
PHYSICAL REVIEW FLUIDS 3, 114605 (2018)

Inertial range skewness of the longitudinal velocity derivative in locally
isotropic turbulence

S. Sukoriansky,1,2,* E. Kit,2,3 E. Zemach,4 S. Midya,2 and H. J. S. Fernando2,5

1Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
2Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre

Dame, Indiana 46530, USA
3School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978, Israel

4SOREQ Nuclear Research Center, Israel
5Department of Aerospace and Mechanical Engineering, University of Notre Dame,

Notre Dame, Indiana 46530, USA

(Received 7 May 2018; published 16 November 2018)

Longitudinal velocity-derivative skewness S0 is directly proportional to the rate of
enstrophy generation and hence is a key parameter for characterizing small-scale turbu-
lence. Obtaining S0 requires accurate measurements of the finest scales in the dissipation
subrange. In this paper we define a derivative skewness of the inertial range scales that is
readily accessible experimentally, and we derive its value analytically. The results depend
on the filtering procedure of small scales. Analytically derived inertial range skewness is
compared with those computed by high-resolution numerical simulations and obtained in
laboratory and field experiments. An alternative definition of the derivative skewness in the
full and the inertial range scales is examined to identify the effects of intermittency.
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I. INTRODUCTION

Turbulence is a multiscale phenomenon [1]. While an accurate description of the largest
fluctuating scales is needed for evaluation of transport of momentum and scalars, characterization of
small-scale properties is important for understanding turbulence dynamics and developing accurate
subgrid-scale (SGS) parametrizations. Difficulties in understanding dynamics at different scales
stem from the strong nonlinearity of dynamic equations and intrinsic instabilities and stochastic
behavior of their solutions. Thus, for progress in turbulence modeling, simplifying assumptions are
made, perhaps the most prominent being the notion of universal self-similar or quasi-self-similar
behavior at small scales. This concept allows us to analytically derive scaling laws and characteristic
scale-dependent parameters of turbulence.

Skewness of the longitudinal velocity derivative, defined as

S0 = 〈(∂u1/∂x1)3〉/〈(∂u1/∂x1)2〉3/2
, (1.1)

is an important parameter pertinent to small scales of turbulence. The symbol 〈·〉 henceforth denotes
ensemble averaging, and the subscript “0” indicates that all scales are accounted for in computation
of skewness. For random noise, S0 = 0, while for locally homogeneous and isotropic turbulence, the
values of −S0 are in the range 0.3–0.5, rising to about 0.7 for high Reynolds number data [1]. This
property of skewness is used as a “quality control” criterion in turbulent velocity measurements.
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Turbulence measurements are usually embedded with a relatively high level of noise due to the use
of intricate instrumentation, such as hot wires or films thermo-anemometers. In acoustic doppler
current profilers, where the signal-to-noise-ratio is relatively low, the skewness can be used to
separate the measured signal into ”good” and “bad” events. In particular, Kit et al. [2] used
skewness of the longitudinal velocity derivative to select appropriate events in an ensemble chosen
for averaging.

The relation between the skewness and enstrophy production, and hence energy transfer down
the spectrum, makes the former even more useful in turbulence studies. In homogeneous isotropic
turbulence, the skewness represents the rate of enstrophy generation due to vortex stretching [3,4].
More precisely, in three-dimensional isotropic turbulence, S0 is a nondimensional measure of the
rate of enstrophy production [5]:〈

ωiωj

∂ui

∂xj

〉
= −35

2
S0

(
ε

15ν0

)3/2

. (1.2)

Here ω is the vorticity, 〈ω2〉/2 is the enstrophy, and ε and ν0 are the mean turbulent kinetic
energy (TKE) dissipation rate and the kinematic molecular viscosity, respectively. This equation
follows directly from the relation〈
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= −35

2

〈(
∂u1

∂x1

)3
〉
, (1.3)

which is valid for isotropic turbulence [6]. Nonlinearity of the Navier-Stokes equation is necessary
but not sufficient for S0 to be nonzero, as it vanishes in the inverse cascade range of two-dimensional
turbulence.

Measurement of S0 in high Reynolds number flows is difficult, because in order to conduct this
measurement, a viscous subrange must be fully and accurately resolved. In addition, while small
scales are the largest contributors to S0, the share of the larger scales is also consequential. As such,
S0 depends on the Reynolds number Re [7]. Numerical simulations and laboratory measurements
at low Re do not give an accurate depiction of skewness for a very large Reynolds number fully
developed turbulence because of the limited range of scales obtainable. Experimental S0 varies over
a wide range, both due to the dependence on Re and the experimental noise and because reliable
measurements are not available hitherto (see Refs. [8–10] and references therein). Moreover, the
noise contribution increases at high Re due to the difficulty of resolving finer scales.

Alternatively, a more easily measurable, yet versatile, parameter is the skewness of velocity
derivatives within the inertial range of scales, which is defined and addressed in the following
sections. Since the scaling subrange is selected, this parameter can be computed in the Fourier
space. For simplicity, we start this analyses assuming the known Kolmogorov constant, CK . More
accurate derivations that do not rely on adjustable parameters will be given in Secs. VI and VII using
quasi-normal-scale elimination (QNSE) theory. Intermittency effects are considered in Sec. VIII.

II. FOURIER SPACE REPRESENTATION OF S0

For isotropic homogeneous turbulence, Eq. (1.1) can be rewritten in the Fourier space. In a
statistically steady state where enstrophy production and dissipation are in balance,〈

ωiωj

∂ui

∂xj

〉
= ν0

〈
∂ωi

∂xj

∂ωi

∂xj

〉
= 2 ν0

∫ ∞

0
k4E(k) dk, (2.1)

where E(k) is the three-dimensional energy spectrum. Recalling that in isotropic turbulence ε is
related to the spectrum E(k) and the one-dimensional longitudinal spectrum E1(k1) as

ε = 2ν0

∫ ∞

0
k2E(k) dk = 15ν0

∫ ∞

0
k2

1E1(k1) dk1, (2.2)
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and substituting (2.1) and (2.2) into (1.2), one gets the following spectral representations:

S0 = − 4

35

ν0
∫ ∞

0 k4E(k) dk[∫ ∞
0 k2

1E1(k1) dk1
]3/2 = −3

√
30

7

ν0
∫ ∞

0 k4E(k) dk[∫ ∞
0 k2E(k) dk

]3/2 . (2.3)

The analytical computation based on Eq. (2.3) or a similar expression depends strongly on the
form of energy spectrum in the dissipation subrange, which remains uncertain.

III. INERTIAL RANGE SKEWNESS

Let u(x, t ) be the homogeneous isotropic velocity field. For any cutoff wave number kc we define
the filtered velocity field u(x, t |kc ) as the physical space velocity with all Fourier modes |k| > kc

set to 0:

u(x, t |kc ) = F−1(ũ(k, t )θ (kc − |k|)). (3.1)

Here θ is the Heaviside step function and F−1 is the inverse Fourier transform operator. Skewness
Skc is defined according to (1.1) with the original velocity replaced by the filtered velocity u(x, t |kc ).
If kc belongs to the inertial range, then both 〈(∂u1/∂x1)3〉 and 〈(∂u1/∂x1)2〉 should be independent
of ν0 and forcing details and should depend only on the energy injection rate ε and kc. Then, from
dimensional analysis, the dimensionless parameter Skc is a constant independent of kc.

The dynamical effect of filtered small scales can be represented by an eddy viscosity, which
is introduced in such a way that the energy exchange between the eliminated and the remaining
“resolvable” scales remains unchanged. The energy transfer from resolvable scales to the eliminated
ones can be viewed as an energy loss due to eddy viscosity and will be kept equal to the energy
dissipation rate of original turbulence by the molecular viscosity ν0. Kraichnan [11] has shown that
an effective eddy viscosity acting on resolvable modes k < kc must depend on two parameters, k

and kc. Computation of Skc using Kraichnan’s two-parametric eddy viscosity ν(k|kc ) will be given
in Sec. VII. A simpler derivation presented in this section is based on the Kolmogorov spectrum
and eddy viscosity that accounts for the dissipative action of eliminated scales on all remaining
scales k < kc yet depends only on kc. The eddy viscosity ν(k|kc ) has a cusplike form as k → kc

[11]. Ignoring the cusp, the approximate k-independent value ν(kc ) can be found from the energy
balance equation

ε = 2 ν(kc )
∫ kc

0
k2E(k) dk. (3.2)

Substituting the inertial range Kolmogorov spectrum E(k) = CK ε2/3k−5/3 one finds

ν(kc ) = 2

3CK

ε1/3k−4/3
c . (3.3)

For the filtered velocity u(x, t |kc ), the enstrophy production relation (2.1) holds with the upper
limit of integration replaced by kc and the molecular viscosity ν0 replaced by ν(kc ):〈

ωiωj

∂ui

∂xj

∣∣∣∣kc

〉
= 2 ν(kc )

∫ kc

0
k4E(k) dk = 2

5
εk2

c . (3.4)

Let us now derive the filtered field equivalence of the denominator in Eq. (1.1). The spectral
tensor of the solenoidal isotropic field is [4]

Fij (k) = E(k)

4πk2

(
δij − kikj

k2

)
. (3.5)
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Integrating k2
1F11(k) over the sphere of radius kc we obtain the required relation:〈[

∂u1(x|kc )

∂x1

]2
〉

= 1

10
CKε2/3k4/3

c (3.6)

The inertial range skewness Skc can now be computed using, (1.3), (3.4) and (3.6) with the result

Skc = −8
√

2/5

7C
3/2
K

. (3.7)

The same result can be obtained using the modified Eq. (2.3), with the upper limit of integration
replaced by kc and the molecular viscosity ν0 replaced by ν(kc ). For the Kolmogorov constant CK

value belonging to the interval between 1.5 and 1.7, the value of Skc is between −0.393 and −0.326.
This result will be verified in Sec. V using direct numerical simulations.

IV. INERTIAL RANGE SKEWNESS IN ONE-DIRECTIONAL FILTERING

The inertial range skewness defined above can be assessed using laboratory data if the total
turbulent field is measured. However, usually this is not obtained in field experiments where
only longitudinal spectral components are collected by a hot-wire probe. In this case, a different
derivation of inertial range skewness is needed.

We start from the derivation of the equation for S0 utilizing the Von Karmán-Howarth-
Kolmogorov equation (VKHK) written in physical space ( [12,13]). The VKHK equation is an exact
dynamical relation which can be derived from the Navier-Stokes equations for isotropic turbulence
[4],

DLLL(r ) − 6ν0[dDLL(r )/dr] = −4/5 εr. (4.1)

Here DLL(r ) and DLLL(r ) are the second- and the third-order velocity structure functions,
respectively:

DLL(r ) = 〈[u1(x1 + r ) − u1(x1)]2〉, (4.2)

DLLL(r ) = 〈[u1(x1 + r ) − u(x1)]3〉. (4.3)

Nelkin [13] derived an equation for S0 using the Taylor expansion of Eq. (4.1), which, in terms
of order r , gives the energy dissipation

ε = 15ν0〈(∂u1/∂x1)2〉, (4.4)

while the terms of order r3 express the balance between enstrophy production and dissipation:

〈(∂u1/∂x1)3〉 = −2 ν0〈(∂2u1/∂x1
2)

2〉. (4.5)

The last relation allows one to rewrite the skewness S0 in spectral form:

S0 = −2 ν0〈(∂2u1/∂x1
2)

2〉/〈(∂u1/∂x1)2〉3/2 =−2 ν0

∫ ∞

0
k1

4E1(k1) dk1

/[∫ ∞

0
k1

2E1(k1) dk1

]3/2

.

(4.6)

Let u1(k1, x2, x3, t ) = ∫
u1(x1, x2, x3, t ) exp(−ik1 · x1) dx1 be the one-dimensional Fourier

transform of the velocity component u1. For a cutoff wave number k1c, we now define the filtered
velocity component u1(x, t |k1c ) as the physical space velocity with all Fourier modes |k1| > k1c set
to 0. The skewness S1c is defined according to (1.1) with the original velocity replaced by the filtered
velocity u1(x, t |k1c ).
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The one-directional filtering destroys the isotropy of the remaining resolvable modes, which
significantly complicates the derivations. Still, derivations similar to those that resulted in (4.6) and
based on structure functions (4.2, 4.3) can be employed in order to compute inertial range skewness
S1c. Modification is needed since filtering out of modes |k1| > k1c generates the eddy viscosity
ν1(k1c ) that replaces the bare viscosity ν0. Note, that the “eddy viscosity” ν1(k1c ) results from the
elimination of modes with only the first component of the vector k larger than k1c. It is different
from the isotropic eddy viscosity (3.3) obtained by scale elimination of all modes with |k| > kc. We
also ignore a possible cusplike behavior of the corresponding two-parametric viscosity.

An expression for ν1(k1c ) can be derived using the energy balance equation that accounts for the
fact that the energy “loss” based on the eddy viscosity is equal to the energy dissipation rate of the
original turbulence at molecular scales:

ε = 15ν1(k1c )
∫ k1c

0
k2

1E1(k1) dk1, (4.7)

where the longitudinal energy spectrum E1(k1) is

E1(k1) = (18/55) CKε2/3k
−5/3
1 . (4.8)

Substituting (4.8) into (4.7), we obtain

ν1(k1c ) = 22

81 CK

ε1/3k
−4/3
1c . (4.9)

We now define the second- and the third-order longitudinal velocity structure functions of the
filtered velocity component u1(x, t |k1c ):

D̃LL(r ) = 〈[u1(x1 + r|k1c ) − u1(x1|k1c )]2〉, (4.10)

D̃LLL(r ) = 〈[u1(x1 + r|k1c ) − u1(x1|k1c )]3〉. (4.11)

After filtering, the left-hand side of Eq. (4.1) becomes D̃LLL(r ) − 6ν1(k1c )[dD̃LL(r )/dr]. At
large separation distances r � 1/k1c, the viscous term in this expression is negligibly small and
the remaining third-order structure function approaches the Kolmogorov limit D̃LLL(r ) → −4/5εr .
Assuming that the separation distance r is infinitesimally small, it is possible to compute the Taylor
series decomposition:

D̃LLL(r ) − 6ν1(k1c )[dD̃LL(r )/dr] = −12 ν1(k1c )〈[∂u1(x1|k1c )/∂x1]2〉r
= −4/5εr + O(r3). (4.12)

In this derivation, we routinely imposed the condition of flow homogeneity. The final result
is identical to the Taylor series decomposition of Eq. (4.1) with the exception that ν0 in this
decomposition is replaced by ν1(k1c ), given by (4.9). The same is true also for the next O(r3)
term, which has the form (〈[∂u1(x1|k1c )/∂x1]3〉 + 2 ν1(k1c )〈[∂2u1(x1|k1c )/∂x1

2]2〉)r3. Note that the
filtered field remains homogeneous and isotropic on scales |k| < k1c, and that Eq. (4.12) has the
same asymptotic value −4/5εr at large and small r as the original VKHK equation. We therefore
infer that the VKHK equation remains intact also for the filtered velocity if the molecular viscosity
is replaced by ν1(k1c ). Thus, the coefficient in the r3 term of (4.12) is equal to zero, which leads to
the filtered field analog of Eq. (4.5):

〈[∂u1(x1|k1c )/∂x1]3〉 = −2 ν1(k1c )〈[∂2u1(x1|k1c )/∂x1
2]

2〉. (4.13)

Equation (4.13) yields the inertial range skewness S1c in the form

S1c = −2 ν1(k1c )〈[∂2u1(x1|k1c )/∂x1
2]2〉

〈[∂u1(x1|k1c )/∂x1]2〉3/2 = −2 ν1(k1c )
∫ k1c

0 k4
1E1(k1) dk1[∫ k1c

0 k2
1E1(k1) dk1

]3/2 . (4.14)
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FIG. 1. One-dimensional spectra of three velocity components, u (blue), v (green), and w (red); the dashed
line corresponds to the Kolmogorov −5/3 spectrum.

Finally, substituting (4.8) and (4.9) into (4.14), we get

S1c = − 88

243

√
22

15
C−3/2

K
. (4.15)

As expected, the inertial range skewness is independent of the cutoff wave number k1c. For the
Kolmogorov constant CK value between 1.5 and 1.7, S1c is between −0.239 and −0.198. These
values are smaller than the values of Skc [Eq. (3.7)] by the factor 1.648. In the next section, we use
large Reynolds number and high-resolution atmospheric and laboratory measurements to verify this
analytical prediction.

V. COMPUTATION OF SKEWNESS FROM ATMOSPHERIC MEASUREMENTS, LABORATORY
EXPERIMENTS, AND NUMERICAL SIMULATIONS

Atmospheric measurements conducted during the MATERHORN campaign were used to
compute the inertial range skewness S1c. The campaign was conducted at the Granite Mountain
Atmospheric Sciences Test Bed (GMAST) of the U.S. Army Dugway Proving Ground (DPG),
Utah (for details, see Refs. [14,15]). In one of the 32-m-high flux towers of MATERHORN, a
double-combo system was mounted at a height of 6 m, and this tower was a part of the densely
instrumented flux tower array, designed to study stable stratified downslope (katabatic) flows at
night on the eastern slope of the Granite Mountain. The combo systems and associated turbulence
measurements are described in Ref. [9]. In this system, multi-hot-wire probes were embedded into
the measured volume of a collocated sonic anemometer. Such a dyad (“combo”) enables in-situ
calibration of a hot-film probe, as was discussed in Refs. [9,16].

As explained in Ref. [9], some data periods include burst events that may affect the skewness.
Therefore, the data intervals that do not contain bursts were chosen first. The data contain 9 min
of velocity measurements with a sampling rate of 2000 Hz. This allowed dealing with velocity
fluctuations for frequencies up to 1000 Hz (Nyquist frequency). The total length included 1 080 000
data points for every velocity component. Each array was partitioned on nine pieces, with each piece
containing 1 min of measurements. The partition was used for ensemble averaging.

The kinetic energy spectra of all three velocity components (u, v, w) are shown in Fig. 1.
Components u and v are horizontal and w is vertical, and u is in the mean wind direction. The Taylor
frozen turbulence hypothesis was employed in spectral computations, and the frequency-dependent
spectra are shown. It is possible to transform the frequency to the wave number kx using the
longitudinal average wind speed U as

kx = 2πf/U. (5.1)
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FIG. 2. Scale-dependent skewness S1c as a function of the cutoff frequency fc. The analytical value 0.24 is
shown by a dashed line.

A well-defined inertial range is evident over almost two decades of frequences 1 < f < 100 Hz.
The dissipation range at f > 100 Hz is also well resolved. Note that the Taylor microscale is λ =
0.1 m, which corresponds to the frequency 40 Hz. The Taylor microscale Reynolds number is Rλ ≈
1250.

For every cutoff frequency fc, the fc-dependent skewness was computed using the following
steps: in the Fourier transformed longitudinal velocity ũ(f ), all the frequency modes outside of
the interval −fc < f < fc are set to 0; then the inverse Fourier transform of the filtered velocity
ũ(f |fc ) is taken and the filtered velocity u(t |fc ) is obtained in the physical space; the time derivative
∂u(t |fc )/∂t is calculated and substututed in the following formula, which leads to the final result:

S1c = − 〈[∂u( t |fc )/∂t]3〉
〈[∂u( t |fc )/∂t]2〉3/2 . (5.2)

Use of the Taylor hypothesis allows the time derivative of a single-point measurement to be
related to the spatial derivative as

∂u

∂t
= −U

∂u

∂x
. (5.3)

Substitution of (5.3) into (5.2) confirms that (5.2) is identical to the k1c-dependent skewness S1c

defined in the previous section.
The scale-dependent skewness is shown in Fig. 2. In the inertial range 10 < fc < 100 Hz, the

measured skewness is almost identical to the theoretical prediction. The gradual decrease of the
skewness at fc < 10 Hz is due to the effect of large scales that do not belong to the inertial range.

In order to clarify the large-scale influence, we computed skewness at the cutoff frequency fc =
85 Hz from the filtered data in which, in addition to high-frequency modes |f | > fc, low-frequency
modes |f | < fl were also removed. The result is shown in Fig. 3 as a function of fl . If all low-
frequency modes are kept (fl = 0), the skewness is very close to the theoretical value −0.24. With
increasing low-frequency cutoff, the skewness remains almost constant up to fl ≈ 2. Above this
value, the skewness decreases with increasing fl until it approaches 0 at fl → fc. Thus, we conclude
that the skewness is not a local parameter: almost two decades of inertial range modes below the
given frequency fc contribute to S1c.

A. Laboratory measurements: Turbulent jet

The results from the jet facility [16] were employed for computations of skewness in the
inertial range. The jet facility used was a multipurpose calibration rig. It was used to obtain a
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FIG. 3. Scale-dependent skewness at fc = 85 Hz as a function of the low-frequency cutoff fl. Analytical
value (0.24) is shown as a dashed line.

canonical turbulent (jet) flow in the laboratory and also as a calibrator in the field. The laboratory
measurements may have some advantages in comparison with field experiments. The mean jet
direction and velocity are known, and temperature variations are minimal in the laboratory. In the
field, however, the wind velocity and direction are variable depending on the larger-scale forcing
conditions.

The custom-made calibration unit consisted of a computer-controlled blower, connected to a
settling chamber followed by a contraction with a cross-section ratio approximately 11 and exit
nozzle diameter De = 38.1 mm. The same facility was used to measure all three components of
turbulent velocity at various downstream cross sections. For more details, see Ref. [16].

Spectra in this case are not isotropic (not shown) and have only a very short inertial range (Fig. 4).
Skewness, accordingly, is close to the theoretical value of 0.24 only in a very short frequency interval
(Fig. 5).

B. Numerical simulations

Skewness of the longitudinal velocity derivative from inertial to dissipation ranges of three-
dimensional (3D) homogeneous steady turbulent flow was studied using a high-resolution direct

FIG. 4. One-dimensional spectrum of horizontal velocity component in the jet experiment; the dashed line
corresponds to the Kolmogorov −5/3 spectrum.
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FIG. 5. Scale-dependent skewness S1c in the jet experiment as a function of the cutoff frequency fc.
Analytical value (0.24) is shown as a dashed line.

numerical simulation (DNS) with 10243 grid points. A pseudospectral code with large-scale random
forcing and triply periodic boundary conditions was used. The white in time Gaussian forcing was
placed in the range of scales 1 � k �

√
6. Details of the numerical scheme can be found in Ref. [17].

The Taylor microscale Reynolds number Rλ was 380.
The 3D energy spectrum is presented in Fig. 6. The spectrum has a well-developed inertial range

of 3 < k < 80 with a Kolmogorov constant of CK = 1.64. Skewness parameters Skc and S1c, shown
in Fig. 7, are very close to theoretical values in the inertial range, except at scales near the forcing
scale. In the dissipation range when all scales are resolved, the absolute value of skewness is larger,
close to 0.6, which indicates that energy dissipation decreases here more rapidly than enstrophy
production.

VI. QNSE THEORY AS AN EFFICIENT TOOL TO COMPUTE INERTIAL RANGE PROPERTIES:
SHORT DESCRIPTION OF THE QNSE METHODOLOGY

Inertial range skewness (3.7) derived in Sec. III relies on the assumption of the one-parametric
eddy viscosity ν(kc ) and strongly depends on the empirical Kolmogorov constant CK . In this section
we use quasi-normal-scale elimination (QNSE) theory [18,19] to remove these restrictions. The
QNSE method utilizes the Fourier transformed equations of motion and is well suited for calculating
inertial range parameters. The major difficulty, however, is the fact that the momentum equation
becomes strongly nonlinear as the Reynolds number increases with increase of scale. The situation

FIG. 6. Three-dimensional energy spectrum computed in DNS.
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FIG. 7. Scale-dependent skewness Skc (blue) and S1c (red) obtained in the DNSs as a function of the cutoff
wave number. Analytical values corresponding to Eqs. (3.7) and (4.15) are shown as dashed lines.

is different near the dissipation scales where the linear and nonlinear effects are comparable. In
other words, the scale-dependent Re is O(1) on these scales. The smallness of Re allows one to
apply a renormalized perturbation method operating with a “dressed” or “effective” eddy viscosity,
rather than with the “bare” molecular value. The QNSE method employs gradual coarsening of the
turbulent field by successive averaging over small shells �k of Fourier modes adjacent to moving
dissipation cutoff kc (shell elimination procedure). The averaging generates small O(�k) correction
to the viscosity that accounts for the transport processes that take place on the eliminated scales.
With the increase of effective viscosity, the effective dissipation wave number kc also decreases.
The effective Re built upon the scales pertinent to the new value of kc is again O(1), thus making
it possible to repeat the procedure. Taking the limit �k → 0, one obtains a differential equation
relating the effective viscosity to the current value of kc. The effective kc-dependent (eddy) viscosity
resulting from this procedure can be used as a SGS viscosity in large eddy simulations, where kc is
determined by the grid resolution [20–22]. The algorithm of successive small scale elimination was
initially developed within the renormalization group theory of turbulence (RNG) [18,23–26], but it
differs from RNG because it uses neither the ε expansion nor the fixed-point arguments. Instead,
the QNSE theory relies upon the assumption of quasinormality within the shell �k. The QNSE
method has been applied to various turbulent flows such as isotropic homogeneous turbulence with
no extra strains [18], stably stratified flow [19], turbulent magneto-hydrodynamic flow [28], and
turbulent flow in a rotating frame [27]. In the case of neutral flow, the QNSE theory recovers the
RNG results, yielding the classical Kolmogorov and Corrsin-Obukhov spectra of the kinetic energy
and temperature fluctuations and their respective universal constants. According to this theory, the
wave number-dependent eddy viscosity ν(kc ) is

ν(kc ) ≈ 0.46 ε1/3kc
−4/3. (6.1)

The eddy viscosity (6.1) is calculated using the “distant interaction” or “spectral gap” approxi-
mation [27]. In this computation only the terms up to O[(k/kc )2] are retained. This is equivalent
to introducing a virtual spectral gap between resolvable and eliminated scales and taking the
renormalized viscosity acting on the scales k ∈ (0, kc ) constant and equal to their values at kc.
The three-dimensional energy spectrum E(k) in a neutral flow derived within the QNSE framework
[19] is

E(k) = CK ε2/3k−5/3, (6.2)

with CK ≈ 1.5.
In the next section we introduce a correction to this value and derive the actual two-parametric

eddy viscosity ν(k|kc ) accounting for the effect of the eliminated scales on different resolvable
scales k.
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FIG. 8. Normalized two-parametric viscosity.

VII. COMPUTATION OF INERTIAL RANGE SKEWNESS USING QNSE RESULTS
AND TWO-PARAMETRIC EDDY VISCOSITY

Kraichnan [11] has shown that an effective eddy viscosity acting on resolvable modes k < kc

must depend on two parameters, k and kc, and may be defined as

ν(k|kc ) = − T (k|kc )

2k2E(k)
, k < kc, (7.1)

where T (k|kc ) is the energy transfer rate from mode k to all eliminated modes k > kc. The transfer
function T (k|kc ) obeys the detailed conservation condition, wherein any triad satisfying k + p +
q = 0 exchanges energy among their members conservatively. In a wide class of quasinormal
spectral closures, [11,29] the triad interaction is given by the integral

T (k|kc ) =
∫∫

�

k

p q
θkpqbkpq[k2E(p) − p2E(k)]E(q ) dp dq. (7.2)

Here the integration
∫∫

� signifies p and/or q > kc, bkpq = p

q
(xy + z3), x, y, z are cosines of

interior angles opposite k, p, q, respectively, and θkpq is the triad relaxation time. Different spectral
closure models provide different expressions for θkpq . We compute θkpq using the QNSE theory:

θkpq = 1

ν(k)k2 + ν(p)p2 + ν(q )q2
, (7.3)

where ν(k) is given by (6.1).
The normalized two-parametric viscosity ν(k|kc )/ν(kc ) is presented in Fig. 8 as a function of

k/kc. One can see that this function has a cusp at k approaching kc.
The two-parametric viscosity ν(k|kc ) was tested in DNSs of homogeneous isotropic 3D turbu-

lence in a triply periodic box with 5123 nodes. The molecular viscosity was replaced by ν(k|kc )
with kc = 240. The energy spectrum E(k) of the simulated velocity field is shown in Fig. 9. The
−5/3 scaling is clearly seen in the whole range of resolvable scales.

The inertial range skewness Skc can be computed using the modified Eq. (2.3) with molecular
viscosity ν0 replaced by ν(k|kc ):

Skc = − 4

35

∫ kc

0 k4ν(k|kc )E(k) dk[
2
/

15
∫ kc

0 k2E(k) dk
]3/2 ≈ −0.46. (7.4)

The absolute value of this parameter is larger than 0.39 derived in Sec. III using the one-
parametric viscosity [Eq. (3.7) with CK = 1.5]. This is because the cusp in the two-parametric
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FIG. 9. 3-D spectrum obtained using DNSs with the two-parametric viscosity. Note the −5/3 shape in the
entire spectral range.

viscosity increases the contribution of the third moment of ∂u1/∂x1 relative to its second moment.
The DNS results shown in Sec. V support a smaller value |Skc| = 0.39. However, the DNS results are
pertinent to a relatively small Re number. A higher resolution DNS with high Re numbers is needed
to verify which of these results is more reliable. Note that Skc in (7.4) is close to −0.49 derived
using the RNG method [25]. Recall, that while being conceptually close to the RNG theory, the
QNSE derivations of skewness do not employ the ε expansion and distant interaction approximation,
according to which the “renormalized” parameters are computed at k → 0.

VIII. INTERMITTENCY EFFECTS

Data obtained in the atmosphere and laboratory and in numerical simulations show that the
skewness S0 depends on the Reynolds number [7]. Measurements over a wide range of Rλ [30]
indicate that S0 first increases with Rλ up to Rλ = 700 and then plateaus. Such behavior can
be explained by the influence of fluctuations of the rate of local turbulent energy dissipation on
higher-order structure functions at small separation distances r [31]. However, in more recent
experiments in wind tunnels [32], the transition at Rλ = 700 has not been observed, wherein
S0 continued to increase slowly with Rλ, although a good agreement was noted with previous
experiments for Rλ < 400.

Owing to intermittency effects, as the Reynolds number increases, the distribution of velocity
derivatives tends to become increasingly flatter with rising “tails” [33]. Skewness, defined as the
third-order moment of velocity derivative normalized by the second-order moment, mixes moments
of different orders, and thus may increase with Rλ. A reviewer suggested a different form of
skewness,

S̃ = 〈(∂u1/∂x1)3〉/〈|∂u1/∂x1|3〉, (8.1)

which is worthy of examination.
For brevity, let us denote the velocity increment �ur = u(x + r ) − u(x) by X (we will use the

same notation also for the longitudinal derivative assuming infinitesimal r). Consider the normalized
pth-order moment of |X|:

H ∗
p = 〈|X|p〉

(〈X2〉)p/2 . (8.2)

The conventional pth-order moment of X can be written in the form

Hp = 〈Xp〉
(〈X2〉)p/2 = 〈Xp〉

〈|X|p〉H
∗
p . (8.3)
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FIG. 10. Comparison of old (red) and new (blue) scale-dependent skewness S1c and S̃1c calculated using
MATERHORN data as a function of the cutoff frequency fc. The inertial subrange values are shown by dashed
lines.

Hp depends on Rλ due to the intermittency effect. For even p, the factor 〈Xp〉/〈|X|p〉 = 1 and
the intermittency effect is imbedded in H ∗

p . It is reasonable to assume that for any real p, H ∗
p

alone carries the effects of intermittency. This conjecture is supported by the fact that the factor
〈Xp〉/〈|X|p〉 in (8.3) weights both Xp and |X|p for the same values of X within its probability
distribution function P (X), thus presumably eliminating the intermittency effect. It is also supported
by the results presented in Ref. [34], which indicate that H3 and H ∗

3 behave similarly with respect
to dependence on Rλ.

The ratio S0/S̃ = H ∗
3 represents the normalized third-order moment of |∂u1/∂x1|. As follows

from the above, H ∗
3 can be considered as an appropriate “intermittency descriptor (sifter),” and

therefore the new skewness S̃ is expected to be less affected by intermittency. We computed the
scale-dependent values S̃kc and S̃1c of the redefined skewness using small-scale filtering procedures
described in Secs. III and IV. Comparison of S1c and S̃1c computed from the atmospheric data
collected during the MATERHORN campaign are shown in Fig. 10. Figure 11 compares S1c with
S̃1c and Skc with S̃kc, based on 10243 resolution DNSs at Rλ = 380.

In all cases in the inertial subrange, the newly defined values are smaller than the conventional
ones approximately by a factor of 2. When all modes are taken into account, including the

FIG. 11. Comparison of old (red) and new (blue) DNS-derived scale-dependent skewness S1c, S̃1c, Skc, and
S̃kc as functions of the cutoff wave number kc. The inertial subrange values of each parameter are shown by
dashed lines.
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dissipation range scales, the ratio grows to approximately 2.5. As explained above, this ratio is
determined by the intermittency descriptor H ∗

3 = 〈|∂u1/∂x1|3〉/〈(∂u1/∂x1)2〉3/2
. The value of this

factor for a Gaussian random variable is about 1.6, lower than the values of H ∗
3 computed both

from the filtered (∼2) and original flow fields (∼2.5). Further high-quality experiments in the
atmospheric boundary layer and high-resolution DNSs are necessary to establish the dependence
of the skewness factor on Rλ and to investigate whether H ∗

3 enables to completely separate the
effects of intermittency.

IX. CONCLUDING REMARKS

The skewness of the longitudinal velocity derivative is directly related to the enstrophy
production and therefore is an important parameter for describing turbulence. In addition, the
skewness is used for qualitative assurance of turbulence measurements, for example, level of noise
and unsteadiness. Measurement of skewness requires accurate measurements at the finest scales
in the dissipation subrange, which is an onerous task. In this paper, a derivative skewness of
the inertial range scales that is conducive for measurements was introduced and its value was
derived analytically using one-parametric and more accurate two-parametric eddy viscosities. The
assumption of local isotropy enabled obtaining exact relations for the case where all modes with
their wave number amplitude greater than a cutoff kc were set to zero. In the case of one-dimensional
(1D) filtering, which is more appropriate when field measurements are considered, the filtered form
of the VKHK equation was employed. The experimentally determined values of the inertial range
skewness were in very good agreement with the theoretical prediction based on the assumption of
isotropy.

When fine scales of the order of the Kolmogorov scale are accurately resolved, the skewness
can be computed straightforwardly. In the current study we used high-quality data collected during
the MATERHORN field campaign, laboratory experiments, and DNSs. The MATERHORN data
were obtained under nocturnal conditions in a mountain terrain, but stratification therein was weak.
An obvious advantage is that these data belong to high Reynolds numbers typical of environmental
turbulence, and the Taylor microscale Rλ of the field data used was of the order of 1300. On the
other hand, the necessity of using robust high-resolution probes in this natural environment required
the use of relatively large, multisensor-hot-film probes (few millimeters) that limit the measurement
resolution at fine scales. To circumvent this limitation, the derivative skewness determined for the
inertial range was used. There are notable advantages of using this special skewness: (1) no necessity
to resolve fine scales, (2) can be estimated analytically by employing very general assumptions, and
(3) in the inertial subrange, this newly defined skewness is not dependent on the cutoff frequency.

Additionally, isotropic turbulence was simulated numerically at relatively high resolution (10243)
in a triply periodic box using DNSs. A fairly well-developed inertial range with a Kolmogorov
constant CK = 1.64 was obtained. The skewness was computed using 3D and 1D filtering of the
velocity fields. The values computed for the inertial range were close to the theoretical prediction
corresponding to CK = 1.64, but slightly lower than the value derived from the MATERHORN
data. The difference may indicate that the computational resolution of DNSs is not sufficient.

The two-parametric eddy viscosity was derived using QNSE modeling. To check the validity,
it was implemented in DNS computations. The resulting spectra were of Kolmogorov type in the
whole range of wave numbers smaller than the cutoff kc and sharply dropped to 0 at values higher
than the cutoff. The skewness in the inertial range obtained using the two-parametric viscosity was
Skc = −0.46. This is higher than the DNS-derived value. The reason for this difference is unclear,
and future studies should examine whether it is due to insufficient DNS resolution or the deficiencies
of the two-parametric viscosity used. The accurate value of the inertial subrange skewness can be
used for quality assurance of DNS data, to determine how close the simulations represent the correct
turbulent velocity field.

In numerical simulations with Rλ up to 380, the dependence of inertial range skewness on Rλ

was not observed. It is known that intermittency is stronger on dissipative scales than in the inertial
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range. Also, the effect of intermittency is strong for high-order moments and relatively mild for
third-order moments. Therefore, the inertial range skewness is expected to weakly depend on Rλ.
This conjecture needs to be examined in future studies.

The inertial range skewness is different from the normalized third-order structure function
DLLL(r )/[DLL(r )]3/2 computed at a large separation r [35–37]. At large r the viscous term in
the VKHK Eq. (4.1) can be neglected, the third-order structure function DLLL(r ) approaches the
Kolmogorov −4/5 limit and DLLL(r )/[DLL(r )]3/2 → −0.28. The inertial range skewness S1c, on
the other hand, is computed at infinitesimally small r using the filtered VKHK Eq. (4.12), where the
“renormalized” eddy viscosity plays the dominant role.

Real turbulent flows are often affected by external body forces such as buoyancy and Coriolis
forces that act differently on different scales. The derivative skewness of the filtered velocity field
with moving filtration cutoff kc may shed light on modification of spectral energy transport and
vorticity dynamics by external forces.
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