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Universal scaling law in frictional non-Brownian suspensions
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We compare the rheology of two kinds of non-Brownian suspensions. One is made of
spherical monodisperse polystyrene particles (80 μm in diameter), and the other is made
of faceted sugar particles (average size, 100 μm), both suspended in a Newtonian silicon
oil. We perform shear reversal experiments on both suspensions for several particle volume
fractions, φ, and several shear stresses, τ . The two suspensions behave in a quite different
fashion. For the faceted particle suspensions (FPSs), a large shear thinning is observed,
while it is much more moderate for the spherical polystyrene particle suspensions (SPSs).
Another striking difference lies in the value of the jamming packing fraction, φm, which
is much lower for FPSs than for SPSs. Despite these differences, we will show that
shear reversal experiments make it possible to obtain a universal scaling that holds for
both FPSs and SPSs. In this scaling, the difference between the steady viscosity and
the viscosity at the minimum that follows the shear reversal, normalized by the steady
viscosity, is shown to depend only on the ratio φ/φm(τ ). The collapse of all the data
suggests that concentrated non-Brownian suspensions behave in a universal way regardless
of the mechanisms responsible for flow hindering (rotation frustration or sliding friction).
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I. INTRODUCTION

Non-Brownian suspensions are widespread in many industrial fields, e.g., paints, fresh concrete
or food engineering, and natural flows, e.g., mud or lava flows or submarine avalanches, to mention
but a few. In the past several years, active research has been carried out on the rheology of
concentrated non-Brownian suspensions and has revealed the central role played by direct solid
contact on the flow properties of suspensions. Boyer et al. [1] succeeded in applying a granular
paradigm to describe the rheological behavior of non-Brownian and noncolloidal spheres suspended
in a Newtonian fluid, showing the key role played by contact interactions between particles. The
proliferation of frictional contacts is also known to be causing the discontinuous shear-thickening
transition that is observed in very concentrated suspensions when the applied shear stress is
high enough to overcome repulsive interactions between particles and to push them into contact
[2–4]. These numerical and theoretical findings have been supported by macroscopic rheological
measurements [5,6] as well as by atomic force microscopy measurements that directly relate the
normal stress needed to enter the frictional regime at the nanoscale to the shear stress at which shear
thickening occurs [7]. More generally, Guy et al. [8] proposed a constraint-based phenomenological
model that, in addition to friction, enables accounting for more complex interactions between
particles such as adhesion or rolling resistance. The authors show that all types of flow curves can
be described by this model where constraints that are formed or released by stress are introduced.
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FIG. 1. (a) Sugar particles. (b) Polystyrene particles. Scale bar = 200 μm.

Coming back to basic frictional suspensions, the influence of solid friction between spherical
particles on the rheology of non-Brownian suspensions has been extensively studied in the
numerical work of Gallier et al. [9] where it is shown that microscopic friction between particles
is a key parameter that governs the rheology of concentrated non-Brownian suspensions. To give
an idea of the role played by solid friction between particles, the viscosity of a 45% suspension
doubles when the friction coefficient, μ, is increased from 0 to 1. When the viscosity is split into
hydrodynamic viscosity (ratio of the hydrodynamic stress to the shear rate) and contact viscosity
(ratio of the contact stress to the shear rate), it is observed that the hydrodynamic viscosity hardly
depends on the value of the friction coefficient while contact viscosity is highly sensitive to it
[9]. As a consequence, when μ is varied from 0 to 0.5, at φ = 0.45, the ratio of contact stress
to hydrodynamic stress varies from 0.5 to 2. This great influence of the frictional properties of
particles may be responsible for the scatter that is observed in experimental data that are found
in literature when the variation of the viscosity with particle volume fraction is represented for
suspensions made of different kinds of particles [10]. Some numerical studies [3,11,12] show that
friction essentially changes the jamming fraction. Shear reversal experiments [13–15], numerical
simulations [11,15,16], and theoretical modeling [17,18] have also been used to explore rheology of
non-Brownian suspensions. As the shear is reversed, viscosity undergoes a steplike decrease, passes
through a minimum, and increases again to reach the steady value it had before shear reversal. For
suspensions of spherical particles, it has been shown that the difference between the steady viscosity,
ηS , and the minimum viscosity, ηmin, that follows the shear reversal is equal to 85% of the contact
viscosity [11], which opens a way to estimate the value of contact viscosity upon performing shear
reversal experiments.

In this article, we compare the rheology of two kinds of suspensions. One is made of spherical
monodisperse polystyrene particles (SPSs) and the other is made of faceted sugar particles (FPSs),
both suspended in a Newtonian silicon oil. In Sec. II we present the experimental systems and the
experimental procedure. In Sec. III we present the main results and show that although these two
suspensions exhibit quite different flow properties, their rheological behavior can be unified when
the difference between the steady and the minimum viscosity normalized by the total shear viscosity
is plotted against the ratio of the particle volume fraction to the jamming volume fraction.

II. EXPERIMENTS

A. Suspensions

The faceted particles are commercial crystal sugar particles [Fig. 1(a)]. Their density is measured
to be 1.41 g/cm3. The particles are sieved between 80 and 100 μm in order to reduce the initially
large size distribution. Their mean aspect ratio, < r >≈ 1.5, has been evaluated by quantitative
image analysis (see the Appendix). The spherical particles [Fig. 1(b)] are nominally monodisperse
polystyrene particles (Microbeads TS 80), 80 μm in diameter and with a density of 1.05 g/cm3.
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The polystyrene particles are rinsed several times with distilled water, vacuum filtered, and finally
carefully dried in an oven at 60 ◦C. Sugar and polystyrene particles are both dispersed in a
Newtonian silicon oil (Rhodorsil 47 V1000) with density ρ = 0.97 g/cm3 and viscosity of 0.98
Pa·s at T = 23 ◦C. Particles are introduced in the silicon oil, and the suspension is carefully mixed.
Then, air bubbles are removed by exposing the suspension to a vacuum. At last, the suspension
is gently stirred in order to resuspend the particles that would have settled during the degassing
procedure.

B. Rheometry experiments

Rheometric experiments were carried out in a controlled-stress rheometer Mars II (Thermofisher)
with smooth rotating parallel plates (radius R = 30 mm, gap height h = 2 mm). Parallel rotating
disk geometry is chosen because there is no or weak shear-induced particle migration in such a
torsional flow [19,20]. The drawback is that shear rate is not constant in the gap but increases from
0 at the center to γ̇R = �R/h at the rim, � being the angular velocity of the rotating plate. To take
into account this shear rate variation in the determination of the viscosity, ηsusp that is a function of
shear rate, we use the well-known Mooney-Rabinovitch correction:

ηsusp = ηapp

[
1 + 1

4

d ln(ηapp )

d ln(γ̇R )

]
, (1)

where ηapp is the apparent viscosity measured by the rheometer:

ηapp = 2

πR3

�

γ̇R

, (2)

with � being the applied torque.
The plate surfaces are smooth and we have checked that there was no wall slip by changing the

gap between the disks. The value of the measured viscosity is found not to depend on the gap height,
which indicates that there is not any detectable wall slip [21]. Shear reversal tests were performed
for various shear stress values, τ , between 10 and 100 Pa for FPSs and 5 and 100 Pa for SPSs (see
the Supplemental Material for details on the protocol [22]). The particle packing fractions, φ, are in
the range 0.3–0.47 for FPSs and 0.3–0.51 for SPSs. Within these conditions, the Reynolds number
is small enough for inertial effects to be negligible, Re = ρτh2

η2 < 0.1, and the Péclet number high

enough to neglect Brownian effects, Pe = 6πτa3

kBT
> 109.

III. RESULTS AND DISCUSSION

Figure 2 gives an example of the transient response of both suspensions for φ = 0.43 where
the reduced viscosity (suspension viscosity, ηsusp, normalized by the suspending liquid viscosity,
η0) corrected with the Mooney-Rabinovitch method [Eq. (1)] is plotted against the accumulated
strain from the shear reversal at the rim, γ . As already observed, shear reversal is accompanied
by a steplike decrease of the viscosity. Then the viscosity continues to decrease, passes through
a minimum, ηmin, and increases again to reach the value it had before shear reversal, ηS . This
is the behavior observed in all shear reversal experiments [13,14] and in simulations [11,16].
Ness et al. (2016) and Peters et al. (2016) showed that the transient response is the result of two
contributions: the contact viscosity which vanishes almost instantaneously after the shear reversal
and the hydrodynamic viscosity which almost instantaneously increases at shear reversal and then
decreases much more slowly. Inspection of Fig. 2 shows that the steady (reduced) viscosity is much
higher for FPSs than for SPSs, while the viscosity values of the two suspensions are not that different
at the minimum. The observation that the steady viscosity is higher for FPSs than for SPSs has
already been reported by several authors [23–25]—even though, in these papers, the particle aspect
ratio is often much higher than 1—but shear reversal experiments give more information on the
mechanisms through which particle shape affects suspension rheology. For SPSs, it has been shown
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FIG. 2. Transient response of the viscosity under shear reversal. The reduced viscosity is plotted against
the accumulated strain after shear reversal. Orange squares: Sugar particle suspension (FPS). Blue disks:
polystyrene particle suspension (SPS). φ = 0.43 and τ = 28 Pa.

that this kind of rheometric test provides a way to split the viscosity into hydrodynamic and contact
contributions. This idea was first proposed by Lin et al. [15], and later Peters et al. [11] established
a correlation according to which the difference between the steady viscosity and the viscosity at the
minimum is equal to 85% of the contact viscosity. Then inspection of Fig. 2 [see also Figs. 3(c)
and 3(d)] suggests that the hydrodynamic contribution to the viscosity is roughly the same for both
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FIG. 3. The reduced viscosity curves as a function of shear stress for both FPSs (squares) and SPSs (disks).
Blue: φ = 0.3. Orange: φ = 0.35. Green: φ = 0.40. Red: φ = 0.43. Purple: φ = 0.45. Brown: φ = 0.47. Pink:
φ = 0.49. Gray: φ = 0.51. Steady viscosity of the SPSs (a) and FPSs (b). Viscosity at minimum of the SPSs (c)
and FPSs (d). The sugar particle suspension exhibits a highly shear-thinning behavior, while the shear-thinning
behavior demonstrated by the spherical particle suspension is much weaker. The viscosity at the minimum only
slightly decreases with increasing shear stress for both FPSs and SPSs.
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suspensions irrespective of the particle shape, faceted or spherical. Contrarily, the FPSs display a
steady viscosity that is much higher than that of the SPSs, which suggests that the contact viscosity
is greater for faceted particles than for spherical ones.

The experiment is repeated for several shear stresses and particle volume fractions. Figure 3
displays the variation of the steady viscosity, ηS , and of the viscosity at the minimum, ηmin,
with shear stress for the SPSs [Figs. 3(a) and 3(c), respectively] and for the FPSs [Figs. 3(b)
and 3(d), respectively]. The minimum viscosity is almost constant with shear stress, while the
steady viscosity decreases with increasing shear rate. Furthermore, the shear-thinning behavior of
the steady viscosity is much more pronounced for the FPSs than for the SPSs. Shear thinning is
common in frictional non-Brownian suspensions (see, for instance, Refs. [14,26–29]) though its
physical origin is still debated. Weak adhesive forces between particles may cause shear thinning
since they would lead to particle aggregation. In this scenario, suspensions are expected to exhibit
a yield stress that may be understood as the minimum stress needed to break the aggregates and
that makes the apparent viscosity decrease with the increase of shear stress. This explanation
would be consistent with the observation that shear thinning is more pronounced in FPSs than
in SPSs. In the former, the faceted shape of the particles favors Van der Waals interactions since
it offers a much larger contacting surface between particles. The drawback of this explanation is
that particle flocculation, if any, should also affect the viscosity at the minimum which thus would
be stress-dependent. By contrast, the viscosity at the minimum is observed to hardly vary with
shear stress. Furthermore, it can be seen by comparing Figs. 3(b) and 3(d) that, for the largest
concentrations and the smallest stresses, it was possible to measure the viscosity at the minimum
while the suspension is jammed (η −→ ∞) at steady state. However, even though, in this case,
adhesive forces may not modify the mesoscopic structure of the suspensions, they may change the
contact interactions between particles. It is thus possible that the adhesive forces exerted between
the faceted particles participate in the marked shear thinning which is observed in FPSs since, as
described in the introduction, the rheology of concentrated suspensions is very sensitive to contact
forces. For SPSs, another mechanism has recently been proposed based on stress-induced variable
friction between particles [30–32]. Chatté et al. [30] studied the second shear-thinning regime
that occurs after the shear-thickening transition in a concentrated suspension of PVC particles
dispersed in a plasticizer. In this frictional regime, the authors show using atomic force microscopy
measurements that the friction coefficient decreases as the normal load increases, and they relate
this decrease of the microscopic friction to the shear-thinning behavior. As for FPSs, however, the
fine mechanisms leading to the marked shear-thinning behavior exhibited remain to be discovered
and are expected to be more complicated than in the case of SPSs.

More generally, suspensions with rate-dependent viscosity are frequently encountered in either
a Brownian [33–35] or non-Brownian regime [5,27,36]. It has been shown that rheology was
well captured by introducing a stress-dependent jamming volume fraction. Without making any
assumption about the underlying microscopic mechanisms, we follow this approach and define φm

for each fixed shear stress value. For this purpose, the variation of the reduced viscosity with packing
fraction is fitted to a modified Maron-Pierce law, for each value of the shear stress:

ηS = α0(τ )[
1 − φ

φm(τ )

]2 , (3)

where φm(τ ) is the jamming packing fraction at a given τ . We recall that, in the original Maron-
Pierce equation, α0 = 1. Here α0 is a second fitting parameter which is needed to obtain an accurate
fit of the experimental data, especially for the FPSs. Its physical meaning, if any, is not clear, and
α0 should be seen only as a fitting parameter whose introduction makes sense only for concentrated
suspensions since for φ → 0, ηS obviously tends toward 1. For very dilute suspensions, it has been
shown experimentally and theoretically that the intrinsic viscosity, [η] = lim

φ→0

ηS−1
φ

, of a suspension

of cubes differs from that of a suspension of spheres [37]. This is even less surprising that, for
concentrated suspensions, the original Maron-Pierce relation cannot be applied rigidly. To deduce
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FIG. 4. The inverse of the square root of the reduced steady viscosity as a function of particle volume
fraction for all the tested stresses. Each color corresponds to a given stress (τ ∈ [5 Pa − 100 Pa] for SPSs and
τ ∈ [10 Pa − 100 Pa] for FPSs). (a) SPSs, (b) FPSs. Symbols: experimental data. Solid lines: fits.

the parameters α0 and φm, we plot the inverse of the square root of the steady viscosity with packing
fraction for all values of the tested shear stresses [see Fig. 4(a) for SPSs and Fig. 4(b) for FPSs].
The fit of each of these curves for φ � 0.4 for SPSs and φ � 0.3 for FPSs provides the values of
φm and α0 for each applied shear stress. As the shear stress decreases, the slope becomes larger in
magnitude, and the jamming fraction decreases (see the Supplemental Materials for further details
on fits and uncertainties [22]). Figure 5 displays the variation of these two parameters with τ .
As expected, the jamming packing fraction is smaller for FPSs than for SPSs. This is consistent
with what is observed in granular media where the maximum packing fraction decreases as the
grain angularity increases (see, for instance, Refs. [38,39]). The values of φm measured for SPSs
[0.59 – 0.615] are in the typical range that is reported in the literature for suspensions of frictional
non-Brownian spheres [1,11,12,26,40]. For FPSs, φm lies in the range 0.43 to 0.50, which is of the
same order as the jamming fraction fraction measured by Hafid et al. for suspensions of faceted
river sand particles with an aspect ratio of 1.5 (φm � 0.45) [41].

The two kinds of suspensions appear to behave in a way that is quantitatively different: FPSs
are much more shear thinning than SPSs and exhibit much lower maximum packing fractions, and
the question arises whether it is possible to unify their behavior. It is sometimes proposed that
the viscosity of non-Brownian suspensions depends only on the ratio of φ/φm (see, for instance,
Ref. [42] or [43]). Rather, our results displayed in Fig. 6 show that this collapse is quite poor. For the
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FIG. 5. Variation of the jamming packing fraction with the shear stress for FPSs (orange squares) and SPSs
(blue disks). Insert: Variation of α0 with τ .
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FIG. 6. Steady viscosity as a function of φ/φm. Squares: Sugar particles. Disks spherical polystyrene
particles. Blue: φ = 0.3. Orange: φ = 0.35. Green: φ = 0.40. Red: φ = 0.43. Purple: φ = 0.45. Brown:
φ = 0.47. Pink: φ = 0.49. Gray: φ = 0.51.

same ratio φ/φm, the steady viscosity of FPSs is lower than that of SPSs. Furthermore, even when
the two suspensions are considered separately, the steady viscosity data, obtained for one kind of
particles, are far from defining a unique curve when plotting against the ratio φ/φm(τ ). Nevertheless,
if rather than the steady viscosity, the ratio of the difference between the steady and the minimum
viscosity to the steady viscosity, (ηS − ηmin)/ηS , is plotted against the ratio of the packing fraction
to the maximum packing fraction, φ/φm, all measurements obtained for both the SPSs and the FPSs
for all packing fractions and all shear stresses collapse onto a single curve. Figure 7 displays these

0.4 0.6 0.8 1.0
Φ/Φm

0.0

0.2

0.4

0.6

0.8

1.0

η
s
−

η
m

in
η

s

FIG. 7. Ratio of the difference between the steady viscosity and the viscosity at minimum normalized by
the steady viscosity as a function of the ratio φ/φm. Squares: FPSs, disks: SPSs. Blue: φ = 0.3. Orange:
φ = 0.35. Green: φ = 0.40. Red: φ = 0.43. Purple: φ = 0.45. Brown : φ = 0.47. Pink: φ = 0.49. Gray:
φ = 0.51. Black disks: numerical simulations from Ref. [11] obtained for different sliding friction coefficients
between 0 and 1 (no rolling friction). Empty triangles: PMMA particles 31 μm in diameter (Microbeads,
CA30), dispersed in a Newtonian liquid from [13] (φm = 0.534). Solid triangles: polyamideparticles (see
Supplemental Materials [22])
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results together with the numerical simulations of shear reversal of Peters et al. [11] performed for
spherical particles with several sliding friction coefficients between 0 and 1 and with experimental
data of Blanc et al. obtained with suspensions of PMMA spherical particles [13]. We have also tested
this scaling with a highly polydisperse suspension made of irregular faceted polyamide particles
(average diameter 15 μm) dispersed in a different silicon oil (see the Appendix for the description
of the system). Again, the results collapse on the master curve (solid triangles in Fig. 7).

Recalling that, in the case of non-Brownian suspensions of spherical particles, the difference
between the steady viscosity and the viscosity at the minimum is an estimate of the contact
contribution to the viscosity [11], the collapse obtained for spherical particles suggests that a
universal scaling can be obtained when the contact viscosity, ηC , normalized by the steady viscosity
is plotted against the ratio φ/φm(τ ). Concerning the suspensions of irregularly shaped particles,
there is no proof that the difference between the steady and the minimum viscosity amounts to
85% of the contact viscosity. However, the comparison of Figs. 3(c) and 3(d) shows that the
minimum viscosity of FPSs is not that different from that of SPSs, suggesting that, for FPSs,
the minimum viscosity is roughly the hydrodynamic viscosity, ηH , as is the case for SPSs for
which ηmin = ηH + 0.15ηC [11]. It should be noted that it is not surprising that the hydrodynamic
viscosity does not much depend on the precise shape of the particles and should be almost the
same for polyhedral or spherical particles provided that the aspect ratio is close to one. Identifying
ηmin and ηH would mean that the difference between ηS and ηmin is also an estimate of the contact
viscosity for FPSs. Following this conjecture, it appears that, for a given particle volume fraction,
the contact viscosity is much higher for FPSs than for SPSs. This could probably be explained
by the contact properties that should be different in the two suspensions. On the one hand, it has
been shown that the contact viscosity of SPSs is very sensitive to the friction coefficient between
particles. On the other hand, in the case of dry granular media, Estrada et al. [44] showed from
2D numerical simulations that the main effect of particle angularity is to hinder rotation and that
this rotation frustration is somehow equivalent to some rolling resistance in an assembly of circular
particles. Thus, the collapse of Fig. 7 suggests that regardless of the microscopic contact properties,
the relative contribution of the contacts to the viscosity (ηC/ηS) is a function of the unique variable
φ/φm.

IV. CONCLUSION

To conclude, we have shown that suspensions of spherical particles (SPSs) and of faceted
particles (FPSs) with an aspect ratio close to one behave in a quite different fashion. At a given
particle volume fraction, FPSs have a steady viscosity much higher than SPSs and are also much
more shear thinning. These differences are rationalized in terms of a jamming packing fraction,
φm(τ ), that is lower and more rapidly changing with shear stress for FPSs than for SPSs. Despite
the tremendous differences observed in SPS and FPS behaviors, shear reversal experiments offer
a unified framework for the rheology of suspensions based on either spherical or irregular-shaped
particles. The ratio of the difference between the steady and the minimum viscosity (which is equal
to 85% of the contact viscosity for SPSs and may be also an estimate of the contact viscosity for
FPSs) to the steady viscosity depends only on the ratio φ/φm and defines a unique curve where
the data obtained with both suspensions collapse. This scaling also collapses the results obtained
with a highly polydisperse suspension of irregular polyamide particles, the numerical data of Peters
et al. for rough frictional spherical particles [11] obtained for different friction coefficients ranging
from 0 to 1, and the experimental data of Blanc et al. [13]. This scaling seems to be valid as
long as the particle aspect ratio is close to one, regardless of size (in the non-Brownian limit),
polydispersity, and shape of the particles. At a given φ, particle shape essentially affects the contact
contribution to the viscosity, and the relative contact contribution to the viscosity can be simply
described by a change in φm. Finally, introducing a shear stress-dependent jamming fraction, φm(τ ),
enables us to capture the shear-thinning behavior of both suspensions. A possible interpretation of
the increase of φm as the shear stress increases is a decrease of the friction coefficient between
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FIG. 8. (a) Aspect ratio distribution. (b) Equivalent size distribution.

particles as already measured by Chatté and explored in detail [32] for spherical particles. It is
likely that the microscopic mechanisms involved in the variation of φm with stress are much more
complicated in the case of FPSs. In particular, adhesion, which is favored by the flat surfaces of
the particles, is likely to play a role in the flow hindrance since adhesive forces between faceted
particles may increase significantly the rolling resistance that is already generated by the particle
shape. It would be interesting to perform numerical simulations that include both sliding friction and
rolling resistance between spherical particles in order to test if it is possible to capture the behavior
of suspensions of angular-shaped particles as has been shown in 2D dry granular media by Estrada
et al. [44].

Finally, from a practical point of view, the existence of the universal scaling depicted above opens
the possibility of inferring the jamming packing fraction of a non-Brownian suspension from only
one shear reversal experiment without varying particle concentration.
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FIG. 9. Polyamide particles. Scale bar = 100 μm.
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FIG. 10. (a) Aspect ratio distribution. (b) Equivalent size distribution.

APPENDIX: EXPERIMENTAL SYSTEMS AND PROCEDURE

1. Sugar particles

The size and aspect ratio distributions are determined by image processing. Figure 8 displays the
aspect ratio distribution [Fig. 8(a)] and the equivalent radius distribution [Fig. 8(b)]. The equivalent
radius is the radius of a disk that has the same area as the particles: aeff = √ area

π
.

2. Suspensions of polyamide particles

We also tested the scaling presented in Fig. 6 with suspensions made of polyamide particles
(Polyamide-Nylon 6 Powder PA 6, Goodfellow) dispersed in a silicon oil of viscosity 0.47 Pa·s at
T = 23 ◦C. Four particle fractions were studied: φ = [0.37, 0.40, 0.43, 0.45]. Figure 9 displays a
picture of the polyamide particles that are very polydisperse with an average equivalent diameter
(∼15 μm) much smaller than that of the TS80 or sugar particles. Their shape is quite irregular,
and they are neither as spherical as the polystyrene particles TS80 that have been used nor as sharp
faceted as the sugar particles (see Fig. 1).

The histograms of aspect ratio and size distributions are displayed in Fig. 10.
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