerous harmonics, this power-law scaling arises probably from the
slow random frequency modulation of the harmonics (bound waves) of the wave field that is known
to generate a continuous power-law spectrum between ω−5 and ω−4 [81]. In a limit case, if these
extreme events tend toward 1D singular coherent structures, their spectrum is predicted to scale as
ω−4 [82]. The wave field statistics is also reported, revealing a heavy-tailed distribution that becomes
independent of the distance after few nonlinear length scales of propagation. To sum up, most of
these observations are compatible with the integrable turbulence theory for the NLSE, but some
deviations are also observed (e.g., the power-law spectrum) related to the strongly asymmetrical
extreme events that exist in hydrodynamics. This hydrodynamics system is thus a good candidate to
question the departure from the integrable turbulence theory in real systems (e.g., how the coherent
structures close to integrability are deformed by bound waves). In the future, we plan to apply a
local IST processing to identify and classify the different types of coherent structures in our time
series and their respective contributions to integrable turbulence [73].
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