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Simulations are performed of a surfactant-laden drop that is stretched by an imposed
uniaxial extension flow at infinity with flow focusing provided by two transverse, coaxial,
annular baffles placed symmetrically to either side of the drop. The geometry is axisym-
metric, with additional symmetry in the transverse plane that contains the drop center.
Under suitable conditions, the drop can enter a mode of drop breakup referred to as
tipstreaming, in which a thin elongated filament or thread is emitted from the drop ends and
which subsequently breaks up into small droplets via capillary instability. The influence
that flow focusing has on the conditions required for tipstreaming and on quantities such
as the thread radius are investigated by study of sample simulations and the extent of
flow focusing is varied by changing the inner or aperture radius of the annular baffles.
The surfactant is soluble and bulk-interface surfactant exchange is in the mixed-kinetic
or finite-Biot-number regime. The boundary-integral method is used for the underlying
two-phase Stokes flow solver, combined with a finite-difference scheme for evolution of
adsorbed surfactant on the interface. The dynamics of dissolved bulk phase surfactant is
resolved by a large-bulk-Péclet-number asymptotic approach. Results on the conditions for
tipstreaming in the simulations are compared to separate experimental results on conditions
for tipstreaming in a microfluidic flow-focusing device.
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I. INTRODUCTION

Tipstreaming is a mode of drop breakup in which a thin fluid thread is emitted or drawn from
the tip of a drop by an extensional flow and where the thread later breaks into a sequence of small
droplets via capillary instability. It was first reported by Taylor in his pioneering experiments on
drop deformation and breakup in a four-roller mill [1], where it occurred briefly and apparently by
chance. More recently, tipstreaming has been attributed to the presence of chemical surfactants, or
surface-active agents, and their influence on flow dynamics, which is to reduce the surface tension
at interfaces in a multiphase fluid mixture.

Many different types of surfactant are currently in commercial use as detergents, emulsifiers,
or foaming and wetting agents in a range of applications from industrial to domestic contexts.
Surfactants also occur in nature as biochemical reaction products and are produced by some
microorganisms. In addition to supporting natural processes, naturally occurring surfactants are
increasingly being adapted to other applications. Descriptions of the properties and uses of
surfactants are given in, for example, Refs. [2–4].

In Ref. [5], Stone reviewed the theoretical and experimental understanding of the various modes
of drop breakup, including tipstreaming, in macroscale unconfined flows at the time of writing. At
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around the same time experimental studies by de Bruijn [6] and by Janssen et al. [7,8] found that
for surfactant-induced tipstreaming to occur in isolated millimeter-sized drops the viscosity ratio
λ of the interior (dispersed) to exterior (continuous) phase fluids needs to be sufficiently small,
λ � 0.1, and that both the ambient surfactant concentration and the capillary number or strain rate
of the deforming flow need to lie within a certain intermediate range. The small dispersed phase
droplets that result from tipstreaming have a size of the order of 10 μm, a high surface surfactant
concentration, and consequently a low surface tension. In these studies, the key component of the
mechanism for tipstreaming, that it requires a large gradient of the surface tension to develop near
the pole or tip of a low-viscosity drop in an extensional flow, was explained.

The behavior of drops and fluid interfaces at the microscale is a central theme of microfluidics,
where confinement of flow and the need for repeatability or control are important concerns.
Configurations in which microfluidic tipstreaming can occur consist of a channel or capillary
supplied with a dispersed phase that terminates inside a continuing parallel outer channel or at
intersecting cross channels that are supplied with an immiscible continuous phase. Flow focusing
can also be introduced, in which the device geometry is modified to cause locally converging and
accelerating flow of both phases. In Ref. [9], Anna gave a comprehensive review of drop and
interfacial fluid dynamics in the specific context of microfluidics, with and without surfactants.
The review also summarized studies on surfactant-mediated tipstreaming in the presence of flow
focusing, which is the main topic for investigation here, and among these studies the experiments
described in Refs. [10,11] will be given our particular attention. Typical device dimensions here are
of the order of 10–300 μm and tipstreaming thread and droplet diameters as small as 200 nm have
been reported [9–12].

In this study the boundary integral method is adapted to simulate the dynamics of a tipstreaming
drop in an extensional flow by using a hybrid numerical method to resolve the effects of solubility
of surfactant in the large-bulk-Péclet-number limit. The hybrid method was introduced in Ref. [13]
in the context of an inviscid bubble in two dimensions and was later extended to viscous drops in
more general linear two-dimensional (2D) flows [14] and to a 3D axisymmetric uniaxial extension
[15]. Since surfactant molecules are typically large relative to their host solvent molecules they
diffuse slowly in the bulk, so the bulk Péclet number Pe is large, typically being of the order of
106–107 for a drop of radius 0.1 mm in an oil-water mixture. Local stretching and contraction of
a deforming fluid interface cause surface and bulk surfactant concentrations to move away from
equilibrium, resulting in exchange of surfactant between the interface and bulk across a narrow
transition layer of width of O(Pe−1/2) relative to the drop radius. The hybrid method introduces a
leading-order matched asymptotic reduction of the dynamics in the transition layer to accurately
resolve surfactant concentrations and interfacial surface tension in the Pe → ∞ limit.

Of the many numerical studies of drop deformation and breakup there are three that evoke the
surfactant-induced tipstreaming of experiments. Eggleton et al. [16] investigated tipstreaming in
an axisymmetric uniaxial extension flow, while Bazhlekov et al. [17] reported on 3D simulations
of drop deformation and breakup, including tipstreaming, in a simple shear flow. In both of these
studies the surfactant is insoluble. In recent work [15], we have used the hybrid method to report on
deformation and tipstreaming of a drop in an axisymmetric uniaxial extension including surfactant
effects with solubility. All three studies use the boundary integral method for the underlying Stokes
flow solver and are set in an unbounded geometry. They find, in qualitative agreement with the
experimental observations, that there are limitations on the viscosity ratio, surfactant concentration,
and capillary number for tipstreaming to occur. In computations using the finite-element method,
Suryo and Basaran [18] observed tipstreaming as a possible mode of flow under specific conditions
for equal viscosity fluids but without surfactant, in a bounded coflow geometry, and with no flow
focusing.

References [19–29] are examples of numerical studies of drop dynamics with soluble surfactant.
These either use a finely adapted or refined mesh to resolve surface-bulk exchange of surfactant,
with a deformable or nondeformable interface, or simplify the mechanism of surfactant exchange
dynamics, or are restricted to artificially small or at most moderate values of Pe. A recent study
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FIG. 1. (a) A drop is situated in a uniaxial extension flow facing a narrow opening in a baffle on either side.
The geometry is axisymmetric. (b) Half of the drop in x > 0 showing a conical tip, in a 2D profile. (c) The 3D
view.

[30] used a fixed uniform mesh with an embedded boundary method to track and resolve interface
dynamics with soluble surfactant at nonzero Reynolds number and Péclet number Pe = 102.

In this study we consider an isolated, initially spherical drop at the origin of an impulsively
started uniaxial extension flow. The interface and continuous phase have a surfactant concentration
that is initially in equilibrium, and flow focusing is introduced via transverse annular baffles placed
concentric with the flow axis and symmetrically on either side of the drop center. This models the
flow focusing of the experimental coflow device [10,11] but does not include its channel sidewalls.
Also, we consider an initial-boundary-value problem with additional symmetry about the plane
x = 0, as opposed to the experiments’ near semi-infinite geometry and near steady-state operation.

The model setup is described in more detail in Sec. II. Section III contains the governing
equations for Stokes flow with soluble surfactant, together with a description of the large-Pe hybrid
method, a note on its conservation of surfactant, and the boundary integral equation for the Stokes
flow fluid solver. The numerical implementation is outlined in Sec. IV, which includes a note on
a soluble surfactant plume in the downstream wake of a drop as a partial validation of the method
and code. Section V is the main section on results. We briefly review the influence of surfactant
solubility on tipstreaming in an unbounded flow before studying the influence of flow focusing,
via baffles, at a sequence of decreasing aperture sizes and increasing surfactant solubility. We then
turn to a comparison of our simulation results with the experimental results of Moyle et al. on the
conditions needed for tipstreaming [11]. To do so, the simulation data are reformulated to closely
approximate the same state-space variables used in presenting the data from the experiments. A
summary and conclusions are given in Sec. VI.

II. MODEL GEOMETRY

An initially spherical drop has a uniform concentration of surfactant on its interface that is in
equilibrium with a uniform concentration of surfactant in the continuous bulk phase outside it. The
drop is situated between two annular baffles that have a large outer radius and an inner or aperture
radius that is less than the initial radius of the drop. At time t = 0 a uniaxial extension flow u∞ is
imposed with its axis x passing through the drop and aperture centers. The geometry is symmetrical
about both the x axis and the plane x = 0; the baffle apertures tend to focus the flow as it passes
through them. An illustration of the setup is given in Fig. 1(a), while an example computation of a
2D profile and the 3D shape of a deformed half-drop interface in x > 0 are shown together with the
baffle aperture in Figs. 1(b) and 1(c), respectively. Here the capillary number is sufficiently small
that the interface is not drawn through the opening.

This is proposed to capture the main features of flow focusing in the microfluidic tipstreaming
device of Anna and Mayer [10] and Moyle et al. [11]. Figure 2(a) shows a schematic of the
experimental device with an image of a steady rounded interface near the aperture Wor. The device
geometry is rectilinear but the interface becomes nearly axisymmetric close to the aperture, and
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FIG. 2. (a) Schematic diagram (left) indicating flow of the continuous and dispersed phases, and an image
(right) of the aperture region with interface not tipstreaming. The dimensions shown are Wup = 280 μm,
a = 90 μm, �Z = 180 μm, and Wor = 34 μm. (b) Image showing streaklines in the dispersed phase during
formation of a tipstreaming thread (vertical length bar 50 μm). (Figures have been reprinted with permission
from Ref. [10].)

surfactant is dissolved in the interior or dispersed phase fluid. Figure 2(b) shows an image of
streaklines in the dispersed phase, with a conical interface and a thin tipstreaming thread that is
drawn through the aperture. The cited experimental references give a more thorough account of the
device and its operation [10,11]. Comparison of the experimental results with our simulation data is
given below in Sec. V C.

III. GOVERNING EQUATIONS IN THE LARGE-BULK-PÉCLET-NUMBER LIMIT

The drop has viscosity μ1, occupies a region �1, and is immersed in an immiscible fluid with
viscosity μ2 that occupies an unbounded exterior region �2. The interface between the two fluids
is denoted by S and the surface of a pair of axisymmetric annular rigid baffles is denoted by Sb. In
the low-Reynolds-number limit and in the absence of buoyancy or gravitational effects, the flow in
each phase is governed by the incompressible Stokes equations

λ∇2u = ∇p, ∇ · u = 0, x ∈ �1,

∇2u = ∇p, ∇ · u = 0, x ∈ �2,
(1)

written in nondimensional form. Here the viscosity ratio λ = μ1/μ2. The scale for nondimension-
alization of length is the radius a of the unstretched spherical drop. The fluid velocity u is made
nondimensional by the capillary velocity U = σ0/μ2, where σ0 is the interfacial surface tension
in the absence of surfactant. Time is made nondimensional by a/U and the pressure p is made
nondimensional by μ2U/a.

The fluid velocity is continuous across the interface, which evolves according to the kinematic
boundary condition, that is,

[u]2
1 = 0, x ∈ S, (2)

dx
dt

= (u · n)n, x ∈ S, (3)

where [·]2
1 denotes the jump or difference as S is approached from the exterior and interior of S and n

is the outward unit normal on S. The stress-balance boundary condition, that the net hydrodynamic
traction on S due to the fluid on either side equals the net force acting on S due to interfacial surface
tension, is

[σ ]2
1 · n ≡ −(p2 − p1)n + 2(e2 − λe1) · n = σκn − ∇sσ, x ∈ S. (4)

Here a subscript denotes the domain, �1 or �2, from which x approaches S, σ is the stress tensor, ei

(i = 1, 2) is the rate-of-strain tensor, σ is the interfacial surface tension, κ is the sum of the principal
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normal curvatures of S, which are chosen to be positive for a convex intersection with S seen from
�1, and ∇s = ∇ − n(n · ∇) is the surface gradient operator.

The surface tension σ depends on the concentration of surfactant on the interface � according to
an equation of state. Here this is taken to be

σ = 1 + E ln(1 − �), (5)

where the elasticity number E = RT �∞/σ0 is a dimensionless measure of the sensitivity of surface
tension to variations in surface surfactant concentration, which in turn is made nondimensional
by the theoretical maximum monolayer surface concentration �∞. Equation (5) is described as
a Langmuir-type surface equation of state [2], the Frumkin surface equation of state [31], or the
Szyszkowski surface equation of state [7].

The surface surfactant concentration � satisfies the conservation law

∂�

∂t

∣∣∣∣
n

+ ∇s · (�us ) + �κun = 1

Pes

∇2
s � + J n · ∇C|S, x ∈ S. (6)

Here the time derivative ∂t |n is taken along the direction of the outward normal to the interface
when it is in motion and the remaining terms on the left-hand side account for change in � due to
(i) advection along the interface with the tangential fluid velocity us = u − (u · n)n and (ii) motion
of a locally nonplanar interface along its normal with speed un = u · n. On the right, the first term
describes change in � due to surface diffusion, and the surface Péclet number Pes = aU/Ds , where
Ds is the surface diffusion coefficient. The second term denotes the change in surface surfactant
concentration � due to exchange with the bulk, where C is the bulk phase surfactant concentration.
The rate of exchange is given by the diffusive flux of dissolved surfactant in the bulk phase sublayer
immediately adjacent to S and the parameter J = DC∞/�∞U is a dimensionless measure of the
change in � due to this diffusive exchange relative to advection of surfactant on the interface. The
bulk surfactant concentration is made nondimensional by an ambient constant far-field value C∞
and D denotes the diffusion coefficient in the bulk.

The bulk surfactant concentration C advects and diffuses as a passive scalar, so

∂C

∂t
+ u · ∇C = 1

Pe
∇2C, x ∈ �2, (7)

where the bulk Péclet number Pe = aU/D. Here we take surfactant to be present in the exterior
domain alone. The bulk-interface exchange of surfactant satisfies the boundary condition

J n · ∇C|S = Bi[K (1 − �)C|S − �], x ∈ S, (8)

which equates the diffusive flux of dissolved surfactant in the bulk phase sublayer adjacent to the
interface with the local rate of adsorption from the bulk to the interface minus the local rate of
desorption from the interface to the bulk. The Biot number Bi = aκd/U is the ratio of the flow
timescale a/U to the timescale for kinetic desorption κ−1

d and K = κaC∞/κd is a dimensionless
equilibrium partition coefficient with kinetic rate ratio or surface activity κa/κd .

The initial distribution of bulk surfactant is assumed to be spatially uniform and equal to its
constant far-field value, so

C(x, 0) = 1 for x ∈ �2,

C → 1 as |x| → ∞ for all t > 0.
(9)

The configuration is in equilibrium initially, so the initial drop shape is spherical, and from (8),

�(x, 0) = K

1 + K
≡ �0. (10)

The imposed far-field flow that deforms the drop is a uniaxial extension, so

u → u∞ = Ca
(
− r

2
er + xex

)
as |x| → ∞, (11)
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where Ca = Ga/U is the capillary number and G is the dimensional strain rate of the imposed flow.
This is consistent with the flow-focusing geometry since the baffles are finite.

A. Large-bulk-Péclet-number limit

In applications, the bulk Péclet number is large and typically of the order of 106–107. Since the
field equation (7) is singularly perturbed in the limit Pe → ∞ this led us to introduce a reduced
asymptotic model that is derived in this limit in our earlier work [13–15].

The exterior domain �2 is divided into two regions. There is an outer region where spatial
gradients in C are not large, which is characterized by a regular approximation of (7). In the
Pe → ∞ limit, the leading-order approximation satisfies

(∂t + u · ∇)C = 0, (12)

so C is constant on particle paths at this order, and with the uniform initial data of (9) this implies
that C ≡ 1 over much of �2 for t � 0.

When the drop deforms, local change of its interfacial area causes the surface surfactant
concentration � to depart from its initial equilibrium value �0 of (10). The large bulk Péclet number
or slow diffusion of bulk surfactant causes large spatial gradients of C to develop in the normal
direction close to the interface, which constitutes a second, inner region or transition layer �2r ⊂
�2. In this region the dynamics are described by introducing a surface-fitted or intrinsic coordinate
system (ξ1, ξ2, n) and a stretched normal coordinate N = n/ε, in which C = C(ξ1, ξ2, N, t ). Here
n is the distance normal to the interface, with n > 0 in �2 and n = 0 on S, and ξ1 and ξ2 are distance
coordinates on S. The system (ξ1, ξ2, n) is chosen to be locally orthogonal and the small parameter
ε is such that 0 < ε = Pe−1/2 � 1.

The bulk surfactant dynamics in the transition layer, written in the intrinsic frame, is governed
by

(∂t + vs · ∇s + ∂nvp|sN∂N )C = ∂2
NC in �2r , (13)

where

∂nvp|s = −κun − ∇s · us , (14)

at leading order [13]. Here vs = us − ∂t X|ξ is the tangential interfacial fluid velocity relative to
a point x = X (ξ1, ξ2, t ) on the interface with fixed ξ = (ξ1, ξ2). The Eulerian fluid velocity u, in
terms of its projection on the tangent plane ut and normal component up, is u = ut + upn, so the
normal component of the fluid velocity relative to the interface S is vp = up − un. This vanishes
on S and is approximated by the first term in its Taylor expansion ∂nvp|sn near S. In the intrinsic
frame, the time derivative ∂t of (13) is taken with (ξ1, ξ2, N ) fixed, and at zero to moderate values
of the Reynolds number there is no boundary layer or N dependence of the fluid velocity, so ut

is approximated by the interface tangential fluid velocity us . As a result, the material derivative
and diffusive flux of (7) appear in (13) at leading order, with an error or remainder that is O(ε) as
ε → 0. To the same order, Eq. (14) follows from the incompressibility condition (1) when written
in the intrinsic frame, and this allows the quantity ∂nvp|s to be found in terms of surface data alone.
We note that Wong et al. [32] showed that from the first two terms on the left-hand side of Eq. (13)
the combination ∂t − ∂t X|ξ · ∇s = ∂t |n, which is the time derivative along the outward normal to a
moving interface of Eq. (6). Hence (13) can also be written as

(∂t |n + us · ∇s + ∂nvp|sN∂N )C = ∂2
NC. (15)

The initial and boundary conditions become

C(ξ1, ξ2, N, 0) = 1, (16)

with

J0∂NC|s = Bi[K (1 − �)C|s − �] on N = 0 (17)
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and as

N → ∞
{
C → 1 when ∂nvp|s � 0

∂NC → 0 when ∂nvp|s > 0.
(18)

In the bulk-interface surfactant exchange condition (8) we have set J = εJ0, where J0 = O(1), to
form (17). To find the transition layer far-field condition (18) we note that ∂nvp|s is the rate of ex-
tension of a fluid line element in the transition layer in the direction normal to S. Where ∂nvp|s � 0,
fluid particle paths enter the inner transition layer region from the outer region, which is governed by
Eq. (12) with the equilibrium initial value C = 1, and so this is the matching value of C as N → ∞.
On the other hand, where ∂nvp|s > 0, fluid particle paths exit the inner transition layer region. Since
bulk-interface surfactant exchange is localized near the interface N = 0, C equilibrates far from S

to a constant value that is determined by the transition layer dynamics, so the matching condition
is ∂NC → 0 as N → ∞. This constant value of C is then maintained on particle paths in the outer
region, per (12), and a wake or plume of dissolved surfactant with C 	= 1 develops, leaving the drop
interface.

Similar to the formulation of Eq. (17), in the Pe → ∞ limit, Eq. (6) for evolution of the surface
surfactant concentration becomes

∂�

∂t

∣∣∣∣
n

+ ∇s · (�us ) + �κun = 1

Pes

∇2
s � + J0

∂C

∂N

∣∣∣∣
s

on S. (19)

B. Conservation of surfactant

Here we show that the asymptotic model of Sec. III A conserves surfactant in the large-bulk-
Péclet-number, small-ε limit with an error or remainder of O(ε2). The integral form of the
conservation law (6) for evolution of surfactant � on the interface S is

d

dt

∫
S

� dS = J

∫
S

∂C

∂n
dS, (20)

which includes the influence of surface diffusion and exchange of surfactant with the bulk. For
a Lagrangian fluid volume R ⊂ �2 that is bounded by the drop surface S and a closed surface of
material points SR outside S, Reynolds’ transport theorem gives the integral form of the conservation
law (7) for bulk surfactant C as

d

dt

∫
R

C dV = 1

Pe

∫
R

∇2C dV. (21)

When the divergence theorem is used to express the right-hand side of (21) as the net flux of
surfactant entering R across SR and from S, and the flux integral

∫
S
∂nC dS is eliminated via (20),

we have

d

dt

(∫
R

C dV + 1

J Pe

∫
S

� dS

)
= 1

Pe

∫
SR

∂C

∂n
dS. (22)

Here the normal derivatives are outward on both S and SR and the relations (20)–(22) are exact.
Each term of Eq. (22) is estimated based on the leading-order asymptotic model of Sec. III A.

The surfactant concentrations have expansions in ε: C = C (0) + O(ε) and � = �(0) + O(ε), and we
temporarily restore the (0) superscript on the leading-order terms, which was omitted in Sec. III A.

To estimate d
dt

∫
R

C dV , the integral over R is written as the sum of the integral over the
inner region of the ε-width transition layer �2r and over the outer region of its complement
R \ �2r . From Reynolds’ transport theorem, each is the integral of the material derivative DC

Dt

over the corresponding volume. In �2r , the material derivative is given in the intrinsic frame
by the left-hand side of Eq. (13) with C replaced by C (0) at leading order, plus a remainder
that is O(ε). From Eq. (13) this leading-order term is ∂2

NC (0) and the volume element in �2r is
dV = εdN dS[1 + O(ε)], where terms of the Jacobian that contain the curvature of S are O(ε)
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throughout. The integration with respect to N across the ε-width region �2r can be evaluated and
the contribution as N → ∞ is zero from the boundary conditions (18). This produces the integral
−ε

∫
S
∂NC (0)dS over S plus a remainder that is O(ε2). To estimate the integral over the outer region

R \ �2r , we note from Eq. (7) that the material derivative is equal to ε2∇2C, which is O(ε2) in the
absence of large spatial gradients there. Over R, this gives

d

dt

∫
R

C dV = −ε

∫
S

∂C (0)

∂N
dS + O(ε2). (23)

The term d
dt

∫
S
� dS of Eq. (22) is equal to the integral over S of the material derivative D�

Dt

confined to the flow on S, which in turn is given by the left-hand side of (19) with � replaced by
�(0) plus a remainder that is O(ε). The leading-order term is given by the right-hand side of (19),
with � replaced by �(0) and C replaced by C (0), and the integral of the surface diffusion term is zero
since S is closed. Since J = J0ε and 1/Pe = ε2, this gives

d

dt

(
1

J Pe

∫
S

� dS

)
= ε

∫
S

∂C (0)

∂N
dS + O(ε2). (24)

The left-hand side of Eq. (22) is therefore given by the sum of (23) and (24), in which the O(ε)
terms on the right-hand sides cancel to leave an O(ε2) remainder. The right-hand side of (22) is also
of O(ε2), since the outer boundary SR of R is in the outer region, where spatial gradients of C are
O(1) and 1/Pe = ε2.

We conclude that the hybrid method conserves surfactant at O(ε), with remainder of O(ε2).

C. Boundary integral formulation

The boundary integral method was chosen to solve the equations for incompressible Stokes flow
(1). For a point x0 in the exterior flow domain �2 the fluid velocity u satisfies

uj (x0) = u∞
j (x0) − 1

8π

∫
S

Gij (x, x0)[σik (x)]2
1nk (x)dS(x) + 1− λ

8π

∫
S

ui (x)Tijk (x, x0)nk (x)dS(x)

− 1

8π

∫
Sb

Gij (x, x0)gi (x)dS(x), x0 ∈ �2, (25)

written in suffix notation. The derivation of (25) in the absence of baffles Sb can be found in
Refs. [33,34] and is based on the Lorentz reciprocal identity for Stokes flows and application of
the divergence theorem. The free-space Green’s function, or Stokeslet, and associated stress tensor,
or stresslet, are given by

Gij (x, x0) = δij

r
+ x̂i x̂j

r3
, Tijk (x, x0) = −6

x̂i x̂j x̂k

r5
, (26)

respectively, where x̂ = x − x0 and r = |x̂|. In the integral over the interface S that contains Gij ,
or the single-layer potential, [σik (x)]2

1nk (x) is the net traction exerted on S by the bulk flow to
either side of it, which is given in terms of the interfacial tension by (4). In the integral over S that
contains Tijk , or the double-layer potential, ui is the interfacial fluid velocity on S. The inclusion
of rigid baffles Sb introduces two analogous integrals. However, of these, the double-layer term is
zero, since the fluid velocity satisfies the no-slip condition u = 0 on Sb, and in the single-layer term,
which is the last term on the right-hand side of (25), gi (x) is the net traction exerted by the fluid
surrounding Sb, which is to be determined.

If x0 approaches S from �2 all terms of (25) are continuous with the exception of the integral for
the double-layer potential, which in the limit is given by the sum of a local contribution 4πuj (x0)
from a neighborhood of x0 plus the principal value of the integral, which is denoted by PV and is
the value of the improper integral when x0 is on S [34]. After some rearrangement, this gives the
integral equation (27a) below. Conversely, if x0 approaches Sb from �2 then all terms of (25) are
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continuous, including the double-layer potential, and the fluid velocity uj (x0) is zero to satisfy the
no-slip boundary condition. After rearrangement, this gives the integral equation (27b). We have

uj (x0) − 1 − λ

4π (1 + λ)

∫ P.V.

S

ui (x)Tijk (x, x0)nk (x)dS(x) + 1

4π (1 + λ)

∫
Sb

Gij (x, x0)gi (x)dS(x)

= 2

1 + λ
u∞

j (x0) − 1

4π (1 + λ)

∫
S

Gij (x, x0)[σik (x)]2
1nk (x)dS(x), x0 ∈ S, (27a)

λ − 1

8π

∫
S

ui (x)Tijk (x, x0)nk (x)dS(x) + 1

8π

∫
Sb

Gij (x, x0)gi (x)dS(x)

= u∞
j (x0) − 1

8π

∫
S

Gij (x, x0)[σik (x)]2
1nk (x)dS(x), x0 ∈ Sb. (27b)

This is a pair of coupled Fredholm integral equations for the fluid velocity u on the drop interface S

and the net traction g on the baffles Sb, where the right-hand sides are considered known in terms of
the imposed flow u∞ and the net surface traction on S. When λ 	= 1, Eq. (27a) is of the second kind
in u and first kind in g, while Eq. (27b) is of the first kind in both u and g. When λ = 1, Eq. (27b)
is of the first kind in g while (27a) gives u directly in terms of two single-layer potentials, one over
S and one over Sb.

IV. NUMERICAL IMPLEMENTATION

Simplification of (27) occurs since the geometry and flow are axisymmetric about the x axis and
symmetric about the plane x = 0. In the surface integrals, the integration in the azimuthal direction
can be performed analytically, and the components of the Stokeslet and stresslet that result can
be expressed in cylindrical (r, x) coordinates in terms of complete elliptic integrals [34,35]. The
surface integrals are thus reduced to line integrals over the trace or intersection of the interface S

and baffles Sb with a meridional (r, x) plane in the first quadrant (r > 0, x > 0).
Some of the kernels in the line integrals have integrable logarithmic singularities as x → x0.

This occurs in the single-layer potential terms as x → x0 ∈ S on the right-hand side of (27a)
and as x → x0 ∈ Sb on the left-hand side of (27b). To resolve these the hybrid Gauss trapezoidal
quadrature rules developed by Alpert [36] were used. The quadratures have error of O(hp log h),
where the choice of the order p determines the nodes and weights, and in this implementation p = 8.
There are also integrable logarithmic singularities in the kernel of the double-layer potential as
x → x0 ∈ S in the principal value integral on the left-hand side of (27a). These were resolved with
the boundary element approach of Stone and Leal [37] and eight-point Gauss-Legendre quadrature
rules. The discretized system was solved iteratively using the generalized minimal residual method,
with tolerance for convergence set to 10−13.

At the beginning of a time step, the surface traction on S is known in terms of the surface tension
and the interface shape from (4), so the right-hand side of the system (27) is known; it is then
solved iteratively to find u and g. The interface position is then updated in time according to the
kinematic condition (3), and the updated curvature κ and normal and tangential field (n, t ) are found
on S. With this information, the bulk and surface surfactant concentrations are updated according
to Eqs. (13), (14), and (17)–(19), and the equation of state (5) is used to update the surface tension,
thereby completing the time step. At predetermined intervals mesh points are redistributed so as to
be equally spaced in arc length and more interface mesh points may be added.

The discretization for solving the bulk and surface surfactant concentrations used second-order
finite differences in space and the explicit, first-order forward Euler method for the time step. In
the absence of baffles, the discretization of Eq. (27a) has the same, second-order, accuracy [15].
However, the overall order of accuracy of the method is lower, and first order in space, when
the baffles, which are situated at x = ±l, are introduced. The baffle mesh points on x = ±l are
distributed evenly in the radial coordinate r ∈ [r0, R], where r0 is the aperture radius and the
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FIG. 3. (a) Velocity components ux and ur versus r , evaluated at the midpoint between each of the N

computational mesh points on the baffle Sb in the absence of the drop, with values of N from 16 to 128 as
indicated in each panel. The baffle occupies the region r ∈ [1, 10] and Ca = 1. (b) Plot of the L2 error of the
velocity components versus N on log-log scales. The error is of O(h).

outer radius R is fixed at R = 10 throughout. The accuracy of implementing the no-slip boundary
condition on Sb was verified by evaluating the fluid velocity at midpoints introduced halfway
between the baffle mesh points in the absence of the drop. It is given by evaluating the right-hand
side minus the left-hand side of (27b) with x0 at each midpoint on Sb. Figure 3(a) shows the axial
and radial velocity components ux and ur , respectively, evaluated in this way for a typical run with
r0 = 1.0 and Ca = 1, when the number of baffle mesh points is doubled sequentially from N = 16
to N = 128. The error is found to be small everywhere, except near the baffle end points, where it
is caused by the singularity of the flow around the sharp aperture edges. The L2 error of the velocity
components on Sb is seen to decrease with O(h), where h is the mesh size, in Fig. 3(b).

Validation and a note on the width of a surfactant plume

In our earlier work [15], the hybrid method and implementation were used to study the dynamics
of a drop that is strained by a uniaxial extension with soluble surfactant in the absence of flow
focusing baffles. There we noted that it has been validated by comparison with results presented
in earlier studies in which the surfactant is insoluble. In particular, it has accurately reproduced
the steady-state solutions of Stone and Leal [38] at large and small deformation together with their
asymptotic solution in the limit of small capillary number. It has also accurately reproduced the
examples of tipstreaming given by Eggleton et al. [16].

In Ref. [13] a further partial validation study was performed for steady solutions at small capillary
number Ca with soluble surfactant when E = 0 and the boundary condition (17) is replaced by
C|s = 0. We return to this here. When E = 0, the surface tension σ = 1 and the coupling from
the evolution of surface and bulk surfactant to the underlying flow is removed. The fluid velocity
and drop shape in the Ca � 1 limit have been given in many small-deformation studies (see, for
example, [38,39]) and two results that we refer to here are that the drop shape and the rate of
extension of a fluid line element normal to the interface ∂nvp|s that appears in Eqs. (13), (14), and
(18) are given by

ρ = 1 + Ca
16 + 19λ

8(1 + λ)

(
1 − 3

2
sin2 φ

)
+ O(Ca2), (28a)

∂nvp|s = Ca
3

1 + λ

(
1 − 3

2
sin2 φ

)
+ O(Ca2), (28b)

where ρ and φ are the spherical polar distance and the angle of declination from the positive x axis,
respectively.

Figure 4 shows the result of a numerical simulation of a drop being strained with capillary number
Ca = 0.04 using the hybrid method. This is sufficiently small for the drop shape to be steady with
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FIG. 4. Drop shape and bulk surfactant concentration with capillary number Ca = 0.04 and initial equilib-
rium surfactant concentration �0 = 1/3, shown at times (a) t = 50, (b) t = 200, and (c) t = 500. At the latest
time, the surface and transition layer bulk surfactant concentration profiles have reached a steady state. For
other parameter values see the text.

small deformation at large times, and the Figs. 4(a)–4(c), which are taken at t = 50, 200, and 500,
respectively, show the development of a wake or plume of surfactant leaving downstream from the
drop. The drop shape appears to be steady throughout this interval, although the data show a small
change in the surface concentration of surfactant and surface tension. The other parameter values
are λ = 0.05, E = 0.2, Pes = 103, J0 = 0.05, K = 0.5, and Bi = 0.1, some of which will remain
fixed throughout the simulations reported later, and the value of the bulk Péclet number, which is
introduced only for the presentation of the bulk surfactant concentration data outside the drop, is
Pe = 104.

The simulation data with surfactant give the drop center to pole distance ρ(φ = 0) = 1.111
and center to equator distance ρ(φ = π

2 ) = 0.950, which are within 3% of the surfactant-free
values ρ(φ = 0) = 1.081 and ρ(φ = π

2 ) = 0.960 given by the approximation at Eq. (28a). The
slightly more prolate drop shape of the simulation is consistent with the presence of surfactant and
decreased surface tension in the simulation data. We define the width of the surfactant plume to
be the cylindrical radius at which the flow in the transition layer normal to the interface changes
from inflow to outflow, i.e., where ∂nvp|s = 0, per Eq. (18). From Eq. (28b) this occurs when
φ = sin−1 √

2/3 � 54.7◦, which, neglecting the narrow transition layer width, gives an estimate of
the plume width as ∼0.816. This is in close agreement with the simulation data at t = 500. Near the
outer edge of the plume C < 1, since it consists of fluid particles that transit the surfactant-depleted
part of the transition layer closer to the drop equator, while the plume core is surfactant rich, C > 1.

V. RESULTS AND DISCUSSION

In the simulations reported below some dimensionless parameters are held fixed. These include
the viscosity ratio λ = 0.05 and the two parameters associated with insoluble surfactant, E = 0.2
and Pes = 103. It has been noted that it is necessary for λ � 0.1 for tipstreaming to occur [5,6] and
the value used here is the same as that in the simulations of tipstreaming by Eggleton et al. [16]. The
chosen value of E is typical of many surfactants and is the same as in other studies [16,17,20,40]. In
the asymptotic limit of the hybrid method, the bulk Péclet number Pe is scaled out of the surfactant
dynamics as governed by Eqs. (13)–(19), but it must be reintroduced to display spatial data for C,
and for this a fixed value of Pe = 104 has been chosen. The remaining parameter that is held fixed
here is the scaled exchange coefficient J0 of Eqs. (17) and (19), with J0 = 0.05. Equilibrium initial
conditions are assumed throughout, so the initial surface concentration of surfactant and partition
coefficient K are related by Eq. (10).

A. Tipstreaming and the influence of Bi in the absence of flow focusing

For reference and comparison with the results to follow, we include a sample of simulations that
show the influence of the Biot number Bi on the formation of a filament or thread that tipstreams
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FIG. 5. (a) Surfactant-laden drop, which tipstreams at values of the Biot number indicated when Bi �
1.0. The main parameter values are λ = 0.05, Ca = 0.1, and the initial surface coverage �0 = 0.6; for other
parameters see the text. Tipstreaming profiles are shown just before pinch-off: in the insoluble limit when
Bi = 0.0 at time t = 52.0 and with surfactant solubility when Bi = 0.01 at time t = 52.0, when Bi = 0.1 at
time t = 64.5, and when Bi = 1.0 at time t = 88.0. (b) Bulk surfactant concentration for the simulation of
(a) when Bi = 0.01. (c) Surface surfactant concentration � (left-hand scale) with tangential component us and
normal component un of the interfacial fluid velocity (right-hand scale) versus x.

from a drop in the absence of flow focusing. For this, the capillary number is fixed at Ca = 0.10,
the equilibrium partition coefficient is fixed at K = 1.5, and drop profiles are shown for a range of
values of Bi in Fig. 5(a). A tipstreaming thread forms when Bi � 1.0, for which drop profiles are
shown at an instant just before the thread is about to pinch off, at a point where a developing tip drop
joins the main part of the thread, near its downstream end. We note the trend, which we observed
in earlier work at similar parameter values, that as the Biot number increases the thread length just
before pinch-off decreases while the radius of the tipstreaming thread and tip drop decrease [15].

When Bi = 0 with J0 	= 0 fixed, the boundary condition (17) implies that the bulk-interface
exchange term of Eq. (19) is zero, so in this limit the surface surfactant is insoluble (with C ≡ 1
for all x and t). This can also be seen on recalling that Bi = aκd/U is the ratio of the kinetic
rate for desorption to the capillary flow rate, so in the limit when Bi = 0 with K < ∞ fixed the
surfactant exchange kinetics are frozen. With an increase of Bi with J0 and K fixed the influence of
surfactant solubility and bulk-interface exchange steadily increases until, in the limit Bi → ∞, the
mixed boundary condition (17) is replaced by the Dirichlet boundary condition

C|s = �

K (1 − �)
. (29)

This is referred to as the diffusion-controlled regime [2,31,41]. A large-Péclet-number, bulk
surfactant transition layer can still be induced by drop deformation, but the adsorption-desorption
exchange kinetics, and the surface and bulk sublayer surfactant concentration C|S , are in local
equilibrium at all points on the interface. Figure 5(a) shows a drop profile in this limit that is
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completely steady. The profile is also steady for all Bi � 2, and the figure includes the profile of
a steady, clean, or surfactant-free drop (E = 0), which at this capillary number is only slightly
nonspherical because of its relatively large and uniform surface tension.

Evolution toward the profiles shown in Fig. 5(a) occurs in two phases. Surface surfactant is swept
toward the drop pole in the first phase and then a tipstreaming thread forms and evolves in the second
phase. When Pes = ∞ and either Bi = 0 or J0 = 0, Eq. (6) or (19) for the evolution of � implies
that surfactant on the interface is frozen into the flow, in the sense that it has the same velocity as a
fluid particle at the same point on the interface; in this limit surfactant is sometimes referred to as
immobile. Although the simulations are performed with Pes = 103, this is sufficiently large that the
influence of surface diffusion on the data is negligible. In the insoluble limit Bi = 0, or when Bi is
small with J0 > 0 and fixed so that the effect of solubility is sufficiently weak, during the first phase
surfactant is advected by the flow on the slowly deforming interface toward the drop pole, where it
forms a cap of surfactant at high concentration with tangential speed us = |us | � 0, so the interface
is nearly immobilized there. There is a substantial surface tension gradient ∂sσ < 0 around the outer
parts of the cap and very low surface tension in a neighborhood of the cap pole. The second phase
begins when viscous stress on the surfactant-immobilized part of the cap near the pole overcomes
surface tension to draw the pole out to form the beginning of a tipstreaming thread.

The surface surfactant concentration remains high on the downstream part of the thread. There is
axial stretching on the evolving thread interface, both where it is drawn out from the more stationary
mother drop and downstream, when it is caused by the x dependence of the axial component of the
imposed flow (11). This can occur since the thread is relatively thin, of low viscosity, and because
the surfactant is frozen into the flow, or nearly so, so the thread has approximately the same axial
speed ux = Cax as the imposed flow. In the early part of the second phase, at times before that of
the snapshots in Fig. 5, the transition in radius between thread and mother drop is gradual, with no
pronounced shoulder or base to the thread and no discernible tip drop [15]. But by the time that
the thread is about to first pinch off due to capillary instability behind the tip drop, which is the
time at which the profiles are shown, a thread base is more readily identifiable. The data show that
at these times the axial stretching of the thread interface (with rate ∂sus) occurs along the thread
surface away from the tip drop and is greatest in the region just downstream of the thread base. As
a consequence of this stretching, and because of the gradient of � on the outer parts of the mother
drop surfactant cap from which the thread is drawn, the surface concentration � is less along much
of the thread than it is further downstream, nearer the tip.

This is borne out by the data of Fig. 5(b) for the bulk surfactant concentration C and Fig. 5(c)
for the surface concentration � and the tangential and normal components of the interfacial fluid
velocity, us and un, respectively. Here Bi = 0.01 and the effect of solubility on tipstreaming is
present but mild. On the downstream part of the thread and tip drop, from x � 6.0 to x � 7.5,
C|s > 1.5 and there is noticeable desorption or leaching of surfactant to the bulk flow, which has had
time to develop and spread away from the interface. On the middle part, from x � 3.2 to x � 6.0,
C|s � 1.5, so desorption occurs but is not as evident, and the data of Fig. 5(c) show that us is
approximately linear in x. From the thread base at x � 2.5 up to x � 3.2, 1 � C|s � 1.5 and the
desorption is relatively weak. In the vicinity of the thread base x � 2.5, C is nonmonotonic in the
normal direction; away from the region of weak desorption neighboring the interface, fluid particle
paths have exited the surfactant-lean region of the mother drop, where surface surfactant has been
depleted by advection and some stretching of the interface, and adsorption from the bulk replenishes
it.

As the Biot number is increased, the influence of surfactant solubility is increased and the
interface becomes more remobilized. When tipstreaming occurs with increasing Biot number, the
thread is significantly shorter in length and is thinner in radius at pinch-off. In the first phase,
the surface surfactant concentration remains more uniform while the drop is being deformed, and
the high concentration surfactant cap that forms at the pole is smaller. The duration of the first phase
is longer at increased Biot number, and the interface shape at the pole has a more pointed tip. When
a tipstreaming thread first forms it has a smaller radius, corresponding to the smaller pole cap size.
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FIG. 6. Insoluble surfactant (Bi = 0) with aperture radius r0 = 0.75 and Ca = 0.74. (a) and (e) Surfactant-
free interface (�0 = 0) shown at time t = 86.3, (a) in profile and (e) in perspective. In the remaining panels
the interface is surfactant laden, shown in profile just before pinch-off on the left and with the distribution of �

versus x at the same time on the right, with (b) and (f) �0 = 0.025 at time t = 13.2, (c) and (g) �0 = 0.05 at
time t = 12.1, and (d) and (h) �0 = 0.10 at time t = 11.5.

Since the thread remains relatively thin along its length, the duration of the second phase, from
tipstreaming to first pinch-off, is relatively short. More discussion on the transition between steady
and tipstreaming states is given in Ref. [15], Secs. IV C and IV D.

B. Influence of flow focusing on a tipstreaming thread

Flow focusing is introduced in the form of coaxial axisymmetric annular baffles situated at
x = ±2. This maintains the symmetry of the simulation geometry about x = 0 and resembles the
flow-focusing geometry of the experiments [10,11]. The baffle outer radius is fixed at R = 10, which
is large enough for an increase of R to have negligible effect on the flow at the aperture, while the
inner radius r0 takes a sequence of values, at each of which Ca is fixed and �0 and Bi are varied.
Other fixed parameters are listed at the beginning of Sec. V. For most of the simulations reported
in this section there are N = 256 computational mesh points on the interface in the first quadrant
(r > 0, x > 0) of the (r, x) plane and the time step is �t = 0.5 × 10−3.

1. Aperture radius r0 = 0.75

The initial choice of aperture radius is r0 = 0.75, that is, the aperture radius is 0.75 times the
initial drop radius. Figure 6 shows a set of simulation data with the capillary number fixed at Ca =
0.74. Surfactant, when present, is insoluble (Bi = 0), and a sequence of relatively low values of
the initial surfactant concentration �0 is chosen. In the first, the interface is clean or surfactant-free
(�0 = 0), and the interface is shown in profile in Fig. 6(a) and in perspective in Fig. 6(e) at time
t = 86.3. The value of Ca = 0.74 is based on this surfactant-free case as being only marginally
above the threshold value at which the drop is drawn through the aperture. When Ca is just less
than 0.74, the drop shape is steady at large times and has a nearly pointed or conical tip with
location x < 2. When Ca � 0.74 the size of the daughter drop when pinch-off is first approached is
comparable to the size of the aperture and there is no tipstreaming thread, as seen in Figs. 6(a) and
6(e).

Figures 6(b) and 6(f) show the interface profile and surface surfactant concentration, respectively,
at time t = 13.2, for an initial uniform equilibrium concentration of insoluble surfactant �0 =
0.025. In the first phase of the simulation, surfactant is swept to form a cap at the drop pole, which
appears to be more or less steady by the time the pole is near the center of the aperture, x � 2.0,
at time t � 13.1. Away from the cap, the interface is almost completely surfactant-free at this time,
whereas the concentration is close to the maximum surface concentration over much of the cap. A
thin tipstreaming thread is then emitted abruptly, and at the time t = 13.2 for which it is shown the
thread is about to pinch off at its base, where it joins the mother drop. The maximum radius of the
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FIG. 7. (a)–(d) Influence of Biot number Bi on drop profiles just before pinch-off and (e)–(h) the corre-
sponding surface surfactant distribution �, with r0 = 0.75, Ca = 0.74, and �0 = 0.10. The other parameters
are (a) and (e) Bi = 0, the insoluble limit, at t = 11.5, per Figs. 6(d) and 6(h); (b) and (f) Bi = 0.10 at t = 11.3;
(c) and (g) Bi = 0.25 at t = 11.1; and (d) and (h) Bi = 0.50 at t = 10.9.

thread is less than 0.02 and the radius of the thread tip drop is about 0.03. The introduction of flow
focusing with a small amount of surfactant has decreased the radius of the thread and tip drop by a
factor �5 relative to the simulation with insoluble surfactant (Bi = 0) in the unconfined geometry
of Fig. 5(a), for which �0 = 0.6, the thread radius is between 0.08 and 0.15, and the tip-drop radius
is 0.165. The substantial difference in capillary number Ca between the two simulations (Ca = 0.10
vs Ca = 0.74) is caused by confinement of the flow that is introduced by the baffles.

At a lower initial concentration �0 < 0.025, a surfactant cap forms in a way that is similar to
that just described and the drop pole forms an almost-pointed, nearly steady, conical tip. However,
instead, no tipstreaming thread is formed, and at larger times the drop undergoes a deformation that
is qualitatively similar to the surfactant-free case of Figs. 6(a) and 6(e), with the ultimate formation
of a large daughter drop downstream of the aperture.

An increase of the initial surfactant concentration from �0 = 0.025 to �0 = 0.05 produces
dynamics that are qualitatively similar [see Figs. 6(c) and 6(g)], but the accumulating cap of
surfactant and the thread and tip-drop radii are larger. For example, in Fig. 6(c), when the thread is
first about to pinch off, at its base, t = 12.1, and the tip-drop radius is about 0.05. With a further
increase to �0 = 0.10, this trend continues [see Figs. 6(d) and 6(h)], with a near doubling of the
tip-drop radius to 0.11. The thread radius is again about to pinch off first at its base, but the tip drop,
which is prolate, is now also close to pinch-off.

Solubility of surfactant is introduced to this last example, with �0 = 0.10 (i.e., K = 1/9), by
increasing the Biot number Bi from 0 to 0.10, then 0.25, and 0.50. The interface profile and surface
surfactant concentration just before pinch-off are shown in Fig. 7, which includes the insoluble
(Bi = 0) data of Figs. 6(d) and 6(h) for comparison in Figs. 7(a) and 7(e). As the Biot number is
increased through this sequence, the thread steadily shortens and becomes thinner. The distance
from the thread base to tip-drop end is 0.82, 0.63, 0.48, and 0.23, respectively. There is a similar
decrease in size of the tip-drop radius, with sequence 0.11, 0.075, 0.04, and 0.018, respectively. This
trend with an increase in Bi is qualitatively similar to that noted without flow focusing in Sec. V A
(see Fig. 5) and the data for the fluid velocity on the interface and the surfactant concentrations
confirm that it is caused by the same mechanism of surface remobilization with an increase in
solubility of surfactant. However, the decrease in radius of the thread with an increase of Bi is much
less noticeable when there is flow focusing than it is in unconfined flow; flow focusing has already
caused a substantial decrease in thread radius for insoluble surfactant. An additional feature that
shows a similar trend in the data sets of Figs. 5(a) and 7 with an increase in Bi is the decrease in
prominence of the shoulder between the mother drop and thread base. This is accompanied by a
slight decrease in magnitude or spreading out of the surface surfactant gradient ∂s� on the part of
the shoulder where 0.1 � � � 0.5.
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FIG. 8. Bulk surfactant concentration C with the same parameter values and time as in Figs. 7(b) and 7(f).

The effect of solubility on surface surfactant concentration versus axial distance along the thread
is seen in Figs. 7(e)–7(h). In Fig. 7(e) surfactant is insoluble (Bi = 0) and the surface concentration
� is nearly uniform and close to the maximum surface concentration along the thread length. As the
Biot number and effect of solubility increase through the figure panels, the surface concentration on
parts of the thread that were formed at earlier times, i.e., nearer the thread tip, has decreased by up
to 10% relative to the value at the thread base, via desorption or leaching from the surface to the
bulk flow. A local maximum of the surface concentration is seen at the base of the tip drop, which
is close to pinch-off.

Figure 8 shows the bulk surfactant concentration C that corresponds to the profile and surface
concentration data for � of Figs. 7(b) and 7(f). From the data for the surface concentration of
Fig. 7(f), � ∈ (0.94, 0.98) on the part of the thread and tip drop for x ∈ (2.30, 2.92), which is
far above the equilibrium concentration of �0 = 0.1, so surfactant desorbs from the thread surface
and enters the bulk in high concentration. This large bulk concentration is clearly visible in Fig. 8.
Figure 7(f) also shows that � ∈ (0.050, 0.075) on the part of the mother drop for x ∈ (0, 1.9) and
� increases to the equilibrium value �0 = 0.1 at x � 2.0. The numerical output confirms that there
is mild adsorption from the bulk to the mother drop interface, where C|s < 1, but the effect is too
faint to be seen in the color coding of Fig. 8.

We note a difference in the range of surfactant concentration data for the confined flow-focusing
simulation of Figs. 7(b), 7(f), and 8 when compared to that for the simulation of unconfined
tipstreaming of Figs. 5(b) and 5(c). This causes the apparent loss of resolution in displaying the
bulk surfactant data in Fig. 8. In the unconfined example, the surface concentration � on the
tipstreaming thread is in the range � ∈ (0.7, 0.92) relative to an initial equilibrium concentration
of �0 = 0.6, and the bulk concentration C that results is in the range C ∈ (0, 2.5). In the confined
flow-focusing example here, the thread surface concentration [where � ∈ (0.94, 0.98)] is much
further away from the equilibrium concentration (�0 = 0.1) causing enhanced desorption and larger
maximum values of the bulk concentration data, which is now in the range C ∈ (0, 5), irrespective
of the relatively brief duration of the thread. When displaying bulk concentration data the range
C ∈ (0, 5) is maintained throughout the discussion that follows. At this aperture size (r0 = 0.75)
the base of the thread, or for the surfactant-free example of Figs. 6(a) and 6(e) the location of the
minimum radius, is in the range x ∈ (2.10, 2.35), which is downstream of the aperture location
x = 2 in all simulations.

2. Aperture radius r0 = 0.50

The aperture radius is decreased to r0 = 0.50 for a series of simulations at capillary number
Ca = 1.82. These follow the same path in terms of the initial surface surfactant concentration �0

and the Biot number Bi as in Sec. V B 1. The same criterion is used for choosing the capillary
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FIG. 9. Insoluble surfactant (Bi = 0) with aperture radius r0 = 0.50 and Ca = 1.82. (a) and (e) Surfactant-
free interface (�0 = 0) shown at time t = 50, (a) in profile and (e) in perspective. In the remaining panels the
interface is surfactant laden, shown in profile just before pinch-off on the left and with the distribution of � and
interface velocity components (us, un) versus x at the same time on the right, with (b) and (f) �0 = 0.025 at
time t = 7.6, (c) and (g) �0 = 0.05 at t = 9.0, and (d) and (h) �0 = 0.10 at t = 9.5.

number of the imposed flow: The value Ca = 1.82 in Eq. (11) is just large enough for the drop to
be drawn through the aperture when it is surfactant-free. The decrease in aperture size leaves the
qualitative trends with change in �0 and Bi mostly unaltered, but it has a more prominent effect on
the thread radius and length just before its first pinch-off.

Figure 9 shows the influence of the initial surface surfactant concentration �0 in the ab-
sence of solubility effects (Bi = 0) when it is increased through the same sequence �0 =
0.0, 0.025, 0.05, 0.10 as in Fig. 6. In Figs. 9(a) and 9(e) the interface is surfactant-free (�0 = 0).
In contrast to the surfactant-free case of Figs. 6(a) and 6(e), at this smaller aperture radius the
daughter drop pinches off far earlier (at t = 50 vs t = 86.3) and at a much smaller size. The
daughter drop radius is now about 0.04 versus 0.50, which is smaller by an order of magnitude
and comparable to the thread and tip-drop sizes seen with surfactant. However, there is no thread
formation; instead, a protracted conical tip forms on the mother drop that is similar at both values
of r0 in the surfactant-free case [compare Figs. 6(a) and 9(a)].

Thread formation occurs with the addition of interfacial surfactant. Interface profiles just before
pinch-off are shown in Figs. 9(b)–9(d), for which the initial surface coverage �0 is 0.025, 0.05, and
0.10 respectively. The coverage � together with the tangential component us and normal component
un of the fluid velocity on the interface just before pinch-off is shown in the corresponding
Figs. 9(f)–9(h). The trend of increase in radius of the thread and tip drop with increase in �0 that
was observed in Fig. 6 is seen again, but with a sequence of smaller radii so that the effect is less
apparent. Here the sequence of tip-drop radii is 0.018, 0.03, and 0.04, with similar values for the
maximum thread radius. However, the decrease in aperture radius to r0 = 0.50 causes a noticeable
increase in the sequence of thread lengths at pinch-off, which (including tip drop) are now 0.49,
1.82, and 2.69.

The data of Figs. 9(c) and 9(g) show characteristic features that often recur throughout the
simulations with r0 � 0.5. Specifically, in Figs. 9(c) and 9(g), as x increases, insoluble surfactant is
advected along the nearly stationary drop interface (un � 0) while the tangential interface velocity
us increases due to flow focusing and decreasing drop radius, until us reaches a local maximum
at the outer edge x � 1.64 of the drop’s surfactant cap. The interface is then partly immobilized
as the drop radius decreases and us decreases to a local minimum at x � 1.80, at which point the
drop surfactant cap merges with the base of the tipstreaming thread and us begins to increase. The
surfactant concentration � continues to increase here due to decreasing drop-thread radius to achieve
a local maximum at x � 1.90. It is only in the region 1.64 � x � 1.90 of rapid change in � that
surface diffusion is not negligible. At x = 1.90, just upstream of the aperture, the tangential velocity
us is increasing in x, stretching the thread, and causing � to decrease locally. The local minimum
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FIG. 10. (a)–(d) Influence of Biot number Bi on drop profiles just before pinch-off and (e)–(h) the
corresponding surface surfactant distribution � and interface velocity components (us, un) with r0 = 0.50,
Ca = 1.82, and �0 = 0.10. The other parameters are (a) and (e) Bi = 0, the insoluble limit, at t = 9.5, per
Figs. 9(d) and 9(h); (b) and (f) Bi = 0.10 at t = 9.2; (c) and (g) Bi = 0.25 at t = 8.4; and (d) and (h) Bi = 0.50
at t = 7.8.

of � at x � 1.97 and the second local maximum of us at x � 2.04 are nearly coincident with the
aperture location at x = 2.0. With an increase of x beyond x � 2.04 the flow begins to diverge
as it exits the aperture, us decreases while � remains near the maximum surface concentration,
and the local axial compression of the thread is taken up by a slight increase in its radius. Further
downstream, away from the baffle, the flow begins to converge again due to the stretching of the
imposed flow (ux = Cax) and convergence of the flow from around the outer edge of the annular
baffle (R = 10). As a result, when x � 2.70 the tangential velocity us increases, causing local
stretching of the thread and a decrease of � away from the maximum surface concentration. This
persists until closer to the tip drop, where excursions in us , un, and � are caused by impending
pinch-off. Along most of the thread, away from its merger with the mother drop and away from
the tip drop, since the surfactant is insoluble and almost diffusion-free, time derivatives are small
despite the transient evolution of the thread and un � 0, the features noted here follow from the
observation that the surfactant flux rth�us is approximately constant, where rth is the thread radius.
This is supported by the simulation data.

When compared with the data of Figs. 9(c) and 9(g), in Figs. 9(b) and 9(f) the thread is
sufficiently short that it is not influenced by flow divergence on exit from the aperture, while in
Figs. 9(d) and 9(h) the thread is sufficiently long that the downstream stretching with increase of
us that occurs when x � 2.70 causes a more substantial decrease in �, to � � 0.63 just upstream
of the tip drop. This last effect, an increase in us further downstream from the baffle, is absent
in the experiments, since there the flow is confined by parallel channel sidewalls and is driven by
controlled fixed-volume flow rates, so that after decelerating on exit from the aperture, us remains
nearly constant further downstream.

Similar to the introduction of surfactant solubility effects in Sec. V B 1, but with r0 = 0.50 here,
next the initial surface concentration is held fixed at �0 = 0.10 while the Biot number is increased
through the same sequence of values: 0.00, 0.10, 0.25, and 0.50. The interface profile and surface
surfactant concentration just before pinch-off are shown in Fig. 10, with the data for the insoluble
limit (Bi = 0) of Figs. 9(d) and 9(h) shown again for reference in Figs. 10(a) and 10(e). Interface
remobilization with increasing Bi causes the thread length from base to tip drop end just before
pinch-off to decrease noticeably, in the sequence 2.69, 1.90, 1.15, and 0.87. However, the maximum
thread and tip-drop radii are now all in the region from 0.02 to 0.05 and show little or no noticeable
trend of decrease with increase in Bi.

At the larger values of Bi � 0.25, the thread experiences axial compression as us decreases
with x due to flow divergence on exit from the aperture, but surfactant solubility and desorption
are sufficiently large that the surface concentration � stays well below the maximum surface
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FIG. 11. Bulk surfactant concentration C with the same parameter values and time as in Figs. 10(b)
and 10(f).

concentration [see Figs. 10(g) and 10(h)], whereas with Bi = 0.10 this is attained for 2.19 � x �
2.66 [see Fig. 10(f)].

Figure 11 shows the bulk surfactant concentration with the same parameter values and at the
same instant as in Figs. 10 (b) and 10(f). Desorption of surfactant from the interface to the bulk
flow occurs along the tipstreaming thread and is most noticeable in the vicinity of the tip drop. At
the time of the figure, the lifetime of the thread tip since leaving the mother drop is approximately
equal to the flow time divided by the capillary number a/CaU , so the ratio of the tip-drop age to
desorption time is of the order of Bi/Ca � 0.05.

With a decrease in aperture radius from r0 = 0.75 to r0 = 0.50 the location of the thread base has
moved from the downstream side to the upstream side of the aperture, in the vicinity 1.7 � x � 1.9.

To explore the evolution of the tipstreaming thread at times beyond its first pinch-off, simulations
were continued by closing off the thread interface at its point of minimum radius when this reached
a threshold of �10−3 and omitting the excised downstream region of the dispersed phase from the
computation at later times. This was repeated at consecutive pinch-off events. In these simulations,
the minimum radius usually occurred immediately behind the tip drop, but it also occurred less
frequently further upstream along the thread. It is assumed that the omitted interface and dispersed
phase droplets have negligible influence on the tipstreaming thread.

Figure 12 shows two examples of this. In both examples, r0 = 0.50, Ca = 1.82, the initial surface
surfactant coverage �0 = 0.10, and these are held fixed. For the data of Fig. 12(a) the Biot number

FIG. 12. Thread evolution with aperture radius r0 = 0.50, Ca = 1.82, and �0 = 0.10. Between each frame
a tip drop pinches off; it is then removed from the computation and is not shown in the figure. (a) Bi = 0.25
and the time interval between frames is �t = 0.3 with the first (top) frame at t = 8.4. (b) Bi = 0.50 and the
frame time interval is �t = 0.3 with the first (top) frame at t = 7.8. (c) Bi = 0.50 and the frame time interval
is �t = 0.2 with the first (top) frame at t = 9.2.
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FIG. 13. Steady drop with a conical tip in the absence of surfactant, with the aperture radius r0 = 0.25 and
capillary number Ca = 12.90 shown at time t = 38.6, in (a) profile view and (b) perspective view.

is set at Bi = 0.25 and the time of the uppermost frame is t = 8.4, so this image is a close-up of the
tipstreaming thread of Figs. 10(c) and 10(g). The sequence of frames below it are each taken at a
fixed time interval of �t = 0.3 thereafter, and one tip drop has pinched off and been excised between
each consecutive frame. During the time interval spanned by the figure, the evolution appears to be
approaching a more or less periodic state with period close to 0.3 in the top four frames, but in
the last frame of the panel the thread is less uniform in radius with an apparent neck or capillary
instability developing in the region 2.5 � x � 2.6. It is possible that this is a numerical artifact, but
refining the computational mesh by doubling the number of node points on the interface suggests
this is not so. The precise location and time at which the instability sets in are mildly sensitive to
the mesh size and time step but its occurrence appears to be robust.

For the data of Figs. 12(b) and 12(c) the Biot number is increased to Bi = 0.50, and in Fig. 12(b)
the time of the earliest (uppermost) frame is t = 7.8, so this image is a close-up of the tipstreaming
thread of Figs. 10(d) and 10(h). The sequence of frames below it are taken at a fixed time interval of
�t = 0.3, with a single tip drop having pinched off and been excised between consecutive frames.
The thread shows a slight constriction beginning to develop in the fourth frame of Fig. 12(b) at
x � 2.43. This has moved downstream to x � 2.48 in the last frame of Fig. 12(b), in which it
is the location of the minimum thread radius, while the thread end is at x � 2.66. Between this
frame and the time t = 9.2 of the earliest (uppermost) frame of Fig. 12(c) the thread has pinched
off at x � 2.50 and the substantial segment of the end of the thread downstream of this point has
been excised; it has two to three times the volume of the single tip drops that were emitted earlier
in the simulation. The fixed time interval between subsequent frames in Fig. 12(c) is reduced to
�t = 0.2 and the sequence of events repeats in a qualitatively similar way at this reduced time
interval. Initially, a sequence of single tip drops pinches off between consecutive frames, until a
capillary instability begins to form some distance upstream of the thread end at a time around that
of the fourth and fifth frames. A resolution study suggests that the main features, the pinching off
of either a single tip drop or less frequently a larger section of the thread end, are robust.

3. Aperture radius r0 = 0.25

The aperture radius is decreased further to r0 = 0.25. At this level of flow focusing there is a
difference in the behavior of the interface with respect to the capillary number when it is surfactant-
free. For values of the capillary number Ca up to 85, which is the largest considered, the drop
interface is not drawn through the aperture. Instead, there is a smaller threshold value of the capillary
number Cac � 12.85, below which the interface approaches a steady state with a rounded shape and
tip and above which the interface approaches a steady shape where the pole is drawn into a cone that
has a very sharp tip situated closer to the aperture. An example of this is shown in Fig. 13, where
Ca = 12.90 > Cac. The transition between the two configurations with increase in Ca appears to be
discontinuous.
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FIG. 14. The addition of insoluble surfactant at initial concentration �0 = 0.10 but with all other param-
eters as in Fig. 13 induces tipstreaming. Data are shown just before pinch-off, at time t = 9.0. (a) Interface
profile. (b) Surface surfactant concentration � with tangential component us and normal component un of the
interfacial fluid velocity versus x.

With the capillary number fixed at Ca = 12.90, the presence of insoluble surfactant (Bi = 0)
at a relatively modest concentration of �0 = 0.10 is sufficient to induce tipstreaming. This is seen
in Fig. 14(a), which shows the interface, thread, and tip drop just before pinch-off at t = 9.0. The
tip drop and maximum thread radius are both �0.016, the thread length is �1.90, and pinch-off is
about to occur at the juncture between thread and tip drop. At smaller initial concentrations �0 � 0.1
thread formation was not observed.

When surfactant solubility is introduced with Bi = 0.10 but with all other parameters unchanged
the thread is considerably shorter and narrower at the instant just before pinch-off. This is seen
in Fig. 15, for which the time t = 7.6. Figure 15(a) shows the interface profile at this time, with
tip-drop radius �0.011 and thread radius just behind the pinch-point nearly constant at �0.007 over
a length �x � 0.3. The tendency of solubility to result in a thread that is noticeably shorter and
slightly narrower was noted above at larger aperture radii.

The shoulder or decrease in radius where the mother drop merges with the thread is more gradual
here, both with and without surfactant solubility, than was found at the larger aperture radii discussed
above, to the extent that the location of a thread base is not as clearly identifiable in the interface
profiles. The decrease in aperture radius from r0 = 0.75 has caused the region of drop-thread merger
to move continually upstream, until it is located in the region 1.50 � x � 1.65 when r0 = 0.25, and
the more gradual decrease in interface radius corresponds to the slower rate of convergence of the
flow further upstream away from the aperture.

However, the data of Figs. 14(b) and 15(b) show a point where a fairly sharp increase in the
interfacial stretch rate ∂sus occurs. This is at x � 1.63 with insoluble surfactant in Fig. 14(b) and
is more visible at x � 1.52 with soluble surfactant in Fig. 15(b). We take this to be the point of
demarcation between the mother drop and tipstreaming thread. Returning to Fig. 14(b), although
the interfacial stretch rate is positive and increasing with x near the drop-thread merger at x � 1.63,
there is a decrease in interface radius there that is sufficient to cause a fairly rapid increase in the

FIG. 15. The inclusion of surfactant solubility with Bi = 0.1 but with all other conditions as in Fig. 14 leads
to a shorter and slightly narrower thread just before pinch-off, at time t = 7.6, with aperture size r0 = 0.25,
capillary number Ca = 12.90, and �0 = 0.10. (a) Interface profile. (b) Surface surfactant concentration � and
interfacial fluid velocity components (us, un) versus x. (c) Bulk surfactant concentration C.
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TABLE I. Data for the geometry, fluid, and surfactant properties in the experiments reported by Moyle
et al. [11], with other data as indicated. (Data have been reproduced with permission from Refs. [10,11].)

Property description Symbol Value

width of continuous phase feed channels wc ≡ Wup 285 μm
half-width of dispersed phase channel a 94 μm
length from channel merger to focusing aperture L ≡ �Z 190 μm
width of focusing aperture wor 38 μm
viscosity of continuous phase μ2 40 cP
viscosity of dispersed phase μ1 1 cP
oil-water clean interface surface tension σ0 62 mN/m
interfacial surfactant maximum packing concentration �∞ 2.25 μmol/m2

kinetic desorption rate constant κd 6.86 × 10−6 s−1

kinetic adsorption rate constant κa 22.1 m3/(s mol)
bulk surfactant diffusivitya D 10−10 m2 s−1

bulk surfactant concentration rangeb C∞ 1.5 × 10−2 � C∞ � 1.5 mol/m3

capillary velocity scale U U = σ0/μ2 = 1.55 m s−1

aThis representative value is given in various studies [31,41–44].
bThe value at critical micelle concentration (CMC) given by Anna and Mayer [10] is C∞ = 10−1 mol/m3.

surface surfactant concentration �, until it attains a local maximum of � � 0.70 at x � 1.69. The
thread then experiences increased stretching followed by compression during its transit across a
neighborhood of the aperture at x = 2.0. The local maximum of us and local minimum of � at
x � 2.0 are clearly visible in the figure, and the thread radius of 0.005 there is close to the limit that
the computations can resolve before indicating pinch-off. Downstream of the aperture, the region
of flow divergence and interface compression end at x � 2.43, where a second local maximum of
� � 0.91 occurs.

For the two runs shown in this section, despite the decrease in aperture radius to r0 = 0.25, both
with and without solubility effects the surface surfactant concentration � remains well below the
maximum surface concentration everywhere along the thread, whereas this was often attained in the
simulations at the larger aperture openings of Secs. V B 1 and V B 2.

C. Comparison of simulation and experimental studies

In this section we compare results from our numerical simulations with results from the
experiments reported by Moyle et al. [11].

1. Comparison of parameters

A complete list of apparatus dimensions and fluid properties for the experiments is given in
Table I of Ref. [11], and those quantities that are needed for comparison are reproduced in Table I
here. The values of dimensionless quantities such as the viscosity ratio λ and elasticity number
E for the experimental data and as set in the simulations are given in Table II. Some quantities
from the experimental and simulation data sets are in close agreement while others are not and
require comment. For example, the baffle location of the simulations at x = l = 2.0 is within 1% of
the analogous quantity in the experiments, which is �Z/a [see Fig. 2(a)]. Based on the apparatus
dimensions in Table I the experimental value is 2.02, which is given together with the simulation
value in Table II.

The dimensionless aperture radius r0 is 0.20 in the experiments versus 0.50 in the simulations. We
found tipstreaming in simulations when r0 = 0.25, as described in Sec. V B 3, but at this and smaller
values of the aperture radius it becomes increasingly difficult to determine if tipstreaming occurs at
neighboring parameter values, and computational runs are costly due to the need for a small time
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TABLE II. Values of dimensionless quantities in the experimental study by Moyle et al. [11] and in the
simulations summarized in Fig. 16(b).

Dimensionless quantity Value in experiments Value in simulations

baffle location x = l = �Z/a 2.02 2.0
aperture radius r0 = wor/2a 0.20 0.50
viscosity ratio λ = μ1/μ2 0.025 0.050
elasticity number E = RT �∞/σ0 0.09 0.20
Péclet numbers Pes � Pe = Ua/D 1.46 × 106 Pes = 103

expansion parameter ε = Pe−1/2 0.83 × 10−3

exchange coefficienta J = DC∞/�∞U (4.30 × 10−7)–(4.30 × 10−5)
scaled exchange coefficienta J0 = J/ε (5.18 × 10−4)–(5.18 × 10−2) (7.8 × 10−4)–10−1

Biot number Bi = aκd/U 4.16 × 10−10 10−3

partition coefficienta K = κaC∞/κd (4.83 × 104)–(4.83 × 106) (1.56 × 10−2)–2.0
modified Biot numbera BiK (2.0 × 10−5)–(2.0 × 10−3) (1.56 × 10−5)–(2.0 × 10−3)

aExperimental values at CMC are estimated to be K = 3.22 × 105, J = 2.87 × 10−6, J0 = 3.46 × 10−3, and
BiK = 1.3 × 10−4.

step. We have therefore kept the aperture radius fixed at the value r0 = 0.50 of Sec. V B 2 and give
an estimate of the influence of r0 on the data below. The viscosity ratio λ is 0.025 in the experiments
as opposed to 0.050 in the simulations. Simulations were made successfully at the smaller value
λ = 0.025 but showed sufficiently little difference in the dynamics and data that λ was kept fixed at
the value λ = 0.050 of the other simulations of this study.

The experimental data give an elasticity number E = 0.09 versus the value E = 0.20 used in
the simulations. For tipstreaming to occur there must be a significant reduction in the local surface
tension σ near the drop pole. However, in practice there is a maximum reduction that can be achieved
with surfactants, and for an oil-water interface this is reported to be between about one-seventh [10]
and one-tenth [6] of the clean surfactant-free value σ = 1. From the equation of state (5) this leads
to a surface concentration � that satisfies

1 − � = e−(1−σ )/E.

When E is small, at this minimum achievable surface tension � is exponentially close to both the
theoretical maximum concentration, at which σ = 0, and the logarithmic singularity of the equation
of state, at � = 1. Further, the sensitivity of surface tension to changes in surfactant concentration,
given by

dσ

d�
= −E

1 − �
= −Ee(1−σ )/E,

is exponentially large, and this can easily induce numerical instability in simulations of tipstreaming.
We have set E = 0.20 to avoid this computational difficulty and note that this value is represen-
tative of many fluid-surfactant systems [6,31,41] and has been used in other numerical studies
[16,17,20,40].

Surface and bulk Péclet numbers are believed to be nearly equal, and from the experimental
data Pes � Pe = 1.46 × 106, which leads to a value for the expansion parameter of the hybrid
numerical method of ε = 0.83 × 10−3. In the simulations, the surface Péclet number was set to
103. The numerical data and separate simulations with Pes = 0 show that the influence of surface
diffusion in the surfactant conservation equation (19) is negligible except in the region from the
outer edge of the surfactant cap to the drop-thread merger, close to the end of the mother drop,
where there is a substantial increase in �, e.g., at 1.64 � x � 1.90 in Figs. 9(c) and 9(g), and the
addition of some surface diffusion there is desirable to prevent overshoot in �.
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The bulk-interface exchange coefficient J and equilibrium partition coefficient K are the
only dimensionless parameters in the simulations that depend on the ambient bulk surfactant
concentration C∞, to which they are both directly proportional (see the definitions in Table II).
The experimental data imply a range of J as shown in the table when C∞ is varied. This leads to an
estimate of the experimental range for the scaled exchange coefficient J0 = J/ε that is very close
to the range used in the surfactant exchange term of Eq. (19) in the simulations.

Chang and Franses [31] noted that in the context of an air-water interface the surface activity
KL = κa/κd for common surfactants can vary widely, from 10−3 to 107 m3/mol. From Table I,
the value for the experimental data of KL = 3.22 × 106 is near the upper end of this range, and in
predicting conditions for tipstreaming in their experiments Moyle et al. [11] justifiably neglected
desorption of surfactant from the interface upstream of the base of a tipstreaming thread. However,
in contrast, for the equilibrium initial conditions of the simulations the initial surface surfactant
concentration �0 = K/(1 + K ), and for large K this is sufficiently close to � = 1, with a small
surface tension everywhere on the interface, that the imposed flow cannot induce the surface tension
gradients that are necessary to produce tipstreaming, and a mode of drop breakup that is similar to
drop fracture occurs instead [6,15]. To induce tipstreaming in the simulations a range of smaller
values of K must be chosen, and for the choice made here this gives an initial surface surfactant
concentration �0 in the range from 1.56 × 10−2 to 0.67.

Since the ratio J0/K is independent of C∞ it is held fixed throughout, and in the simulations
J0/K = 5 × 10−2. To compensate for the decrease in K relative to the experiments the Biot number
Bi is increased in the simulations to Bi = 10−3 (see Table II). This choice closely reproduces the
experimental values for the product BiK and the C∞-independent ratio J0/BiK , which is 25.8 in
the experiments versus 50 in the simulations. In summary, the simulations closely replicate the
experimental values of J0 and BiK , but at larger values of Bi and smaller values of K , and so it
is expected that the relative importance of adsorption is maintained while the role of desorption is
enhanced. However, in the simulations desorption was seen in Sec. V B to be significant only on
the downstream sections of an already developed tipstreaming thread, not in its initial formation by
flow focusing.

2. Comparison of results

For the setup and geometry of the experiments a two-dimensional state space is introduced. This
consists of a dimensionless bulk surfactant concentration C̄ and a dimensionless flow rate or local
capillary number Q̄, which is based on the axial elongation flow rate near the focusing aperture,
defined by

C̄ = μ0aκaC∞
RT �∞

, Q̄ = 20

3

μ0a
2φQo

(RT �∞)D3
HL

{
1 − wor

2wc

}
. (30)

These are given at Eqs. (18) and (19) of Ref. [11], and quantities on the right-hand side are
dimensional. In the expression of (30) for Q̄, referring to the quantities indicated in Fig. 2, in which
QC ≡ Qo and QD ≡ Qi , we have the following: φ = Qi/Qo is the ratio of the dispersed phase
volume flow rate Qi to the exterior or continuous phase volume flow rate Qo; DH is the hydraulic
diameter of the focusing aperture; and L ≡ �Z, wor, and wc ≡ Wup are apparatus dimensions given
in Table I. To compare the experimental and simulation results we use the closest analog for these
quantities when an exact equivalent is not available: The dispersed phase channel half-width a in
(30) is taken to be the radius of the initial undeformed spherical drop and is the length scale for
nondimensionalization. The circular aperture of the simulations has hydraulic diameter DH = 2r0.
The ratio of the aperture width wor to the outer channel width wc is such that wor/2wc � 0.067
in the experiments, which is neglected in approximating Q̄ for the simulation data. The volume
flow rate of the interior phase Qi = φQo is approximated by Qi = πr2

thuth, where rth and uth are,
respectively, the radius and axial interfacial velocity of the tipstreaming thread at the center of the
aperture. Since the ratio of the tipstreaming thread to aperture radii is small, this is independent of
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FIG. 16. Data in the (Q̄, C̄ ) state-space plane. (a) Conditions for tipstreaming observed experimentally by
Moyle et al. [11] are denoted by squares. Lines denote boundaries outside which tipstreaming is not expected
to occur based on a model of the setup and due to physical limits as indicated in the plot. [Panel (a) has been
reproduced with permission from Ref. [11].] (b) Conditions for tipstreaming predicted by the flow-focusing
simulations of this study, with symbol and capillary number Ca as indicated. Close agreement is found for the
range of the dimensionless bulk surfactant concentration data C̄. The difference in the range of values for the
dimensionless flow rate Q̄ is attributed mostly to the difference in the aperture radius r0.

the precise form of the fluid velocity profile at the aperture, and in the simulation data rth/ro � 0.04
in all computational runs. This leads to the analogous expression for the simulation data flow rate

Q̄ = 5π

6

μ0a
2r2

thuth

(RT �∞)r3
0 L

. (31)

So, in terms of the dimensionless velocity scale U and groups E, Bi, and K we have

C̄ = BiK

E
, Q̄ = 5π

6

r2
thuth

Er3
0 l

, (32)

where all quantities are now nondimensional.
Figure 16 shows points in the (Q̄, C̄ ) plane that correspond to tipstreaming conditions, as

observed in the experiments in Fig. 16(a) and as predicted by the simulations in Fig. 16(b). About
one week (wall clock time) was needed for each computational run, and from eight to ten runs were
made for each of the imposed flow capillary number values Ca = 1, (0.4), 2.2, 3.0 as indicated in
the inset. Some of these runs as well as runs at smaller Ca did not produce tipstreaming. The figure
shows close agreement between the range of experimental and simulation data for the dimensionless
bulk surfactant concentration C̄ that produce tipstreaming. From the expression for C̄ of Eq. (32)
this is assisted by closely reproducing the experimental range of values for the product or modified
Biot number BiK in the simulations, while the factor of 2 difference in E is partly covered up by
the logarithmic scale of the figure.

By contrast, the range of Q̄ for tipstreaming that is predicted by the simulations is not so close
to the data of the experiments. An approximate range for the experimental data is Q̄ ∈ (0.3, 1.0)
compared with Q̄ ∈ (0.001, 0.2) for the simulations. Based on the expression for Q̄ of Eq. (32),
if the volume flux of the tipstreaming thread, or equivalently r2

thuth, is considered unaltered, the
difference in aperture radius between the experiments (r0 = 0.2) and the simulations (r0 = 0.5)
suggests a simple rescaling of the simulation data for Q̄ by the factor 2.53, which puts it in the
range Q̄ ∈ (0.016, 3.13) and better reconciles the two data sets.
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VI. CONCLUSION

We have investigated the influence of geometric flow focusing on the tipstreaming of a drop
that is facilitated by soluble surfactant. A hybrid numerical method has been used to incorporate
the effect of surfactant solubility. This resolves the fine spatial scale of a transition layer situated
adjacent to the drop interface, in which the gradient of the dissolved surfactant concentration in
the normal direction is large due to slow diffusion or large bulk Péclet number Pe. The method
combines an asymptotic reduction in an interface-fitted coordinate system in the limit Pe → ∞
to resolve transport of dissolved surfactant in the layer with a method for solving two-phase flow
with adsorbed interfacial surfactant. The two components are solved numerically, in parallel, and
here the surface-based boundary integral method has been used to resolve the interfacial dynamics.
To complement study of soluble surfactant in a microscale geometry the mixed-kinetic or finite
Biot number form of the boundary condition for bulk-interface surfactant exchange has been
used [31].

Here flow focusing is provided by transverse coaxial annular baffles that are placed symmetri-
cally to either side of an isolated drop, flow is induced by a uniaxial extension at infinity, and the
initially spherical drop has a surfactant-laden interface at equilibrium with its surroundings. Among
the main findings are that a modest amount of focusing, for example, with dimensionless aperture
radius r0 = 0.75, at an imposed flow capillary number that is just sufficient to draw a surfactant-free
drop through the aperture, the addition of a small amount of surfactant to the drop interface alters
the mode of deformation at the drop tip to produce a narrow tipstreaming thread. The thread radius
is significantly smaller than that produced at moderately higher initial surfactant concentrations
without flow confinement and it decreases further with an increase of flow focusing down to the
minimum aperture radius of the simulations reported, which is r0 = 0.25. At this smallest aperture
size, we find that a surfactant-free drop cannot be drawn through the aperture even at large capillary
number, whereas at moderate capillary number a small initial surfactant concentration produces
tipstreaming.

For the simulations of this study, when all other conditions including the aperture size are fixed,
an increase in initial concentration of surfactant produces a thread that is longer at the time when
the thread first pinches off when the surfactant is insoluble. With other conditions fixed, an increase
of surfactant solubility due to an increase in Biot number produces a thread that is shorter at first
pinch-off and this is attributed mainly to interface remobilization and desorption of surfactant from
the thread, which leads to higher surface tension.

We have included results from two sets of simulations that are continued to times beyond first
pinch-off of the thread by excising the small drops that break off from the thread’s downstream end.
These suggest that the process of thread breakup in the simulations is nearly periodic, at least for
limited time intervals, and this is consistent with experimental observations [10,45].

The simulation results have been compared to experimental data on the conditions necessary
for tipstreaming in the microscale flow device of Moyle et al. [11]. Differences between the
dimensions and fluid properties of the simulations and experiment were noted in Sec. V C. Despite
these, in a two-dimensional state space broad agreement for tipstreaming conditions has been
found between the two data sets. Given additional apparent differences between the setup of the
simulations and experiments, the agreement in the data is perhaps surprising. These differences
include the following. (i) The simulations are for the evolution of an initially undeformed drop, in
equilibrium, and with a given uniform surfactant concentration, so the context is that of an initial
value problem. In contrast, in the experiments there is a continual supply of surfactant from one
phase that is adsorbed onto an initially fresh surfactant-free interface at the merger of the dispersed
and continuous phase feed channels [see Fig. 2(b)]. (ii) In the experimental data that is used for
comparison, dissolved surfactant is supplied to the interface from the dispersed phase, while in the
simulations it is soluble only in the continuous phase. Parallel channel sidewalls downstream of the
aperture are also absent from the simulations but may not influence conditions for tipstreaming and
the initial formation of a thread.
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In the experiments, the point at which the cone of the interface merges with the base of the
tipstreaming thread relative to the center of the aperture can be altered by adjusting the two phase
volume flow rates. In a more recent experimental study this has been held nearly fixed via an active
feedback control loop, thereby extending the time interval during which periodic behavior of thread
breakup into nearly monodisperse droplets occurs [46]. In contrast, in the simulations, for given
fluid properties, the location of the mother drop to thread merger is determined by the aperture
radius r0 and the imposed flow capillary number, and under the conditions of this study the point
moves upstream relative to the aperture as r0 is decreased.

We have shown the extent to which the large Pe hybrid method conserves surfactant in Sec. III B
and we have included a note on the development of a surfactant plume downstream of a steady
unconfined drop in Sec. IV.
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