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The stability of flows in layers of finite thickness H is examined against small-scale
three-dimensional (3D) perturbations and large-scale two-dimensional (2D) perturbations.
The former provide an indication of a forward transfer of energy while the latter indicate
an inverse transfer and the possibility of an inverse cascade. The analysis is performed
using a Floquet-Bloch code that allows examination of the stability of modes with arbitrary
large-scale separation. For thin layers, the 3D perturbations become unstable when the
layer thickness H becomes larger than H > c1(ν�

U
/U )1/2 = c1�U

Re−1/2, where U is the
rms velocity of the flown, �

U
is the correlation length scale of the flow, ν is the viscosity,

and Re = �
U
U/ν is the Reynolds number. At the same time, large-scale 2D perturbations

also become unstable by an eddy viscosity mechanism when Re > c2, where c1, c2 are
order 1 nondimensional numbers. These relations define different regions in parameter
space where 2D and 3D instabilities can (co)exist and this allows us to construct a stability
diagram. Implications of these results for fully turbulent flows that display a change of
direction of cascade as H is varied are discussed.

DOI: 10.1103/PhysRevFluids.3.114601

I. INTRODUCTION

In many systems in nature, there is a transfer of energy to both large and small scales [1–10].
This transfer at large Reynolds numbers leads to a split cascade of energy such that part of the
energy cascades to the small scales and gets dissipated while at the same time part of the energy
cascades to the large scales, typically forming large-scale coherent structures [11–18]. For a recent
review and classification of such split cascades, see Ref. [19]. A typical example of such a behavior
is observed in the Earth’s atmosphere where, due to the combined effects of confinement, rotation,
and stratification, there is this split cascade leading to both small-scale turbulence and fast mixing as
well as large-scale structures like zonal flows and hurricanes. This split cascade has been quantified
by in situ aircraft measurements in the hurricane boundary layer [20]. In the presence of a split
cascade, the amplitude of the inverse cascade depends on a control parameter, whose variation
makes the system transition from a state exclusively cascading energy to the small scales to a state
that the energy cascade is split or strictly inverse. The simplest example perhaps is turbulence in
layers of finite thickness H such that at scales L much larger than the thickness, L � H , the flow
looks two dimensional (2D) while at scales � much smaller than the thickness, H � �, the flow
behaves like a three-dimensional (3D) flow. Depending on the relative value of H with respect to
the forcing scale �

U
the system can behave like 3D cascading energy forward or like 2D cascading

energy inversely. The amplitude of the inverse cascade appears to decrease as H/�
U

is increased
until a critical value is met Hc/�U

such that the inverse cascade becomes exactly zero.
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The mechanisms, however, under which such a coexistence of counterdirected cascades exist are
not yet understood. In this work, we try to unravel some of the mechanisms involved by examining
the stability properties of simple laminar flows to both large- and small-scale perturbations.
Although such an approach cannot be used to study the full nonlinear dynamics of a split cascade,
it provides a much simpler setup that can shed light on the mechanisms involved in the transfer of
energy to small or larger scales. On the one hand, it is known that 3D instabilities of laminar flows
generate in general smaller scales, transferring energy to them. On the other hand, 2D instabilities
can couple the forced modes to large-scale 2D modes, transferring energy to larger scales. This
nonlocal interaction of scales can be quantified with the use of an eddy viscosity that can change
sign depending on the flow parameters. A possible way to understand the mechanisms involved in
the transition from a forward to an inverse cascade is to examine when 3D instabilities dominate
and when there is a change of sign for the eddy viscosity of the flow.

The notion of eddy viscosity has been introduced in turbulence very early by Taylor [21]. First
attempts for its calculation were made by Kraichnan [22] in an attempt to quantify the loss or gain
of energy to the small scales. In this framework, the evolution of weak large-scale flows v due to
small-scale turbulent fluctuations U can be described as

∂tv
i = −

∑
j,k,m

(
νδi,j δl,m + ν

i,j,l,m

eddy

)∇l∇mvj , (1)

where ν is the regular viscosity and δi,j stands for the Kronecker δ. The tensor ν
i,j,l,m

eddy is the eddy
viscosity that models the effect of the small-scale fluctuations U on v. Since the work of Kraichnan,
there have been many attempts to calculate an eddy viscosity for turbulent flows [23–29]. However,
the cascade processes of turbulent flows that excites a continuous spectrum of scales prevents us
from having a closed expression for the eddy viscosity and even the notion of eddy viscosity for
turbulent flows can be questioned. One case where the eddy viscosity tensor ν

i,j,l,m

eddy can be rigorously
defined is in the presence of large-scale separation between the forced small-scale field U that
evolves at scales �

U
and the flow velocity u that evolves at scales L � �

U
. It can then be calculated

in the low-Reynolds-number limit using homogenization theory [30,31]. Here the Reynolds number
is defined as Re ≡ U�

U
/ν, where U is the rms of the small-scale velocity field and �

U
is the typical

length scale of the flow. In the small-Reynolds-number limit and for isotropic flows, it takes the
form

ν
i,j,l,m

eddy = c1

ν
U 2�2

U
[δi,j δl,m + O(Re)] for Re � 1, (2)

where c1 is a nondimensional number that depends on the detailed structure of the small-scale field
U. For large Re, a viscosity independent value of νeddy is expected to be reached:

ν
i,j,l,m

eddy = c2U�
U

[
δi,j δl,m + O

(
1

Re

)]
for Re � 1. (3)

If −ν
i,j,l,m

eddy has positive eigenvalues that are larger than the viscosity, then the system can develop
large-scale instabilities [32].

Another possibility for the effect of small scales on the large is the anisotropic kinetic α

effect [33]. This effect is similar to the α effect in dynamo theory and leads to a faster growth
rate compared to a negative eddy viscosity. However, unlike the dynamo problem that requires only
the presence of helicity, in hydrodynamics in order for the anisotropic kinetic α effect to be present,
the flow at small scales needs to satisfy much stricter conditions that are not met in the examined
flows in this work. For this reason, this work is only going to consider the effect of negative eddy
viscosity as a large-scale instability mechanism.

In practice, it is not always feasible to calculate νeddy analytically, and calculations are limited
to either very simple flows [34–37] or in the low-Re limit where the eddy viscosity is subdominant
to the regular viscosity. In this work, a different path is followed by calculating the growth rate of
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small- and large-scale instabilities using Floquet-Bloch theory from which the value of the eddy
viscosity can be extracted. By doing so, we can determine for the examined flows when the regions
in the parameter space that the eddy viscosity is negative and large-scale instabilities are present,
and where the flow is dominated by three-dimensional small-scale instabilities instead.

II. FORMULATION

We begin by considering the flow of a unit density fluid in a triple periodic box of size
(2πL, 2πL, 2πH ) with L � H so that the layer has a small height compared to its length in the
other directions. The triple periodic box, although unphysical, simplifies significantly the following
calculations. No significant differences are expected from a flow in layers with free slip (stress-free)
boundary conditions. For no-slip boundary conditions, however, the drag force from the boundary
can have a significant effect on the dynamics. The flow satisfies the Navier-Stokes equation that is
given by

∂tu + u · ∇u = −∇P + νF + ν�u. (4)

Here, u is the fluid velocity, ν is the viscosity, and F is an external body force that maintains the
flow. We assume the F is such that it supports a laminar time-independent solution for the fluid U:

F = −ν�U + U · ∇U − ∇P.

For simplicity, a simple family of flows is going to be considered here, given by

U = U cos
( rπ

2

)⎡
⎣sin(k

U
y)

sin(k
U
x)

0

⎤
⎦ +

√
2U sin

( rπ

2

) ⎡
⎣sin(k

U
y)

sin(k
U
x)

0

⎤
⎦ sin(k

U
z), (5)

where k
U

= 1/�
U

is the wave number of the flow and U = ‖U‖ is the L2 norm of the flow. Note
that U is independent of the parameter r . For the remainder of this investigation, we will set k

U
= 1

and U = 1. With this normalization, the Reynolds number of the flow is always given by

Re = U�
U

ν
= 1

ν
. (6)

For r = 0, the flow is a two-dimensional (2D) cell flow and is a solution of the Euler equations. For
r �= 0, U is three dimensional (3D) as it varies in all three dimensions. For r = 1, the flow reduces
to a Taylor-Green flow [38], a prototypical flow that was used to study the small-scale generation.
Note that if r is not zero, U is not a solution of the Euler equations and F has to have a more complex
behavior than U to sustain it against viscosity and the nonlinearities. Furthermore, we note that for
r = 0, H can take any value, while for r �= 0, H is restricted to be an integer multiple of the flow
period H = n�

U
with n being an integer.

The main objective of this work is to examine the stability of this flow and examine the evolution
of an infinitesimal perturbation v to the laminar flow so that u = U + v. The linear evolution
equation for v reads

∂tv + U · ∇v = −v · ∇U − ∇P + ν∇2v. (7)

The linearity and homogeneity in time of the problem implies that asymptotically at large times v
will have an exponential behavior with time and the goal is to determine the growth rate γ of the
perturbation in terms of the parameters of the system. Because U is periodic in space and we are
interested in the behavior of scales much larger than the scale of U, it is convenient to use Floquet (or
Bloch) theory. Floquet theory states that if U is periodic, the perturbation field v can be decomposed
as

v(x, t ) = eiq·xṽ(x, t ) + c.c., (8)
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where ṽ(x, t ) is a complex vector field that has the same spatial periodicity as the velocity field U
and q is an arbitrary wave number. The linear evolution equation for the field ṽ(x, t ) then becomes

∂t ṽ + U · ∇ṽ + iU · qṽ = −ṽ · ∇U − ∇P̃ + ν(∇ + iq)2ṽ, (9)

where the pressure P̃ is such so that it guarantees the incompressibility condition ∇ṽ + iq · ṽ = 0.
The advantage of studying Eq. (9) numerically as opposed to Eq. (7) is that one can consider
arbitrary large-scale separations (determined by the vector parameter q) with no additional compu-
tational cost. Furthermore, the Floquet formulation gives a clear distinction between small-scale and
large-scale instabilities. For q = |q| < k

U
, the volume average 〈ṽ〉 over the spatial period (2π�

U
)3

gives the amplitude of v at large scales L ∝ 2π/q (ie 〈v〉 = 〈ṽ〉eiq·x + c.c.). Fields with q = 0 and/or
〈ṽ〉 = 0 correspond to purely small-scale fields, and if these modes are unstable it amounts to a pure
small-scale instability, i.e., an instability that involves only wave numbers that are integer multiples
of the basic period k

U
.

Equation (9) is solved numerically using a pseudospectral code. Details of the code can be found
in Refs. [32,39]. The resolutions examined varied from 323 grid points for most of the results here,
although resolutions of 643 grid points and 1283 grid points were also used for large Re and to test
convergence.

III. TWO-DIMENSIONAL FLOWS r = 0

We begin by examining the case for which r = 0 so that the laminar flow is two dimensional. In
this case, the laminar flow can be written in terms of a stream function � = cos(k

U
x) − cos(k

U
y)

as U = [∂y�,−∂x�, 0], where the stream function is connected to the vertical vorticity W as
W = −∇2� = k2

U
�. The last equality holds because U contains modes of single wave number k

U
.

The stability of this 2D flow will be examined in the next subsections, first against 2D perturbations
and second against 3D perturbations. The stability for 2D perturbations has been examined before
in Ref. [40], however, in the presence of large-scale linear friction that does not allow direct
comparison with these results.

A. Two-dimensional perturbations

For velocity perturbations that are also 2D (i.e., ∂zv = 0) the vertical component of the
perturbation velocity decouples and follows a passive advection diffusion equation

∂tvz + U · ∇vz = ν∇2vz. (10)

As a consequence, its L2 norm ‖vz‖2 follows

∂t‖vz‖2 = −ν‖∇vz‖2 � −ν

(
2π

L

)2

‖vz‖2,

and therefore the norm ‖vz‖2 decays monotonically with time. The remaining two components
v2D = [vx, vy, 0] can be written in terms of a stream function ψ as vx = ∂yψ, vy = −∂xψ . The
evolution of these components can be written in terms of their vorticity w = −∇2ψ as

∂tw + U · ∇w = −v2D · ∇W − ν∇2w. (11)

Multiplying Eq. (11) by w and space averaging, we obtain after some manipulation (and using the
laminar flow property W = −∇2� = k2

U
�) the enstrophy evolution equation

∂t‖w‖2 = k2
U
〈wU · ∇ψ〉 − ν‖∇w‖2. (12)

Multiplying Eq. (11) by ψ and space averaging, we obtain after similar manipulations the 2D energy
evolution equation

∂t‖v2D
‖2 = −〈ψU · ∇w〉 − ν‖w‖2. (13)
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FIG. 1. The growth rate γ as a function of the wave number q for five different values of the the viscosity ν.
The dotted lines show fits to a quadratic power law γ = aq2. Left panel: linear scale. Right panel: The absolute
value of γ in log-log scale.

By multiplying the energy evolution equation by k2
U

and subtracting from the enstrophy equation,
we obtain

∂t

(‖w‖2 − k2
U
‖v2D

‖2
) = −ν

(‖∇w‖2 − k2
U
‖w‖2

)
. (14)

In general, the terms in parentheses on the left- and right-hand sides of the equation above (14) can
have either sign and the equation above cannot exclude the growth of w. If, however, k

U
= 2π/L

so that the domain size L coincides with the velocity scale 2πk−1
U

(i.e., no scales larger than the
forcing scale are allowed), both (‖w‖2 − k2

U
‖v2D

‖2) and (‖∇w‖2 − k2
U
‖w‖2) are non-negative (by

Poincaré inequality). The right-hand side of Eq. (14) is then negative and the positive quantity
(‖w‖2 − k2

U
‖v2D

‖2) has to decrease monotonically. This implies that single-scale 2D flows such that
∇2� = −k2

U
�, where k

U
is the largest scale of the domain, are linearly stable to all 2D perturbations.

In fact, Eqs. (12) and (13) also hold for the nonlinear evolution of w and v2D
and the flow is thus

nonlinearly stable to all 2D perturbations as shown for the first time in Ref. [41]. In terms of the
Floquet decomposition given in Eq. (8), this conclusion translates to the following: The flow is
stable for q = 0, i.e., there are no small-scale instabilities, and any unstable mode has to excite
simultaneously scales both smaller and larger than the forcing.

Given this restriction, we investigate numerically Eq. (9) using a pseudospectral code (described
in Refs. [32,39]) and calculate the growth rate γ of the unstable modes as a function of q and the
viscosity ν. The procedure to calculate this growth rate is as follows. We chose the wave vector
q = [qx, 0, 0]. In this case, since we are interested in 2D perturbations, q is restricted in the x, y

plane. For simplicity, results are presented only for q = [qx, 0, 0] that was found (but not proven)
to be the most unstable from the general cases examined q = [qx, qy, 0]. For this chosen wave
vector q = [qx, 0, 0] the complex velocity field ṽ is initialized using random initial conditions. Then
the complex field ṽ is evolved based on Eq. (9) until a clear exponential growth of the energy
E = 〈|ṽ|2〉 ∝ e2γ t is observed. The growth rate γ is then the calculated by fitting. This procedure is
then repeated for different values of q and different values of viscosity. This allows us to calculate
the growth rate of the most unstable mode as a function of q and ν. It is noted that this procedure
reveals only the fastest growing unstable mode and not all unstable modes in the system. It is worth
keeping this in mind in the following sections where general 3D perturbations will be considered.

The resulting growth rate γ as a function of q for different values of the viscosity is shown
in the left panel of Fig. 1 in linear scale. The right panel shows the absolute value of the same
data in logarithmic scale. As discussed in the beginning of this section for q = 0, there can be no
instabilities and the growth rate becomes zero as q → 0. The growth rate γ is approaching zero
as q → 0 following a quadratic power law. This is demonstrated more clearly in logarithmic scale
shown in the right panel of Fig. 1, where it is fitted as

γ = a q2, (15)
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FIG. 2. The value of νeddy + ν as a function of ν. When this quantity takes negative values, there is a large-
scale instability. The dashed line indicates where νeddy = 0. The doted line shows the fitting to the asymptotic
result νeddy = −0.5/ν. Large scales become unstable when ν < ν∗ � 0.7.

shown by the dotted lines. The proportionality coefficient a is negative for large values of the
viscosity, while below a critical value it becomes positive. For larger q, higher even powers (due to
symmetry) of q are needed to describe γ = a q2 + βq4 + · · · and as ν is decreased the maximum
growth rate moves to larger q. At ν sufficiently small, the most unstable mode is found at q = 1/2,
indicating that the wave numbers close to the forcing one are the most unstable. Nonetheless, the
onset of the large-scale instability is determined by the sign of the prefactor a of the quadratic power
law in Eq. (15). This particular scaling of the growth rate γ with the wave number q given in Eq. (15)
implies that the instability is of the form of an eddy viscosity. The eddy viscosity is a tensor and the
proportionality coefficient a in Eq. (15) indicates the maximum eigenvalue of −(νδi,j + ν

i,j,x,x

eddy ).
For simplicity, a + ν will be denoted as −νeddy and referred as eddy viscosity, although it must not
be forgotten that the eddy viscosity is truly a tensor. The relation of νeddy with a is

a = −(ν + νeddy). (16)

With this notation, a large-scale instability is implied if νeddy < −ν.
The eddy viscosity depends on the small-scale flow examined and the value of viscosity. Figure 2

shows the value of ν + νeddy as a function of ν for the examined flow. The dotted lines indicates the
prediction (2) for c1 = 0.5. The fit to the power law is surprisingly good even up to ν � 0.05, which
is far from the asymptotic regime Re � 1. Negative values of ν + νeddy imply that the flow amplifies
large-scale flows. For large values of ν, the value of the eddy viscosity is such that ν + νeddy is
positive, although still smaller than ν. So although νeddy is negative and the flow reduces the decay
rate caused by regular viscosity, it is not sufficiently strong to drive any large-scale instabilities.
Below some critical value of the viscosity ν = ν∗, the value of ν + νeddy becomes negative. For
values of ν smaller than ν∗, the large scales of the flow are unstable. The critical value of the
viscosity ν∗ can be estimated to be

ν∗ � 0.7 U�
U
, (17)

where we have kept U = 1 and �
U

= 1 in the expression to recover the dimensions.
Before concluding this section, it is worth examining the spectral shape of the unstable modes.

Figure 3 shows the energy spectra of the unstable modes as a function of the wave number for
different values of q. The spectrum is composed by the large-scale component located at the wave
number q plus the part localized at small scales k � k

U
= 1. The amplitude of the energy at large

scales is independent of the value of q. This is seen in the Fig. 4 where the ratio of the energy
contained in the largest scale E0 = 1

2 |〈ṽ〉|2 to the total energy E = 1
2 〈|ṽ|2〉 is shown. Note that

E0/E is shown also for modes with negative growth rate. The amplitude of this ratio is initially
decreased as q is decreased but asymptotes to a q-independent value for sufficiently small values
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FIG. 3. Energy spectrum of the unstable modes eiq·xṽ(x, t ) for different values of q and ν = 0.2, and
k

U
= 1 is the wave number of the laminar flow. The value of q is indicated by the furthest point to the left.

of q. The fact that the q = 1/2 modes have a larger value of E0/E than small q also indicates that
the q = 1/2 are more efficient at extracting energy from the forcing scale. This asymptotic value at
small q decreases as ν decreases, which can be shown in the asymptotic expansion in Ref. [30].

B. Three-dimensional perturbations

In the previous section, we examined the stability of the 2D flow against large-scale 2D
perturbations. In this section, we investigate the stability of the flow against 3D perturbations. This
question is important because it determines when 3D variations enter the system that can transfer
energy to the small scales.

For r = 0, the flow U has no dependence on the z direction. We can therefore consider a
layer with arbitrary thickness compared to the flow length scale k−1

U
. The homogeneity in the z

direction also implies that each qz mode can be considered independently for the linear problem
with the perturbation field ṽ being a function of x, y, t only and not of z. This section is restricted
to 3D perturbations with wave numbers q = [0, 0, qz]. For this choice, the field ṽ satisfies the
incompressibility condition

∂xṽx + ∂yṽy + iqzṽz = 0. (18)

Note that unlike the previous case of 2D perturbations (with qz = 0), the incompressibility condition
implies that the z component does not act independently.

Figure 5 displays the growth rate γ as a function of qz for different values of the viscosity ν.
Below a critical value of ν < ν0 � 0.1, modes with positive growth rates appear with qz ∝ k

U
= 1.

As ν is decreased further, the range of unstable wave numbers extends to larger values of qz. For
ν � ν0, the unstable wave numbers are found in the range qz < q∗

z , where q∗
z is the largest unstable

FIG. 4. The ratio of the energy in the large-scale mode E0 = 1
2 |〈ṽ〉|2 to the total energy E = 1

2 〈|ṽ|2〉 as a
function of q for different values of ν. Left, on a linear scale; right, in log-log scale.
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FIG. 5. Left panel: The energy growth rate as a function of qz. Right panel: The critical wave number q∗
z

below which qz modes are unstable as a function of the viscosity.

wave number. This critical wave number q∗
z can be estimated from the graph in the left panel of

Fig. 5 as the wave number for which the growth rate intersects the zero growth rate γ = 0 line. It
depends on ν and it is plotted in the right panel of Fig. 5 in a logarithmic scale. It is shown to follow
the scaling q∗

z ∝ ν−1/2 for small ν. This scaling is obtained from a balance of the viscous term νq2ṽ
in Eq. (9) with the stretching term v · ∇U. A best fit results in

q∗
z � 0.8

(
U

ν�
U

)1/2

, (19)

where we have kept U = 1,and �
U

= 1 in the expression to recover the dimensions and the result is
valid for small values of ν (large q∗

z ). For layers of finite height H , the presence of these unstable
modes depends on H . This is because the periodicity of the domain in the z direction imposes that
the wave number of a 3D perturbation satisfies qz = n/H where n � 1 is an integer. Therefore,
even for ν < ν0, the flow will be stable to 3D perturbations if the layer thickness H is thin enough
so that 1/H is larger than the largest unstable wave number q∗

z .

C. Two- and three-dimensional perturbations

It is already possible to draw a first conclusion for 2D flows. From the analysis in Sec. III A, it
was shown that the large 2D modes are unstable if the viscosity is small enough,

ν < ν∗ � 0.7U�
U
, (20)

so that the eddy viscosity for 2D perturbations satisfies νeddy + ν < 0 [see Eq. (17)]. At the same
time, in Sec. III B it is shown that 3D modes are stable if the layer is thin enough so that 1/H

is larger than maximum unstable wave number q∗
z [see Eq. (19)]. This implies stability of the 3D

modes if

H � 1

q∗
z

� ν1/2

0.8(Uk
U

)1/2
. (21)

Therefore, there is a region in the parameter space (H, ν) determined by the conditions (20) and (21)
where 3D modes are stable while 2D modes are unstable to large-scale perturbations by an eddy
viscosity mechanism. This is summarized in the diagram in Fig. 6 where condition (20) is given
by the solid line while condition (21) is marked by a dashed line. The region of 3D stable and 2D
unstable modes is marked by gray. In this region, a transfer of energy to the large scales is expected
and possibly an inverse cascade can develop. Of course, whether an inverse cascade builds up or
not depends on the nonlinear evolution of the unstable modes and cannot be determined by the
stability of the laminar flow alone. Furthermore, in the region where both 3D and 2D instabilities
are present, we cannot certify or exclude a transfer of energy to the large scales. This is because
we cannot a priori conclude if the nonlinear evolution of the unstable 3D modes will suppress the
inverse transfer by the negative eddy viscosity mechanism.
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FIG. 6. Stability diagram for a 2D flow.

IV. THREE-DIMENSIONAL FLOWS

This next section considers the stability of 3D laminar flows given in Eq. (5) within general r �= 0.
For these flows, the minimum layer thickness H one can consider is given by the periodicity of U
in the z direction H = �

U
. Since the interest in this work is on thin layers, for the remainder of this

section we will fix H to this minimum value. This limits the values of qz in the Floquet expansion to
zero qz = 0 since all perturbations can only have vertical scales smaller than H . The investigation
therefore will be restricted to large-scale 2D perturbations with q of the form q = [qx, 0, 0]. It is
noted that setting qz = 0 does not imply that v = eiqxṽ is independent of the coordinate z because
the field ṽ depends in principle in all coordinates x, y, z having the same periodicity as U. Therefore,
3D perturbations can still be unstable and as shown later they play an important role.

Figure 7 shows the measured growth rate as a function of the wave number qx for a flow with
r = 0.4 for different values of ν. For large values of ν, the growth rate shows a similar behavior
as for the r = 0 case shown in Fig. 1. For ν below a critical value, the growth rate is negative
and with a quadratic dependence in qx as in Eq. (15). Above this critical value, the growth rate
retains its quadratic behavior [Eq. (15)] but with a positive value of the proportionality coefficient
a. This behavior can then again be interpreted as an effect of negative eddy viscosity such that
γ = −(ν + νeddy)q2

x . However, if viscosity is further decreased, the quadratic dependence on qx is
lost and the growth rate attains a finite value at qx = 0.

A finite growth rate at q = 0 can be a bit surprising since the growth of a nonzero mean 〈v〉 =
〈ṽ〉 �= 0 field would violate momentum conservation. The contradiction is resolved by examining
the relevant projection of the unstable mode to the large scales by looking at the ratio of E0/E =
|〈ṽ〉|2/〈|ṽ|2〉 that is shown in Fig. 8. This figure demonstrates that while for modes for which γ → 0

FIG. 7. The growth rate γ as a function of the wave number qx in linear scale (left panel) and logarithmic
scale (right panel) for different values of ν and for r = 0.4.
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FIG. 8. The ratio E0/E of the large energy E0 = 1
2 |〈ṽ〉|2 to the total energy of the perturbation E = 1

2 〈|ṽ|2〉
as a function of q, for different values of ν in linear scale (left panel) and logarithmic scale (right panel). The
color shade of the lines is the same for both panels.

as q → 0 the ratio E0/E remains finite, for modes with γ �= 0 as q → 0 the projection to the large
scales decreases as E0/E ∝ q4. At q = 0, therefore, these last modes have a zero projection to the
large-scale modes, and correspond to purely small-scale instabilities [32,39].

Therefore, the linear evolution of the large-scale modes can be expressed in terms of a negative
eddy viscosity up to this second critical value of ν = ν3D

below which 3D small-scale instabilities
begin. Large-scale instabilities therefore are limited to values of the viscosity ν in the range ν∗ >

ν > ν3D
, where ν∗ is the value above which large scales are stable, and for ν smaller than ν3D

small-
scale instabilities are present. In principle, for values of ν < ν3D

, large-scale modes (0 < q � 1)
with positive growth rates γ = −a(ν + νeddy)q2 > 0 still exist but their growth rate can be smaller
than the growth rate of small-scale instabilities of the q = 0 modes. As a result for ν < ν3D

we
cannot predict if the flow would be able to transfer energy to the large scales with the linear evolution
model given in (7) and a nonlinear theory for the upscale transfer of energy is required.

In the range ν > ν3D
, the value of the eddy viscosity can be evaluated by fitting to a parabola

as was done in Sec. III A. The values of the eddy viscosity for different values of ν and different
values of r were calculated and are plotted in the left panel of Fig. 9. This allows us to estimate the
value of ν∗ at which large-scale 2D modes become unstable. Similarly we can calculate the value
ν3D

by looking at the growth rate of small-scale instabilities q = 0 and determining by extrapolation
at which value of ν the growth rate γ (q = 0) of small-scale modes becomes positive. This is shown
in the right panel of Fig. 9 for different values of r .

The end result is shown in Fig. 10 where the stability diagram of the parameter space is shown in
the parameter space (ν, r ). The space is split in three regions. One (marked by white) for which the
growth rate of all instabilities is negative, one (marked by light gray) for which large-scale modes
are unstable by a negative eddy viscosity instability but 3D instabilities have negative growth rate,
and finally one region (marked by dark gray) for which both small-scale and large-scale instabilities
are present. For 2D flows, r = 0, the region for which the effective viscosity is negative, is larger. As

FIG. 9. Left panel: Effective viscosity as a function of ν for the different values of r . Right panel: Small-
scale instability growth rate γ (q = 0) as a function of ν for different values of r .
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FIG. 10. Stability diagram of the parameter space.

r is increased, the value of ν3D
(dashed line) is increased and the value of ν∗ (solid line) is decreased

and as a result the range of values for which large-scale instabilities can be observed is shrunk.
Nonetheless, even for r = 1 for which the laminar flow does not contain any 2D part, there is still
a small range of values of ν for which only the large-scale modes are unstable. This implies that
transfer of energy to large scales can be observed in 3D flows as well.

V. CONCLUSIONS

This work examined the linear stability of some basic linear flows against 2D large-scale
instabilities and 3D small-scale instabilities. The results showed that for the examined flows, 2D
instabilities appeared first as the viscosity was decreased transferring energy to larger scales. The
3D instabilities appeared afterward at smaller values of the viscosity and transfer energy to smaller
scales. At sufficiently small viscosity, therefore, both types of instabilities are present and thus
transfer to both large and small scales is possible.

In more detail, 2D laminar flows in thin layers become unstable to the large-scale 2D modes due
to an negative eddy viscosity type instability above a critical Re independent of the layer height
H . The onset of this instability is determined solely by the value of the eddy viscosity. The onset
Reynolds number for 3D instabilities, on the other hand, increased as the layer thickness decreased.
This result implies that for sufficiently thin layers the 2D part of the flow can be unstable and transfer
energy to the large scales while 3D instabilities are suppressed. This result already indicates that
depending on the layer thickness the flow can have different behaviors. For small H it can behave
like a 2D flow cascading energy inversely, while if H is large the flow can be dominated by 3D
instabilities cascading energy forward. The stability diagram for the examined 2D flows is given in
Fig. 6.

For 3D flows, it was shown that the negative eddy viscosity type of instabilities persists.
Therefore, even for 3D flows, there are unstable modes that move energy to larger scales. The
large-scale instabilities compete with the 3D small-scale instabilities if Re is above their onset. For
the examined flows, it was shown that 2D instabilities have in general a smaller onset Re than the
3D instabilities, and thus a transfer to the large scales is still possible. However, as the flow becomes
more 3D, the difference between the two critical values decreases, leaving little room to observe a
large-scale instability. These results are summarized in Fig. 10.

Finally, we need to give a word of caution. The present results deal only with the stability of the
laminar flows. Therefore, we can only draw conclusions for the early stages of evolution of these
instabilities. First, if the flow is 3D unstable and 3D turbulence develops, then the transfer of energy
to the large scales is not necessarily through an instability. A new nonlinear definition of an eddy
viscosity would be required if the notion of eddy viscosity is at all valid in this case. Second, if the
laminar flow is only 2D unstable, then at the nonlinear stage the flow can start to develop an inverse
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cascade [1,9,10] and form condensates [42]. The stability properties of these new states, however,
will change and can be unstable to 3D perturbations. Interestingly, the shape of the condensate
formed in a 2D inverse cascade in a square box is similar to the 2D flows examined here [43,44] and
the stability against 3D perturbations can be applied but they need to be examined for vortices the
size of the domain. In general, however, the coexistence of an inverse and forward cascade cannot
be either confirmed or excluded just from the linear stability analysis. This would require a study of
the nonlinear state of the system that can be studied in some cases with bounds [45,46] or with the
use of numerical simulations, and where the notion of eddy viscosity is not well established.
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