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Evolution of a shocked multimode interface with sharp corners
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Richtmyer-Meshkov instability of an inverse-chevron air/SF6 interface subjected to a
weak shock wave is experimentally studied. The inverse-chevron interface is a typical
configuration that possesses multimode features and sharp corners. Using the soap film
technique, five inverse-chevron interfaces with different initial vertex angles are generated
to highlight the effects of initial amplitude-wavelength ratio on flow characteristics. A
high-speed Schlieren system is used to observe the postshock flow field. After shock
impact, a vortex pair is derived from the upstream interface, and the scale of the vortex
pair is sensitive to the initial amplitude-wavelength ratio. The width growth in the linear
phase is measured and compared with the classical impulsive model and a modified model
considering a velocity reduction factor, and the latter is proven to be effective for moderate
to large initial amplitudes. The linear growth rate is also a nonmonotone function of the
amplitude-wavelength ratio. Further comparison with our previous work illustrates that the
amplitude-wavelength ratio corresponding to the maximum width growth rate is associated
with the Atwood number, which is consistent with the previous numerical results. A
weakly nonlinear growth is observed at late stages, which deviates from the predictions
of most typical nonlinear models. Finally, an empirical model is proposed that provides a
satisfactory prediction of width growth in linear and weakly nonlinear stages.
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I. INTRODUCTION

Richtmyer-Meshkov (RM) instability [1,2] occurs when an initially perturbed interface sepa-
rating two fluids with different densities is impulsively accelerated, such as by shock waves. The
perturbation amplitude will grow with time, and the growth generally experiences a linear phase,
and then a nonlinear phase, and eventually a turbulent mixing state. The RM instability plays an
important role in many areas of scientific research, such as inertial confinement fusion (ICF) [3] and
astrophysical problems [4]. In the past few decades, much attention has been paid to RM instability,
and several comprehensive reviews have been presented [5–9].

During the development of single-mode interfaces after shock impact, the formation of spikes
(a heavier fluid penetrating into a lighter fluid) and bubbles (a lighter fluid penetrating into a
heavier fluid) indicates the nonlinear growth of perturbation. To figure out the differences in growth
rates between spikes and bubbles, the evolution of a single-mode interface with different initial
wavelengths was studied by Sadot et al. [10]. In their experiments, the growth rate of spikes was
larger than that of bubbles, and the disparity was aggravated in the nonlinear stage. Jacobs and
Krivets [11] also experimentally studied the perturbation development of a single-mode interface,
and similarly the spikes developed faster than the bubbles. Numerically, the discrepancies in width
growth rates between spikes and bubbles of a single-mode interface were investigated by Dimonte
and Ramaprabhu [12], and they obtained similar conclusions to those of Sadot et al. [10] and Jacobs
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and Krivets [11]. Consequently, for single-mode interfaces, the spikes behave differently compared
with the bubbles. The previous work showed that the spike is more unstable than the bubble, and
the width prediction of the spike is more difficult than the bubble [13–15].

In most practical applications, however, the material interface is generally multimode, and often
has sharp corners. For example, the surface of the ICF target may not be absolutely smooth, but it has
sharp corners, and the perturbations are essentially random. It is, therefore, necessary to investigate
the evolution of a multimode interface with sharp corners. A chevron or an inverse-chevron interface
is a fundamental and typical configuration that possesses multimode features and sharp corners
[16]. An inclined interface (half-chevron interface) was often encountered in shock refraction
problems [17–19], but little attention has been placed on the interface evolution. An interface
with sawtooth initial perturbations was created by the nitrocellulose membranes to highlight the
high-amplitude effects [20]. Recently, McFarland et al. [21–24] carried out a series of studies on
the RM instability of an inclined interface by numerical, experimental, and theoretical methods,
and fruitful achievements were made. Numerical simulations on the inclined interface have also
been performed by Samtaney and Zabusky [25] to study the vorticity production and vortex
dynamics because the angle of an inclined interface is constant, which provides a controllable
parameter for analyzing the baroclinic vorticity generation. As pointed out by Zhang et al. [26], a
chevron or an inverse-chevron interface is also a fundamental geometry used in studying accelerated
inhomogeneous flows. In our previous work [27,28], a soap film technique was adopted to create a
chevron interface, and the width growth was obtained. The conclusion that the linear growth rate of
the width is a nonmonotonic function of the initial amplitude-wavelength ratio, drawn by Dell et al.
[29] for single-mode interfaces, was verified by our experiments. The nonlinear model proposed
by Dimonte and Ramaprabhu [12] was found to be applicable for predicting the width growth of
a chevron interface. A chevron interface can be approximately regarded as a spike configuration,
while an inverse-chevron interface can be approximately regarded as a bubble configuration. Due to
the existence of a sharp corner and multimode features, the differences in width growth between
chevron and inverse-chevron interfaces needs special consideration, and it should be examined
whether the existing models proposed for single-mode interfaces can predict the width growth of
the inverse-chevron interface.

In this work, the RM instability of an inverse-chevron interface is investigated experimentally.
Five inverse-chevron interfaces with different amplitude-wavelength ratios are generated using the
soap film technique, and the postshock flow field is captured by Schlieren photography combined
with a high-speed video camera. Some models will be considered to estimate the width growths in
linear and nonlinear stages. Finally, we will attempt to bridge the initial and asymptotic velocities
of width growth by proposing a nonlinear empirical model.

II. EXPERIMENTAL METHODS

The soap film technique has already proven its feasibility and reliability to generate a chevron
interface [27] and a polygonal interface [30]. Thus, only a brief description of this technique is given
here. As shown in Fig. 1(a), the interface framework with a depth of 20 mm is first manufactured
by two Acrylic sheets (3 mm in thickness) for interface formation. To avoid pressure singularity,
thin wires (0.128 mm in diameter) will be introduced at interface vertexes, and the number of thin
wire is dependent upon the vertex angle. As indicated in previous work [27,31], at least three wires
are needed for the vertex angle θ � 60◦ and only one wire is needed for θ � 120◦. In this work, as
sketched in Fig. 1(b), when θ = 60◦, three wires are arranged at points A, B, and C, respectively, to
guarantee the angle α � 120◦. In other words, the interface vertex point is shifted from D to B. To
minimize the effects of initial interface deformation, the length of BD is requested to be as small
as possible. However, the soap film interface is difficult to generate if the length of AB is shorter
than 1 mm. In this work, provided that the angle α � 120◦, the lengths of AB and BD are chosen as
1.24 and 1.55 mm, respectively, and the value of angle α is determined to be 137◦. Similarly, when
θ = 90◦, the lengths of AB and BD are chosen as 1.11 and 0.7 mm, respectively, and the angle α is
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FIG. 1. The interface formation method. The Acrylic model used in experiments (a), arrangement of wires
at the vertex for θ = 60◦ and 120◦ (b), interface formation device (c), and the holes on the framework walls (d).

143◦. Before generating the interface, the framework edges are wetted by a mixed solution (made of
60% clean water, 20% concentrated soap liquid, and 20% glycerin by volume) prepared in advance.
Then, as shown in Fig. 1(c), by pulling a rectangular frame along the edges of the framework,
an inverse-chevron soap film interface can be generated. Two holes are opened symmetrically on
the framework walls, as shown in Fig. 1(d), to guarantee the pressure balance inside and outside
the shock tube. Note that two flat interfaces are added between the inverse-chevron interface and
the tube wall to reduce the wall effects on interface evolution. As a result, the interface is not a
periodic inverse-chevron one, which has some differences of wave patterns near the wall compared
with a periodic one. From our previous work [27,32], the influence of boundary-layer thickness
on interface evolution can be neglected. Also the three-dimensional effect of the initial interface is
limited. In this work, five inverse-chevron interfaces with different initial vertex angles (θ = 60◦,
90◦, 120◦, 140◦, and 160◦) are generated, and the initial interface height H0 is fixed to be 70 mm
for all cases. Similar to our previous work [27], the wavelength (λ) is defined as 2H0, and the initial
amplitude (a0) is taken to be the width of the entire initial interface. Then the relationship among λ,
a0, and θ can be given as a0/λ = (1/4)cot(θ/2).

When the soap film interface is formed, the interface framework is inserted into the test section.
To generate an air/SF6 interface, air at the right side of the interface must be exhausted and replaced
by SF6. For this purpose, SF6 is injected from the end of the test section, and air is discharged
through another hole in the test section. An oxygen concentration detector is placed near the
hole to monitor SF6 purity in the test section. In our experiments, when the volume fraction of
oxygen is reduced to 6%, the inflation process is stopped. Note that an appropriate inflation rate
is needed to protect the formed interface. After the air/SF6 interface formation and prior to the
experiment, the time interval allows the diffusion between gases through the interface. In this work,
the gas concentrations at both sides of the interface are determined by the velocities of incident
and transmitted shock waves measured from the Schlieren images and one-dimensional (1D) gas
dynamics theory. The actual gas concentrations are listed in Table I. The gas contamination at the
left side of the interface will result in a slight increase of the incident shock Mach number with
about 0.01. Also the Atwood number, defined as A = (ρ2 − ρ1)/(ρ2 + ρ1), with ρ2 and ρ1 being
the densities of gases at the right and left sides of the interface, respectively, will be affected by gas
contamination.

The experiments are conducted in a horizontal shock tube, which consists of a 1.7-m-long driver
section, a 3.9-m-long driven section, and a 1.0-m-long test section with a 155 × 26 mm2 cross-
sectional area. The Mach number of the incident shock wave propagating in pure air is Ma = 1.22 ±
0.01, which indicates that the shock tube facility has a very good repeatability. Illuminated by a dc
regulated light source (DCR III, SCHOTT North America, Inc.), the postshock flow is captured
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TABLE I. Experimental parameters for five cases. Ma is the Mach number of an incident shock wave, VFL
(VFR) is the volume fraction of SF6 at the left (right) side of the interface, A+ is the postshock Atwood number,
and �v is the jump velocity for a flat interface calculated by 1D gas dynamics.

Case (θ ) 60 90 120 140 160
a0/λ 0.433 0.250 0.144 0.091 0.044
Ma 1.235 1.236 1.235 1.238 1.229
VFL (%) 6.6 6.7 6.2 7.6 3.9
VFR (%) 59.5 58.5 57.5 61.5 59.5
A+ 0.488 0.480 0.482 0.484 0.524
�v (m/s) 87.06 87.50 87.72 86.63 86.89

by Schlieren photography combined with a high-speed video camera (FASTCAM SA5, Photron
Limited). The frame rate of the high-speed video camera is 50 000 fps with an exposure time of
0.368 μs, and the pixel resolution is about 0.32 mm pixel−1.

III. RESULTS AND DISCUSSION

A. Interface morphology and features

The experimental Schlieren frames of a shocked inverse-chevron interface with different initial
vertex angles are shown in Fig. 2. The initial time is defined as the moment when the incident
shock wave (IS) contacts the interface. As indicated in Fig. 2(a), as the IS propagates along the
interface, the refraction shock wave (RS) and the reflected shock wave (RFS) are generated. When
the IS completely passes through the interface, the RFS is also transmitted through the interface,
forming the reflected-transmitted shock wave (RTS) [Fig. 2(a) at t = 186 μs]. A prominent vortex
pair is derived from the corner of the upstream interface due to baroclinic vorticity deposition,
and many small vortices are gradually generated on oblique interfaces that may be ascribed to RM
instability and Kelvin-Helmholtz shear instability. The original sharp corner of the downstream
interface becomes blunt, and its scale gradually increases in the spanwise direction due to the
induction of vorticity deposited on oblique interfaces [Fig. 2(a) at t = 546 μs]. As time passes,
the scale of the upstream vortex pair increases slowly with the surrounding fluids gradually being
entrained into the vortical structure [Fig. 2(a) at t = 546–1566 μs]. As θ increases, the upstream
vortex pair becomes obscure because of less vorticity deposition. At late stages, a stratified interface
can be observed, as indicated by dashed rectangles in the Schlieren frames for θ = 90◦. Note that
small gaps between the Acrylic sheet and the optical glass will exist because they are not fixed very
tightly. A small amount of SF6 gas will diffuse into this space, and the Schlieren image in the test
section is superimposed by another interface of air/SF6 between the Acrylic sheet and the optical
glass. Fortunately, the interface in the test section we are concerned with will not be influenced by
the interface located at the space between the Acrylic sheet and the optical glass because they are
located at different spaces separated by the Acrylic sheet.

Time variation of upstream vortex spacing (Lw), defined in Fig. 2, is given in Fig. 3 with error
bars representing the measurement uncertainty in experiments. The vortex spacing for θ = 160◦
is omitted because the vortex pair is not fully developed so that the vortex core cannot be clearly
identified. The vortex spacing decreases as time elapses for all cases, because the interface velocities
induced by vorticity deposited on the upper (lower) inclined interface have a component in the
vertical direction, making two primary vortices moving toward the central axis gradually. As θ

increases, less vorticity is generated, and the upstream vortex spacing becomes larger. A nonlinear
variation of the vortex spacing is found for all cases because the upstream vortex pair gradually
engulfs smaller vortices on oblique interfaces, which will affect the position of the vortex core.
Moreover, the displacement of the downstream interface in the streamwise direction (Ls), defined as
the distance to the initial interface vertex, and the width of the downstream interface in the spanwise
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FIG. 2. Experimental Schlieren images of an inverse-chevron air/SF6 interface impacted by a planar shock
wave for θ = 60◦ (a), θ = 90◦ (b), θ = 120◦ (c), θ = 140◦ (d), and θ = 160◦ (e). IS denotes the incident shock
wave, RS denotes the refracted shock wave, a0 is the initial interface amplitude, RFS is the reflected shock wave
from the interface, RTS is the refracted shock wave of the RFS through the interface, Ls is the displacement
of the downstream interface, Lw is the upstream vortex spacing, and Lv is the separation displacement of two
inclined interfaces.

direction (Lv) at early stages are presented in Fig. 4. The spanwise scale of the downstream interface
for θ = 160◦ is ignored for its very small deformation. Nearly linear movements of the downstream
interface in both the streamwise and spanwise directions are found for each case, and the velocities
(vh in the streamwise direction and vp in the spanwise direction) obtained by linear fitting of the
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FIG. 3. Time variation of the vortex spacing for four cases (θ = 60◦, 90◦, 120◦, and 140◦).

experimental points are also presented in Fig. 4. As θ decreases, generally the downstream interface
moves faster and the spanwise scale varies greatly because of the induction by more vorticity
deposited on the interface.

B. Linear stage of interface width growth

After the incident shock passes through the perturbed interface completely, the interface width
begins to grow, and a bubble structure appears. For a sinusoidal interface with a small initial
amplitude, a classical impulsive model [1] was proposed to predict the width growth, which can
be expressed as

a = a+
0 + a+

0 �vkA+t, (1)

where a+
0 , k, and A+ are the postshock amplitude, the wave number (k = 2π/λ), and the postshock

Atwood number, respectively. However, the impulsive model is only valid when the initial amplitude
is small enough (a0/λ < 0.1), as indicated by dashed lines in Fig. 5. A modified model including
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FIG. 4. Time variations of the downstream interface displacement in the streamwise direction (Ls) (a), and
of the width of the downstream interface in the spanwise direction (Lv) (b) at early stages.
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FIG. 5. Comparison of interface width growth in a linear stage between experiments and theoretical
predictions. Symbols: experiments; dashed lines: the impulsive model [1]; solid lines: the modified model
[20].

a velocity reduction factor R was proposed by Rikanati et al. [20], which can be applied to both
sinusoidal and chevron interfaces with high initial amplitudes. The model can be described as

a = a+
0 + a+

0 �vkA+t ∗ R, (2)

where

R = u0(a)
/
ulin

0 (a),

u0(a) = −Re

[
f

∫ λ

0

sin[φ−]

cos[φ+]
× cot{π/2[−x + ia0fp(1 − y(x))]/λ} dx

]
,

ulin
0 (a) = −a Re

[
−f

∫ λ

0
π sin(πx/λ) cot(−π/2xλ) dx

]
.

In these equations, u0 is the initial tip velocity induced by a general periodic vorticity distribution
on an interface [33], and ulin

0 is the tip velocity obtained from the impulsive model. φ∓ =
arctan(dy∓(x)/dx), where φ− is the local preshock inclination angle between the interface and
the incident shock wave, and φ+ is the postshock inclination angle. y(x) is the shape function of
the initial interface, and f is a function related to vorticity per unit length deposited on a straight
interface by an oblique shock wave [25]. For angles smaller than the Mach reflection critical angle,
deposited vorticity per unit length can be given by

d�

ds
= f (M, ρ1, ρ2, γ1, γ2, p1, p2) sin φ + O(sin3 φ).

The velocity reduction factor R is crucial to correct the width growth rate of the interface with
high initial amplitudes. The values of R calculated based on the expression above for five cases are
listed in Table II. Through time derivation of interface width a, the linear growth rate v0 can be
given by

v0 = da

dt
= a+

0 �vkA+ ∗ R. (3)
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TABLE II. The velocity reduction factor R, the postshock amplitude a+
0 with errors smaller than 1 mm,

and the linear growth rate v0 from experiments for five cases.

Case (θ ) 60 90 120 140 160
R 0.299 0.560 0.791 0.905 0.976
a+

0 (mm) 50.48 30.04 17.62 11.32 5.89
v0 (m/s) 26.50 30.78 25.09 21.30 14.74

According to Eq. (3), time variation of the interface width growth in normalized form is
presented by solid lines in Fig. 5, and the values of postshock amplitude a+

0 are listed in Table II.
Compared with the impulsive model, the revised model considering a reduction factor gives a
reasonable prediction for the width growth in the linear phase.

In our previous work [27,28], the linear growth rate of a chevron interface is a nonmonotone
function of θ , which experimentally verifies the numerical results obtained by Dell et al. [29]. In
this work, similarly, the linear growth rates v0 for five cases are obtained from experiments, and the
values are listed in Table II. The experimental results also show a nonmonotone function of v0 with
θ . Theoretically, the linear growth rate is given by

v̄ = 2v0a0

πA+a+
0 �v

= R cot(θ/2), (4)

where v̄ is only a function of θ , and the relationship between v̄ and θ is obtained as indicated in
Fig. 6. A nonmonotone relation between v̄ and θ is observed, and the theoretical results agree well
with the experimental counterparts. The maximum v0 is obtained at a0/λ = 0.284, i.e., θ = 82.8◦,
which is different from our previous work where the maximum v0 was obtained at a0/λ = 0.25, i.e.,
θ = 90◦. Nevertheless, the value of a0/λ at which the maximum v0 is obtained is still located within
the range 0.2–0.4 proposed by Dell et al. [29]. Dell et al. [29] once pointed out that the value of a0/λ

when the maximum v0 is reached is slightly dependent on the shock Mach number and the Atwood
number. Compared with our previous work [27], the shock Mach number in this work is nearly the
same while the preshock Atwood number is smaller. Therefore, we can claim that the experimental
data are consistent with the statement that the value of a0/λ corresponding to the maximum v0 is
associated with the Atwood number.
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FIG. 6. Variation of the width growth rate with initial amplitude from experiments and model.
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C. Nonlinear stage of interface width growth

In the late stage of interface evolution, an obviously nonlinear feature is observed. For single-
mode interfaces, some empirical nonlinear models have been developed to bridge the initial and
asymptotic phases. Here these models are checked for the inverse-chevron interface.

Sadot et al. [10] proposed a nonlinear model (the SEA model) to capture the linear and nonlinear
growths of bubbles and spikes. This model can be described as

vSEA
b/s = v0

1 + τ

1 + (1 ± A+)τ + [(1 ± A+)/(1 + A+)][1/(2πC)]τ 2
, (5)

where τ = kv0t , and C = 1/(3π ) for A+ � 0.5 and 1/(2π ) for A+ → 0. In this model, a term
1 ± A+ ∝ τ is adopted in the denominator for bubbles and spikes, which is simple and is not related
to ka+

0 . The quadratic term in the denominator is required to obtain asymptotic velocities, which
takes different values for large or small A+. It should be mentioned that the linear and quadratic
terms in the denominator both take “+” for bubbles and “−” for spikes, which makes the asymptotic
growth of bubbles enter the saturation phase faster than that of spikes. The SEA model was verified
to be successful for predicting the width growth of an air/SF6 single-mode interface [34], an air/CO2,
or an air/SF6 single-mode interface with high amplitudes [35]. In this work, the SEA model can
also provide satisfactory predictions for the width growth, as illustrated in Figs. 7(a)–7(e), when the
constant C is 1/(2π ) rather than 1/(3π ).

For a single-mode interface, based on analytical solutions to potential flow equations, Mikaelian
[36] proposed a nonlinear model (the MIK model) to bridge the initial and asymptotic stages of
bubble growth that was given by

vMIK
b = v0

1

1 + [3(1 + A+)/(3 + A+)]τ
. (6)

In this model, the asymptotic velocity agrees with the results of Oron et al. [37] and Goncharov
[38]. In the work of Jacobs and Krivets [11], the MIK model succeeded in capturing the bubble
growth rates for two single-mode interfaces with different wavelengths. Unfortunately, the MIK
model cannot capture the nonlinear growth of the inverse-chevron interface in this work, as shown
in Fig. 7. This may be due to the fact that the model was derived based on a single-mode interface,
and it lacks a suitable quadratic term to better obtain the asymptotic velocity.

According to the evolution of a single-mode interface, Dimonte and Ramaprabhu [12] proposed
a nonlinear model (the DR model) through numerical simulations, which can be expressed as

vDR
b/s = v0

1 + (1 ∓ |A+|)τ
1 + Cb/sτ + (1 ∓ |A+|)Fb/sτ 2

, (7)

where

Cb/s = 4.5 ± |A+| + (2 ∓ |A+|)|ka+
0 |

4
, Fb/s = 1 ± |A+|.

The DR model is similar to the SEA model in form. In the numerator, a term 1 ∓ |A+| ∝ τ is used
to describe an acceleration of bubbles and spikes, respectively. In the denominator, a coefficient Cb/s
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FIG. 7. Comparisons of width growth in linear and nonlinear stages between experiments and predictions
from five models for θ = 60◦, 90◦, 120◦, 140◦, and 160◦, respectively. Symbols represent the experimental
results, and lines represent theoretical predictions.

is introduced to describe the observed reduction in spike acceleration for large ka+
0 , and the authors

found that spikes are much more sensitive to ka+
0 than bubbles. The coefficient of τ is much more

complicated than that in the SEA model. The DR model can capture the asymptotic width growth in
cases with a wide variety of |A+| and ka+

0 . In our previous work [27], the DR model can well predict
the nonlinear width growth of a chevron interface, which shows that a chevron interface shares some
similarities to a single-mode interface. However, the DR model underestimates the width growth of
the inverse-chevron interface, as illustrated in Fig. 7.
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Recently, Zhang and Guo [15] proposed a new model (the ZG model) to capture the nonlinear
growth rates of bubbles and spikes, which can be expressed as

vZG
b/s = v0

1

1 + α̂τ
, (8)

where

α̂ = 3

4

(1 + A+)(3 + A+)

[3 + A+ + √
2(1 + A+)1/2]

[4(3 + A+) + √
2(9 + A+)(1 + A+)1/2

[(3 + A+)2 + 2
√

2(3 − A+)(1 + A+)1/2]

with the positive Atwood number for bubbles and its negative counterpart for spikes with the
same density ratio. As presented in the work of Zhang and Guo [15], the ZG model provided a
good prediction for the results of Sohn [39], Dimonte and Ramaprabhu [12], and Alon et al. [40].
However, the ZG model with α̂ a function of A+ is similar to the MIK model in form, and it is not
strange that the ZG model also fails to capture the nonlinear growth of the inverse-chevron interface
in this work, as presented in Fig. 7.

In the work of Dimonte and Ramaprabhu [12], comparison of theoretical growth rates predicted
by the SEA, DR, and MIK models with experimental counterparts [10,11,41] was made for single-
mode interfaces. The results indicated that these models can all provide a good prediction of width
growth at early stages, while only the DR model works well at late stages. Further comparison
with the experiments [41] showed that the SEA model overestimates the bubble width growth,
while the MIK model slightly underestimates it. Overall, for bubble width growth, the previous
work indicated that the SEA model provides the largest growth rate while the DR and MIK models
provide similar predictions in some cases. These results are consistent with our present findings,
as indicated in Fig. 7. Zhang and Guo [15] showed that the ZG model gives a similar prediction
to the DR model, which is correct for the inverse-chevron interface with small amplitudes, such
as for θ = 140◦ and 160◦. For the inverse-chevron interface in this work, these models can predict
the width growth to some extent, which illustrates that the inverse-chevron interface shares some
similarities with single-mode interfaces. However, all models underestimate the asymptotic velocity
of width growth, indicating that the width of an inverse-chevron interface grows much faster than
that of a single-mode interface. As indicated in previous work [16,27,43], a chevron interface can
be expressed in the form of a Fourier expansion. The fundamental mode, which has a wavelength
equal to the opening of the chevron interface, contains ∼81% of the mode, and the other infinitely
many shorter modes make up the remaining 19%. Probably, the other shorter modes promote the
width growth of the inverse-chevron interface. Moreover, the existence of a sharp corner and flat
segments at both sides of the inverse-chevron interface may also influence the width growth. Those
features were not considered in previous nonlinear models, and they require further investigations.

Note that all models mentioned above underestimate the asymptotic velocity of the width growth,
and as t → ∞ these models have a similar expression:

vb → 1

Ekt
, (9)

where the value of E is different for each model, as listed in Table III. To better capture the
asymptotic velocity of width growth of an inverse-chevron interface, we find that when E in Eq. (9)
takes the form of 1 + (A+/2), which is from the work of Sohn [42], the asymptotic velocity of
width growth can be well-predicted. Based on the initial linear velocity and the asymptotic velocity,
a model can be established as

vb = v0
1 + Eτ

1 + Eτ + E2τ 2
. (10)

As presented in Fig. 7, it is clear that the new model works well for predicting width growth in linear
and weakly nonlinear phases. However, further investigations are needed to determine whether this
model is applicable for other types of interfaces.
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TABLE III. The values of E for different models.

Models Specific form of E Provenance of E

SEA [(1 ± A+)/(1 + A+)][1/(2πC )] Alon et al. [40]
MIK 3(1 + A+)/(3 + A+) Goncharov [38]
DR 1 ± |A+| Niederhaus et al. [41]
ZG α̂ Zhang and Guo [15]
Our model (2 + A+)/2 Sohn [42]

IV. CONCLUSIONS

The width growth of an inverse-chevron air/SF6 interface subjected to a weak shock wave
is investigated experimentally in an attempt to figure out the difference in width growth be-
tween chevron and inverse-chevron interfaces. The inverse-chevron interface is created by the
soap film technique, and the shocked interface morphology is captured by high-speed Schlieren
photography.

For small vertex angles, more baroclinic vorticity is generated, and the interface deforms greatly
with the formation of an obvious vortex pair. The vortex spacing changes continuously because
the vortex pair swallows the small vortices on oblique interfaces. The width growths in linear and
nonlinear phases are obtained. In the linear stage, the width growth in experiments with small initial
amplitudes can be predicted by the impulsive model. For high initial amplitudes, a revised linear
model considering a reduction factor can give a reasonable prediction. The linear growth rate is
also a nonmonotone function of the initial vertex angle, which is consistent with our previous work
[27]. However, the amplitude-wavelength ratio corresponding to the maximum linear growth rate
is larger than the counterpart in our previous work due to the slight difference in Atwood number,
which is consistent with the statement by Dell et al. [29]. At late stages, the weakly nonlinear
behavior of width growth is observed, while in our previous work [27] the nonlinear behavior
almost does not emerge, although the evolving duration is nearly the same. In this work, four
typical nonlinear models are adopted to estimate the asymptotic velocity of width growth. All of
them show a correct tendency of width growth, which indicates that an inverse-chevron interface
shares some similarities with single-mode interfaces. However, all models underestimate the width
growth rate, probably because they were derived based on single-mode interfaces and the roles of
other high-order harmonic modes, which were initially presented in the inverse-chevron interface,
are not considered. An empirical nonlinear model is proposed, which well reflects the asymptotic
behaviors of width growth of an inverse-chevron interface. We note that its range of validity needs
to be examined in future work.

The results in this work show that diversities exist between multimode interfaces with sharp
corners and single-mode interfaces, and the coupling and competition of different modes play
important roles in the interface evolution. In future work, the chevron interfaces with different
wavelengths will be arranged alternatively to investigate the mode coupling and competition. The
existence of flat segments at both sides of the inverse-chevron interface breaks the periodicity of
the interface, and will likely affect the width growth, which will also be discussed in the near
future.
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